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Abstract

A joint mix is a random vector with a constant component-wise sum. The dependence

structure of a joint mix minimizes some common objectives such as the variance of the

component-wise sum, and it is regarded as a concept of extremal negative dependence. In

this paper, we explore the connection between the joint mix structure and popular notions

of negative dependence in statistics, such as negative correlation dependence, negative or-

thant dependence and negative association. A joint mix is not always negatively dependent

in any of the above senses, but some natural classes of joint mixes are. We derive various

necessary and sufficient conditions for a joint mix to be negatively dependent, and study the

compatibility of these notions. For identical marginal distributions, we show that a nega-

tively dependent joint mix solves a multi-marginal optimal transport problem for quadratic

cost under a novel setting of uncertainty. Analysis of this optimal transport problem with

heterogeneous marginals reveals a trade-off between negative dependence and the joint mix

structure.

Keywords: Joint mixability; negative dependence; optimal transport; extreme dependence;

uncertainty

1 Introduction

Dependence among multiple sources of randomness has always been an active topic in op-

erations research, statistics, transport theory, economics, and finance; see Denuit et al. (2005),

Joe (2014), Rüschendorf (2013), McNeil et al. (2015) and Galichon (2016) for standard textbook

treatment in different fields, and the recent work Blanchet et al. (2020) for relevant examples

in operations research. In contrast to positive, which received much attention in the literature,
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considerably fewer studies are found on negative dependence, partially due to its more com-

plicated mathematical nature. For a review and historical account on extremal positive and

negative dependence concepts, we refer to Puccetti and Wang (2015).

In the past decade, the notion of joint mixability proposed by Wang et al. (2013), which

generalizes complete mixability (Wang and Wang, 2011), has been shown useful for solving many

optimization problems involving the dependence of multiple risks. In particular, joint mixability

is essential to worst-case bounds on Value-at-Risk and other risk measures under dependence

uncertainty (Puccetti and Rüschendorf, 2013; Embrechts et al., 2013; Bernard et al., 2014), as

well as bottleneck assignment and scheduling problems (Coffman and Yannakakis, 1984; Hsu,

1984; Haus, 2015; Bernard et al., 2018).

Joint mixability concerns, for given marginal distributions, the existence of a random vector

which has a constant component-wise sum. Such a random vector is called a joint mix supported

by the given marginal distributions, and it represents a very simple concept of dependence. A

joint mix is commonly regarded as a notion of extremal negative dependence; see the review

of Puccetti and Wang (2015). The reason why a joint mix represents negative dependence is

that it minimizes many objectives which are maximized by comonotonicity. For instance, for

fixed marginal distributions of the risks, comonotonicity maximizes the variance, the stop-loss

premium, and the Expected Shortfall (ES) of the sum of the risks, whereas a joint mix, if it

exists, minimizes these quantities; see e.g., Rüschendorf (2013). As such, joint mixability is seen

as the safest dependence structure, as long as risk aggregation is concerned (Embrechts et al.,

2014).

Although a joint mix has been treated as a concept of negative dependence, it remains

unclear whether it is consistent with classic notions of negative dependence in statistics. Popular

notions of negative dependence include negative correlation dependence (NCD), negative orthant

dependence (NOD; Block et al., 1982; Lehmann, 1966) and negative association (NA; Alam and

Saxena, 1981; Joag-Dev and Proschan, 1983). The connection between joint mixes and these

negative dependence concepts is the main object that we address in this paper. We obtain

some necessary and sufficient conditions for a joint mix to be NOD or NA in Section 3. Some

characterization results are obtained in Section 5 for the class of elliptical distributions. In

particular, among all elliptical classes, only the Gaussian family supports NOD joint mixes of

any dimension.

Since a joint mix may be either negatively dependent or not, a natural question is whether

there are special features of negatively dependent joint mixes which are useful in applications.
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For this question, we consider a multi-marginal optimal transport problem under uncertainty

on the set of components. A few optimality results on negatively dependent joint mixes are

obtained, and they demonstrate an interesting interplay between joint mixes and negative de-

pendence. In particular, for the special case of quadratic cost, we show that the optimizer has

to be an NCD JM in some settings. This is the topic of Section 4.

The study of joint mixability was originally motivated by questions in risk management and

operations research, and it has a strong connection to the theory of multi-marginal optimal trans-

port (Santambrogio, 2015; Pass, 2015) and variance reduction in random sampling (Craiu and

Meng, 2001, 2005); see also our Section 4. Recently, there is a growing spectrum of applications

of joint mixability outside the above fields, including multiple hypothesis testing (Vovk et al.,

2022), wireless communications (Besser and Jorswieck, 2020), labor market matching (Boerma

et al., 2021), and resource allocation games (Perchet et al., 2022). Results in this paper connect

the two topics of joint mixability and negative dependence, allowing us to bring tools from one

area to the other.

This paper is organized as follows. Section 2 introduces the concepts of negative dependence

and joint mixability, and summarizes their basic interrelationships. Section 3 explores conditions

for joint mixes to be negatively dependent. Two results on decompositions of joint mixes

into negatively dependent ones are also obtained. Section 4 studies a multi-marginal optimal

transport problem as an application of negatively dependent joint mixes. Section 5 studies joint

mixes within the elliptical family, and we obtain a new characterization of the Gaussian family

as the only one supporting a negatively dependent elliptical distribution for every dimension.

Section 6 concludes the paper with some open questions and potential directions for future

research. All the proofs are deferred to Appendix A.

2 Notions of negative dependence

In this section we recall a few classic notions of negative dependence. Throughout, denote

by [n] = {1, . . . , n} and 1n the n-vector with all components being 1; the vector 0n is defined

analogously. All inequalities and equalities between (random) vectors are component-wise. For

an n-dimensional random vector X = (X1, . . . , Xn), denote by X⊥ = (X⊥
1 , . . . , X

⊥
n ) a random

vector with independent components such that Xi
d
= X⊥

i , i ∈ [n], where
d
= stands for equality

in distribution. For a set A ⊆ [n], we denote by XA = (Xk)k∈A. A function ψ : Rn → R is

called supermodular if ψ(x ∧ y) + ψ(x ∨ y) ⩾ ψ(x) + ψ(y) for all x,y ∈ Rn, where x ∧ y and

x ∨ y are the component-wise minimum and maximum of x and y, respectively.
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Definition 1. Let X = (X1, . . . , Xn) be an n-dimensional random vector.

(i) X is negative correlation dependent (NCD) if Cov(Xi, Xj) ⩽ 0 for all i, j ∈ [n] with i ̸= j.

(ii) X is negative upper orthant dependent (NUOD) if P(X > t) ⩽ P(X⊥ > t) for all t ∈ Rn;

X is negative lower orthant dependent (NLOD) if P(X ⩽ t) ⩽ P(X⊥ ⩽ t) for all t ∈ Rn.

If X is both NLOD and NUOD, then it is negative orthant dependent (NOD).

(iii) X is negative supermodular dependent (NSD) if E[ψ(X)] ⩽ E[ψ(X⊥)] for all supermodular

functions ψ : Rn → R such that the expectations exist.

(iv) X is negatively associated (NA) if

Cov(f(XA), g(XB)) ⩽ 0, (1)

for any disjoint subsets A,B ⊆ [n] and any real-valued, coordinate-wise increasing func-

tions f and g such that f(XA) and g(XB) have finite second moments.

(v) X is counter-monotonic (CT) if each pair of its component (Xi, Xj) for i ̸= j satisfies

(Xi, Xj) = (f(Z),−g(Z)) almost surely (a.s.) for some random variable Z and increasing

functions f, g.

(vi) X is a joint mix (abbreviated as “X is JM”) if
∑n

i=1Xi = c a.s. for some constant c ∈ R.

All abbreviations introduced in this section are also used as nouns to represent the corre-

sponding dependence concept. The next definition concerns properties of the marginal distri-

butions that allow for JM random vectors.

Definition 2. An n-tuple (F1, . . . , Fn) of distributions on R is called jointly mixable if there

exists a joint mix X = (X1, . . . , Xn) such that Xi ∼ Fi, i ∈ [n]. The constant c =
∑n

i=1Xi

is called a center of X. In this case, we also say that (F1, . . . , Fn) supports a joint mix X. A

distribution F is called n-completely mixable if the n-tuple (F, . . . , F ) is jointly mixable.

The following implications hold between the above concepts of negative dependence. These

implications is either checked directly by definition or shown in the literature, e.g., Joag-Dev

and Proschan (1983), Christofides and Vaggelatou (2004) and Lauzier et al. (2023). The case

of n ⩾ 3 is different from the case n = 2.

n = 2 : JM =⇒ CT =⇒ NA ⇐⇒ NSD ⇐⇒ NOD ⇐⇒ NUOD ⇐⇒ NLOD =⇒ NCD; (2)

general n : CT =⇒ NA =⇒ NSD =⇒ NOD =⇒ NUOD or NLOD =⇒ NCD. (3)
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All one-direction implications in (2) and (3) are strict for n ⩾ 3; see Amini et al. (2013) for

some examples. In contrast to the case n = 2 in (2), JM no longer implies any of the properties

in (3). This can be observed by the following properties of Gaussian random vectors.

Proposition 1. Let X ∼ Nn(µ,Σ) be a Gaussian random vector with mean vector µ ∈ Rn and

covariance matrix Σ = (σij)n×n.

(a) The followings are equivalent: (i) X is NA; (ii) X is NSD; (iii) X is NUOD; (iv) X is

NLOD; (v) X is NCD.

(b) The followings are equivalent: (i) X is JM; (ii) 1⊤nΣ1n = 0.

(c) For n = 2, the followings are equivalent: (i) X is JM; (ii) X is CT and σ11 = −σ12.

(d) For n ⩾ 3, X is never CT unless at least n− 2 components of X are degenerate.

Proposition 1 shows the convenient property of the Gaussian distribution that the concepts

of NA, NSD, NOD, NLOD, NUOD and NCD are all equivalent for this class. Parts (a) and (b)

immediately tell that, for n ⩾ 3, JM does not imply any of these concepts, and none of these

concepts implies JM. We will focus mostly on NA, NOD and NCD given their popularity and

relative strength in the chains (2) and (3). For some other notions of negative dependence, see

Joe (2014).

3 JM and negative dependence

In this section, we explore the relation between JM and negative dependence concepts

introduced in Section 2 by means of several theoretical results. We first show that a joint mix

is NA under some properties of conditional independence and monotonicity.

Theorem 1. Let X be a joint mix and write SA =
∑

i∈AXi for A ⊆ [n]. Suppose that

(a) XA and X[n]\A are independent conditionally on SA for every A ⊆ [n];

(b) E [f(XA)|SA] is increasing in SA for every increasing function f and A ⊆ [n].

Then X is NA.

Theorem 1 can be compared with Theorem 2.6 of Joag-Dev and Proschan (1983), which

says that if X is independent and satisfies (b), then the conditional distribution of X given S[n]

is NA. Since S[n] is a constant for JM and (a) is implied by independence, Theorem 1 means that

the NA condition in Theorem 2.6 of Joag-Dev and Proschan (1983) holds if the independence
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assumption is weakened to conditional independence (a), and in addition we assume JM. Note,

however, that JM and independence of X conflict each other unless X is degenerate.

Most existing examples of NA random vectors are presented by Joag-Dev and Proschan

(1983). Although Theorem 1 does not directly give new examples of NA random vectors, it can

be used to check NA in popular examples.

Example 1. We use Theorem 1 to check that the uniform distribution on the standard simplex

∆n = {(x1, . . . , xn) ∈ [0, 1]n :
∑n

i=1 xi = 1} is NA. Let X follow the uniform distribution over

∆n which is JM. For every A ⊆ [n], we can check that (XA,X[n]\A)|{SA = s} for s ∈ (0, 1)

follows a uniform distribution on (s∆n) × ((1 − s)∆n) and condition (a) holds. Condition (b)

follows by noting that XA|{SA = s} d
= sXA|{SA = 1} for s ∈ (0, 1) and thus XA|{SA = s} is

stochastically increasing in s.

Example 2. The multinomial distribution is known to be NA (Joag-Dev and Proschan, 1983).

We show this by virtue of Theorem 1. LetX ∼ MNn(k,p) follow a multinomial distribution with

k trails, n mutually exclusive events and event probabilities p = (p1, . . . , pn). For s ∈ {0, . . . , k}

and every A ⊆ [n] with B = [n] \ A, it holds that XA|{SA = s} ∼ MN|A|(s,pA/
∑

i∈A pi)

and XB|{SA = s} ∼ MN|B|(k − s,pB/
∑

i∈B pi), where pA = (pi)i∈A and pB = (pi)i∈B. Then

conditions (a) and (b) can be checked directly by calculation.

We next focus on exchangeable joint mixes, which exhibit some specific forms of nega-

tive dependence. A random vector X = (X1, . . . , Xn) (or its distribution) is called exchange-

able if X
d
= Xπ for all π ∈ Sn, where Sn is the set of all permutations on [n] and Xπ =

(Xπ(1), . . . , Xπ(n)). First, we note that if X is CT with identical marginal distributions equal to

F , then the distribution of X is explicitly given by P(X ⩽ x) = (F (x1) + · · ·+F (xn)− n+ 1)+

for x = (x1, . . . , xn) ∈ Rn; see, for example, Theorem 3.3 of Puccetti and Wang (2015). Clearly,

this distribution is exchangeable. Moreover, for any given marginal distribution F which is

n-completely mixable, there exists an exchangeable joint mix with marginals F ; see Proposi-

tion 2.1 of Puccetti et al. (2019). Note that an exchangeable joint mix is NCD because each

bivariate correlation coefficient is equal to −1/(n − 1). The next proposition states that such

an exchangeable joint mix is also negatively dependent in the sense of NSD, NUOD and NULD

if so is X.

Proposition 2. If a univariate distribution function F supports an NSD n-joint mix, then F

supports an exchangeable NSD n-joint mix. The statement holds true if NSD is replaced by

NOD, NUOD or NLOD.
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One may wonder whether Proposition 2 holds with NSD replaced by NA. Unfortunately,

this question remains open, as our proof for Proposition 2 does not extend to NA.

Next, we present a necessary condition for a tuple of distributions to support any negatively

dependent joint mixes. This condition is also sufficient when the marginal distributions are

Gaussian.

Proposition 3. If the tuple of distributions (F1, . . . , Fn) with finite variance vector (σ21, . . . , σ
2
n)

supports an NCD joint mix, then

2max
i∈[n]

σ2i ⩽
∑
i∈[n]

σ2i . (4)

Since NCD is weaker than NOD and NA, the necessary condition (4) is also necessary for

NOD and NA joint mixes.

For a given tuple of distributions (F1, . . . , Fn) with finite variance vector (σ21, . . . , σ
2
n), the

condition (4) is not necessary for the existence of an NCD random vector, since an independent

random vector supported by (F1, . . . , Fn) always exists and it is NCD. More interestingly, the

condition (4) is not necessary for the existence of a joint mix either. Indeed, as shown by

Wang and Wang (2016, Corollary 2.2), a useful necessary condition for a joint mix supported

by (F1, . . . , Fn) to exist is

2max
i∈[n]

σi ⩽
∑
i∈[n]

σi. (5)

We note that (4) is strictly stronger than (5), because for any j ∈ [n], (4) gives

σ2j ⩽
∑

i∈[n]\{j}

σ2i =⇒ σj ⩽

 ∑
i∈[n]\{j}

σ2i

1/2

⩽
∑

i∈[n]\{j}

σi,

which implies (5). It is clear that (4) and (5) are not equivalent; for example, (σ1, σ2, σ3) =

(2, 2, 3) satisfies (5) but not (4).

By Proposition 2.4 of Wang et al. (2013), if the marginal distributions F1, . . . , Fn are Gaus-

sian, then the condition (5) is necessary and sufficient for a joint mix supported by (F1, . . . , Fn)

to exist. Hence, the condition (4), which is strictly stronger than (5), is not necessary for a joint

mix to exist. On the other hand, (4) is generally not sufficient for an NCD joint mix to exist

either, since it is well known that a joint mix may not exist even if the marginal distributions

are identical. Nevertheless, it turns out that (4) is necessary and sufficient for an NCD or NA

joint mix to exist for Gaussian marginals.

Theorem 2. A tuple of univariate Gaussian distributions with variance vector (σ21, . . . , σ
2
n)
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supports an NCD or NA joint mix if and only if (4) holds, that is, 2maxi∈[n] σ
2
i ⩽

∑
i∈[n] σ

2
i .

Moreover, such an NCD or NA joint mix can be chosen as a Gaussian random vector.

The negative dependence concepts of NA, NSD, NOD, NLOD, NUOD and NCD are all

equivalent for multivariate Gaussian distributions, as we see in Proposition 1. Hence, (4) is also

necessary and sufficient for an NSD, NOD, NLOD, or NUOD joint mix to exist for Gaussian

marginals. For elliptical distributions (details in Section 5), the corresponding statement to

Theorem 2 holds for NCD but not the other forms of negative dependence; see Proposition 7.

Example 3. In case n = 3, for any marginals with variance vector (σ21, σ
2
2, σ

2
3), the covariance

of a joint mix X is uniquely given by

Σ =


σ21

1
2(σ

2
3 − σ21 − σ22)

1
2(σ

2
2 − σ21 − σ23)

1
2(σ

2
3 − σ21 − σ22) σ22

1
2(σ

2
1 − σ22 − σ23)

1
2(σ

2
2 − σ21 − σ23)

1
2(σ

2
1 − σ22 − σ23) σ23

 ;

see Xiao and Yao (2020, Corollary 6) for this statement. If X is Gaussian, it is clear that X is

NA if and only if (4) holds. In case n ⩾ 4, for Gaussian marginals we can obtain an explicit

covariance matrix of an NA joint mix from the proof of Theorem 2.

We end this section with two decomposition results of a joint mix into NA joint mixes, one

through a random vector decomposition, and one through a mixture decomposition. We first

establish a new result showing that any finitely supported discrete joint mix can be decomposed

into a linear combination of binary multinomial random vectors. A binary multinomial random

vector is a random vector (X1, . . . , Xn) taking values in {0, 1}n such that
∑n

i=1Xi = 1; that is,

exactly one of X1, . . . , Xn takes the value 1. By definition, binary multinomial random vectors

are CT (hence NA) and JM.

Theorem 3. Suppose that the random vector X takes values in a finite set. Then, X is JM if

and only if it can be represented as a finite linear combination of binary multinomial random

vectors.

Theorem 3 generalizes Theorem 2 of Wang (2015) which has a decomposition of a joint

mix taking nonnegative integer values as the sum of binary multinomial random vectors. The

assumption of finite support in Theorem 3 does not seem to be dispensable with the current

proof techniques.

Next, using the fact that the distribution of a joint mix can be written as a mixture of

discrete uniform (DU) distributions on n points in Rn, we obtain the following decomposition.
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Proposition 4. The distribution of any exchangeable joint mix with center µ can be written as

a mixture of distributions of exchangeable NA joint mixes with center µ.

4 A multi-marginal optimal transport problem

To connect JM and negative dependence, a natural question is whether in some applications

negatively dependent joint mixes have additional attractive properties that are not shared by

other joint mixes. We present an optimal transport problem with uncertainty in this section

where a combination of negative dependence and JM naturally appears.

In the multi-marginal optimal transport theory (Santambrogio, 2015; Pass, 2015), a general

objective is

to minimize E[c(X1, . . . , Xn)] subject to Xi ∼ Fi, i ∈ [n],

where c : Rn → R is a cost function and F1, . . . , Fn are specified marginal distributions. This

problem is referred to as the Monge-Kantorovich problem. In the context of this paper, the

distributions F1, . . . , Fn are on R. In all optimization problems we discussed in this section,

the constraint is always Xi ∼ Fi for each i ∈ [n] with F1, . . . , Fn given, and we assume that

F1, . . . , Fn have finite second moments throughout this section.

4.1 Optimal transport under uncertainty on the set of components

We will consider a special class of cost functions, leading to the Monge-Kantorovich problem

to minimize E

[
f

(
n∑

i=1

Xi

)]
subject to Xi ∼ Fi, i ∈ [n], (6)

where f : R → R is a convex function. This special setting is important to JM because, assuming

that a joint mix with marginal distributions F1, . . . , Fn exists, then any joint mix is an optimizer

of (6) due to Jensen’s inequality, and conversely, any optimizer of (6) has to be a joint mix if f

is strictly convex. As discussed by Puccetti and Wang (2015) and Wang and Wang (2016), one

of the main motivations of JM is to solve optimization problems similar to (6).

Since joint mixes with given marginal distributions are not unique, we wonder whether a

negatively dependent joint mix plays a special role among optimizers to (6). This is our main

question to address.

Although each joint mix minimizes (6), their distributions can be quite different. For a

concrete example, suppose that the marginal distributions are standard Gaussian, and let n be

even. With these marginals, XE ∼ Nn(0n, P
∗
n) is an NA joint mix, where P ∗

n is a matrix with

diagonal entries being 1 and off-diagonal entries being −1/(n − 1), and XA = ((−1)iZ)i∈[n],
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Z ∼ N1(0, 1), is another joint mix which is not NA. Here, “E” stands for “exchangeable”

and “A” stands for “alternating”. These two joint mixes have the same value f(0) for (6).

Nevertheless, XA may be seen as undesirable in some situations, because some subgroups of

its components are comonotonic. Inspired by this, we consider the cost of a subset K ⊆ [n] of

risks f
(∑

i∈K Xi

)
. If K is known to the decision maker, then we are back to (6) with (Xi)i∈[n]

replaced by (Xi)i∈K .

In different applications, allowing a flexible choice of K may represent the absence of some

risks in a risk aggregation pool, missing particles in a quantum system, an unspecified number

of simulation sizes in a sampling program, or uncertainty on the participation of some agents

in a risk-sharing game. In each context above, a decision maker may not know K a priori, and

hence she may be interested in minimizing a weighted average of the cost, that is

Cf
µ(X1, . . . , Xn) :=

∑
K⊆[n]

E

[
f

(∑
i∈K

Xi

)]
µ(K), (7)

where µ is a probability on the sample space 2[n], the power set of [n], and
∑

i∈K Xi is set to 0 if

K is empty; here we use the notation µ(K) = µ({K}), which should not lead to any confusion.

We consider the formulation of uncertainty as in the framework of Gilboa and Schmeidler

(1989). With a probability on 2[n] uncertain, we consider a set M of probabilities on 2[n], called

an uncertainty set. The formulation of (7) with uncertainty set M is

to minimize sup
µ∈M

Cf
µ(X1, . . . , Xn) subject to Xi ∼ Fi, i ∈ [n]. (8)

The supremum represents a worst-case attitude towards uncertainty, which is axiomatized by

Gilboa and Schmeidler (1989) in decision theory. We explain two simple special cases of (8).

First, by taking M as the set of all probabilities on 2[n], the objective in (8) becomes

sup
µ∈M

Cf
µ(X1, . . . , Xn) = max

K⊆[n]
E

[
f

(∑
i∈K

Xi

)]
, (9)

which represents the situation of having no information on K. Second, by taking M as the set

of all probabilities on 2[n] supported by sets K of cardinality |K| = k ∈ [n], the objective in (8)

becomes

sup
µ∈M

Cf
µ(X1, . . . , Xn) = max

K⊆[n], |K|=k
E

[
f

(∑
i∈K

Xi

)]
, (10)

which represents the situation where one knows how large the subset K is, but not precisely
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how it is composed.

The problem (8) is generally difficult to solve. We will first focus on the homogeneous case

where F = F1 = · · · = Fn, and this will be relaxed in Section 4.3. With this interpretation,

it is natural to consider uncertainty sets M that are symmetric. We say that M is symmetric

if µ ∈ M implies µπ ∈ M for π ∈ Sn, where µπ is a permutation of µ, defined by µπ(K) =

µ({π(i) : i ∈ K}) for K ⊆ [n].

Recall that we are interested in whether a negatively dependent joint mix plays a special

role among other joint mixes. The next proposition provides a step in this direction. Also recall

that P ∗
n is the correlation matrix with off-diagonal entries equal to −1/(n− 1).

Proposition 5. Suppose that M is symmetric, and X is a joint mix with identical marginals F .

Then there exists an exchangeable NCD joint mix XE with marginals F and correlation matrix

P ∗
n such that

sup
µ∈M

Cf
µ(X

E) ⩽ sup
µ∈M

Cf
µ(X)

for all measurable functions f : R → R.

Proposition 5 illustrates the intuition that among all joint mixes, the NCD ones with

correlation matrix P ∗
n are better choices under uncertainty. However, this does not answer

whether such NCD joint mixes are optimizers to our main optimal transport problem (8). In

the next section, we consider the quadratic cost, and show that indeed those NCD joint mixes

are solutions to (8) for the quadratic cost.

4.2 Quadratic cost

We consider the quadratic cost given by f(x) = x2. In this case, we denote by

C2
µ(X1, . . . , Xn) :=

∑
K⊆[n]

E

(∑
i∈K

Xi

)2
µ(K),

and (8) becomes, assuming homogeneous marginals,

to minimize sup
µ∈M

∑
K⊆[n]

E

(∑
i∈K

Xi

)2
µ(K), subject to Xi ∼ F , i ∈ [n]. (11)

Two other formulations related to the quadratic cost, the repulsive harmonic cost problem and

the variance minimization problem, are discussed below in Examples 4 and 5.

It is clear that, for µ ∈ M, its permutation µπ satisfies C2
µ(X) = C2

µπ
(X). We first show

that the exchangeable NCD joint mix is a minimizer to (11) if M is symmetric.
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Theorem 4. Suppose that F is n-completely mixable with finite variance and M is symmetric.

Then, each NCD joint mix with marginals F and correlation matrix P ∗
n minimizes (11).

If the marginal distribution F is Gaussian, then we can replace NCD by NA, NSD or NOD

in Theorem 4, since for the Gaussian class NCD is equivalent to these notions (Proposition 1).

Theorem 4 does not state that all the minimizers to (11) are NCD joint mixes. For instance,

if M contains only measures concentrated on K with |K| = n, then any joint mix minimizes

(11); see also Remark 1 below for other similar cases. Next, we study the uniqueness of the

optimizers for two special choices of M in (9) and (10), namely,

to minimize max
K⊆[n]

E

(∑
i∈K

Xi

)2
 subject to Xi ∼ F , i ∈ [n], (12)

and for a fixed k ∈ [n],

to minimize max
K⊆[n], |K|=k

E

(∑
i∈K

Xi

)2
 subject to Xi ∼ F , i ∈ [n]. (13)

In Theorem 5 below, we will see that, assuming F has mean zero, negative dependence

yields more stable costs in the presence of uncertainty. The exchangeable joint mix with corre-

lation matrix P ∗
n minimizes (13) for each k ∈ [n], and this correlation matrix is unique for all

minimizers for each k ∈ [n] \ {1, n − 1, n}. As a consequence, all minimizers to (12) have the

same correlation matrix P ∗
n (this holds for n ⩾ 3).

Theorem 5. Suppose that n ⩾ 3 and the distribution F is n-completely mixable with mean 0

and finite positive variance. A random vector is a minimizer to (12) if and only if it is an NCD

joint mix with correlation matrix P ∗
n . The same conclusion holds true if (12) is replaced by (13)

with any k ∈ [n] \ {1, n− 1, n}.

Remark 1. We briefly comment on the three cases of k excluded from the statement regarding

the unique minimizer of (13), and it will be clear that uniqueness cannot be expected in these

cases. Recall that the marginal distributions of X are assumed identical.

1. If k = 1, then E[(
∑

i∈K Xi)
2] = E[X2

1 ] which does not depend on the dependence structure

of X, and hence any coupling minimizes (13).

2. If k = n, then K = [n] and thus any joint mix minimizes (13).

12



3. If k = n−1, then E[(
∑

i∈K Xi)
2] = E[(c−X1)

2] for any joint mix X with center c. Hence,

any joint mix has the same value for (13).

Theorem 5 implies that for a standard Gaussian F , the exchangeable joint mix XE ∼

Nn(0n, P
∗
n) is a minimizer to both (12) and (13) for each k ∈ [n]. If n ⩾ 3, this minimizer is

unique among Gaussian vectors in both cases of (12) and (13) with k ∈ [n] \ {1, n− 1, n}.

Remark 2. As we have seen in Remark 1, if n = 3, then any joint mix minimizes (13) for each

k ∈ [n]. The uniqueness statement in Theorem 5 implies that the covariance structure of a joint

mix is unique for n = 3, as we see in Example 3.

Below we discuss two specific optimal transport problems related to the quadratic cost.

Example 4 (Variance minimization). The quadratic cost minimization problem is equivalent

to variance minimization with given marginals. It is clear that

C2
µ(X1, . . . , Xn) =

∑
K⊆[n]

Var

(∑
i∈K

Xi

)
µ(K) +

∑
K⊆[n]

(∑
i∈K

E[Xi]

)2

µ(K),

and the second term does not depend on the dependence structure of (X1, . . . , Xn). If F1, . . . , Fn

have zero mean, then the problem (11) can be written as

to minimize sup
µ∈M

∑
K⊆[n]

Var

(∑
i∈K

Xi

)
µ(K) subject to Xi ∼ F , i ∈ [n].

Variance minimization is a classic problem in Monte Carlo simulation (Craiu and Meng, 2001,

2005) and risk management (Rüschendorf, 2013). The above arguments show that the state-

ments in Theorems 4 and 5 hold true if the objective of quadratic cost E[(
∑

i∈K Xi)
2] is replaced

by the variance Var(
∑

i∈K Xi).

Example 5 (Repulsive harmonic cost). The repulsive harmonic cost function is defined by

c(x1, . . . , xn) = −
n∑

i,j=1

(xi − xj)
2, (x1, . . . , xn) ∈ Rn.

This cost function originates from the so-called weak interaction regime in Quantum Mechanics;

see e.g., Di Marino et al. (2017). Any joint mix minimizes the expected repulsive harmonic cost.
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To see this, we can rewrite

E[c(X1, . . . , Xn)] = −2n

n∑
i=1

E[X2
i ] + 2E

( n∑
i=1

Xi

)2
 . (14)

Since the first terms on the right-hand side of (14) do not depend on the dependence structure

of (X1, . . . , Xn), minimizing E[c(X1, . . . , Xn)] is equivalent to minimizing E[(
∑n

i=1Xi)
2], which

is clearly minimized if (X1, . . . , Xn) is a joint mix. Let cK(x1, . . . , xn) = −
∑

i,j∈K(xi − xj)
2,

(x1, . . . , xn) ∈ Rn, for K ⊆ [n]. The problem (11) can be written as

to minimize sup
µ∈M

∑
K⊆[n]

(
1

2
E[cK(X)] + |K|

∑
i∈K

E[X2
i ]

)
µ(K) subject to Xi ∼ F , i ∈ [n].

The statement in Theorem 4 remains true if the objective of quadratic cost E[(
∑

i∈K Xi)
2] is

replaced by the cost E[cK(X)].

4.3 Discussions on heterogeneous marginals

In Theorem 5, we assumed that the marginal distributions are identical. This assumption

is not dispensable, as the situation for heterogeneous marginals is drastically different and we

do not have general results. In this section, we present a result in the simple case n = 3 and

provide several examples to discuss some subtle issues and open questions. To illustrate these

issues, we focus on the problems (12) and (13) for n = 3. In all examples, we explain with

Gaussian marginal distributions, but this assumption can be replaced as long as the covariance

matrices in the examples are compatible with the marginals.

Proposition 6. Let n = 3. For any tuple of marginal distributions with finite variance vector

and zero means, any joint mix, if it exists, minimizes (12). If an NCD joint mix exists, then

no random vector with any positive bivariate covariance can minimize (12).

Remark 3. Proposition 6 states that, if a Gaussian triplet supports an NCD joint mix, then

it minimizes (12), and all Gaussian minimizers must be NCD. It is not clear whether this

observation can be extended to n ⩾ 4.

Unlike the situation in Theorem 5, uniqueness of the covariance matrix does not hold in

the setting of Proposition 6, as illustrated in the following example.

Example 6. Consider Gaussian marginal distributions with variance vector (σ21, σ
2
2, σ

2
3) =

(2, 1, 1). In this case, (4) holds, and an NCD joint mix exists by Theorem 2. Both the co-
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variance matrices Σ and Σ′ defined by

Σ =


2 −1 −1

−1 1 0

−1 0 1

 and Σ′ =


2 −1/2 −1

−1/2 1 0

−1 0 1


minimize (12) subject to the marginal distributions. We can see that Σ corresponds to an NCD

joint mix, whereas Σ′ corresponds to an NCD random vector, but not a joint mix.

The next example illustrates that, although a joint mix generally minimizes (12) in case

n = 3, NCD may be more relevant than joint mixes for minimizing (13) with some k ̸= n when

the two dependence requirements cannot be simultaneously achieved.

Example 7. Consider Gaussian marginal distributions with variance vector (σ21, σ
2
2, σ

2
3) =

(4, 1, 1). In this case, (4) does not hold, and no NCD joint mix exists. Both the covariance

matrices Σ and Σ′ defined by

Σ =


4 −2 −2

−2 1 1

−2 1 1

 and Σ′ =


4 −1 −1

−1 1 0

−1 0 1


minimize (12) subject to the marginal distributions. The covariance matrix Σ corresponds to a

joint mix, but not NCD. The covariance matrix Σ′ corresponds to an NCD random vector, but

not a joint mix. Thus, the problem (12) admits an NCD minimizing distribution N3(03,Σ
′).

Moreover, for (13) with k = 2, the NCD distribution N3(03,Σ
′) has a maximum of 3 which is

strictly better than the joint mix distribution N3(03,Σ) with a maximum of 4.

Example 7 suggests, informally, that there is a trade-off between a joint mix and NCD

when both cannot be attained simultaneously, with a joint mix minimizing (13) for k = n, and

an NCD random vector improving (13) from the case of a joint mix for some 1 < k < n. In

fact, (13) is not always minimized by NCD random vectors as seen in the following example.

Example 8. Consider marginal distributions with variance vector (σ21, σ
2
2, σ

2
3) = (σ2, 1, 1) and

zero means, where σ > 3. For any (X1, X2, X3) with the given marginals, we have

E
[
(X2 +X3)

2
]
⩽ 4 < (σ − 1)2 ⩽ min

(
E
[
(X1 +X2)

2
]
,E
[
(X1 +X3)

2
])
,
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and hence

max
K⊆[3], |K|=2

E

(∑
i∈K

Xi

)2
 = σ2 + 1 + 2σmax(ρ12, ρ13), (15)

where ρij , i, j ∈ [3] is the correlation coefficient of (Xi, Xj). For Gaussian marginals, the

minimum of (15) is attained if and only if ρ12 = ρ13 = −1. In this case, ρ23 = 1 is the only

possible correlation, and thus the minimizer to (15) cannot be NCD.

On the other hand, the next example shows that, if n = 3, there always exists an NCD

minimizer to (12) for Gaussian marginals.

Example 9. Let (X1, X2, X3) follow a multivariate Gaussian distribution with equicorrela-

tion matrix P ∗
3 ; i.e., all pairwise correlation coefficients are −1/2. The variances σ21, σ

2
2 and

σ23 are assumed to satisfy σ1 ⩽ σ2 ⩽ σ3 without the loss of generality and the means for

prescribed marginal distributions are assumed to be zero. We can easily verify that each of

E
[
(X1 +X2 +X3)

2
]
and E

[
(Xi +Xj)

2
]
, i, j ∈ [3], is smaller than or equal to σ23. Hence,

(X1, X2, X3) attains the lower bound

max
K⊆[3]

E

(∑
i∈K

Xi

)2
 = σ23 = max

i∈[3]
σ2i ,

and thus it minimizes (12).

Remark 4. For n ⩾ 4, it is not clear whether there always exists an NCD minimizer to (12)

under a general heterogeneous marginal constraint.

5 Elliptical distributions

Elliptical distributions form a tractable class of joint mixes for arbitrary dimensions. In

this section, we investigate negative dependence properties of such elliptical joint mixes.

An n-dimensional elliptical distribution is a family of multivariate distributions defined

through the characteristic function

ϕX(t) = E
[
exp

(
it⊤X

)]
= exp

(
it⊤µ

)
ψ(t⊤Σt), t ∈ Rn, (16)

for some location parameter µ ∈ Rn, n × n positive semi-definite symmetric matrix Σ ∈ Rn×n

and the so-called characteristic generator ψ : R+ → R, where R+ = {x ∈ R : x ⩾ 0}. See

Section 6 of McNeil et al. (2015) for more properties. We denote an elliptical distribution by

En(µ,Σ, ψ) and refer to µ as the location vector and Σ the dispersion matrix. We say that
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an elliptical distribution En(µ,Σ, ψ) is non-degenerate if all its marginals are non-degenerate

(i.e., not a point-mass). Equivalently, the diagonal entries of Σ are positive. As presented in

Proposition 6.27 of McNeil et al. (2015), a random vector X ∼ En(µ,Σ, ψ) with rank(Σ) = k

admits the stochastic representation X = µ+RAS, where S is the uniform distribution on the

unit sphere on Rk, the radial random variable R ⩾ 0 is independent of S, and A ∈ Rn×k is such

that AA⊤ = Σ. With this representation, we have that E[X] = µ and Cov(X) = E[R2] Σ/k

provided E[R2] <∞.

We first present a simple lemma on elliptical joint mixes which will be useful for later

discussions.

Lemma 1. An n-dimensional elliptically distributed random vector X ∼ En(µ,Σ, ψ) is a joint

mix if and only if 1⊤nΣ1n = 0 or ψ = 1 on R+.

Negative dependence of such an elliptical joint mix is the main topic of this section. We

next provide a characterization for NCD-JM as an extension to Theorem 2.

Proposition 7. Suppose that ψ is the characteristic generator of an n-dimensional elliptical

distribution. A tuple of univariate distributions (E1(µi, σ
2
i , ψ), i ∈ [n]) supports an NCD joint

mix if and only if (4) holds, that is, 2maxi∈[n] σ
2
i ⩽

∑
i∈[n] σ

2
i . Moreover, such an NCD joint

mix can be chosen to follow an elliptical distribution.

As we showed in Proposition 1, for Gaussian random vectors, NA, NSD and NOD are all

equivalent to NCD; that is, the bivariate correlations are non-positive. Recall that P ∗
n is an

n × n matrix whose diagonal entries are 1 and off-diagonal entries are −1/(n − 1). Together

with Lemma 1, the matrix P ∗
n is the only choice of Σ with diagonal entries being 1 such that

X ∼ Nn(µ,Σ) is an exchangeable NA (and thus NSD and NOD) joint mix.

One may hope that non-Gaussian elliptical distributions can represent NOD, NSD and

NA joint mixes for n ⩾ 3. The following result states that Gaussian family is characterized

as the only elliptical family which admits such a negatively dependent n-joint mix for all n.

For a characteristic generator ψ, denote by E(ψ) the class of all non-degenerate random vectors

following an elliptical distribution with characteristic generator ψ. In what follows, a class E(ψ)

is a Gaussian variance mixture family if there exists a nonnegative random variable W such

that each member X admits the stochastic representation X
d
= µ +

√
WAZ, where µ ∈ Rn,

A ∈ Rn×k, and Z is a k-dimensional standard Gaussian independent of W .

Theorem 6. Let ψ be a characteristic generator.
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(i) The class E(ψ) contains an NCD n-joint mix for all n ⩾ 2 if and only if the class E(ψ) is

a Gaussian variance mixture family.

(ii) The class E(ψ) contains an NOD, NSD, or NA n-joint mix for all n ⩾ 2 if and only if the

class E(ψ) is Gaussian.

Theorem 6 shows a clear contrast between NCD and other concepts of negative dependence.

As seen in the proof of Theorem 6, NCD does not restrict the class of elliptical distributions

since ψ generates an n-dimensional elliptical distribution for every n ∈ N if and only if the cor-

responding elliptical class is a Gaussian variance mixture family (Fang et al., 1990, Section 2.6).

Note that a class of multivariate t distributions (with a common degree of freedom) is an exam-

ple of a Gaussian variance mixture family. On the other hand, NOD, NSD and NA characterize

Gaussian. This result stems from the fact that multivariate Gaussian distribution is the only

one among elliptical distributions such that independence is equivalent to uncorrelatedness.

6 Conclusion

The paper has focused on the relationship between JM and classic notions of negative

dependence such as NOD and NA. Various connections between these concepts are obtained,

and some conditions for a joint mix to be negatively dependent are derived. In particular, an

exchangeable negatively dependent joint mix solves a multi-marginal optimal transport problem

for quadratic cost under uncertainty on the participation of agents.

Negative dependence is always studied with many technical challenges. Although our main

questions are addressed or partially addressed in this paper, they give rise to many questions

that remain open. We list a few of them that we find particularly interesting.

1. Under what conditions, possibly stronger than exchangeability and NOD, is a joint mix

NA? An example of NOD joint mix that is not NA can be found in Section 3.2 of Ma-

linovsky and Rinott (2023) in the context of knockout tournaments with a nonrandom

draw.

2. Under what general conditions, other than Gaussian, do we know a tuple of distributions

supports an NA joint mix? For a fixed n ⩾ 3, this question is not clear even within the

elliptical class.

3. It is unclear whether the decomposition result in Theorem 3 can be generalized to joint

mixes that take infinitely many values or that are continuously distributed.
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4. Assuming homogeneous marginals, does an exchangeable joint mix solve problem (8) for

a general convex cost function f? In Theorem 4, we showed that this holds true for

quadratic cost. We also know that a joint mix is an optimizer for the general convex cost

problem without uncertainty. These observations seem to hint at the possible optimality

of some exchangeable joint mix for general convex cost under uncertainty, but we do not

have a proof.

5. Do negatively dependent joint mixes play an important role in optimization problems

other than the ones considered in Section 4? It is also unclear how results in Section 4 can

be extended to heterogeneous marginal distributions with dimension higher than 3. Two

unsolved questions have already been mentioned in Remarks 3 and 4.

These questions yield new challenges to dependence theory and require future research.
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Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R. and Beleraj, A. (2014). An academic

response to Basel 3.5. Risks, 2(1), 25-48.

Fang, K. T., Kotz, S. and Ng, K. W. (1990). Symmetric multivariate and related distributions.

London: Chapman & Hall.

Galichon, A. (2016). Optimal Transport Methods in Economics. Princeton University Press.

Gilboa, I. and Schmeidler, D. (1989). Maxmin expected utility with non-unique prior. Journal

of Mathematical Economics, 18, 141–153.

Haus, U. (2015). Bounding stochastic dependence, complete mixability of matrices, and multi-

dimensional bottleneck assignment problems. Operations Research Letters, 43(1), 74–79.

Hsu, W. L. (1984). Approximation algorithms for the assembly line crew scheduling problem.

Mathematics of Operations Research, 9(3), 376–383.

Joag-Dev, K. and Proschan, F. (1983). Negative association of random variables with applica-

tions. Annals of Statistics, 11, 286–295.

Joe, H. (2014). Dependence Modeling with Copulas. London: Chapman & Hall.

Lauzier, J. G., Lin, L. and Wang, R. (2023). Pairwise counter-monotonicity. Insurance: Mathe-

20



matics and Economics, 111, 279–287.

Lehmann, E. L. (1966). Some concepts of dependence. Annals of Mathematical Statistics, 37(5),

1137–1153.

Malinovsky, Y. and Rinott, Y. (2023). On tournaments and negative dependence. Journal of

Applied Probability, 60(3), 945–954.

McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts,

Techniques and Tools. Revised Edition. Princeton, NJ: Princeton University Press.

Müller, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. Wiley.

Pass, B. (2015). Multi-marginal optimal transport: Theory and applications. ESAIM: Mathe-

matical Modelling and Numerical Analysis, 49(6), 1771–1790.

Perchet, V., Rigollet, P. and Gouic, T. L. (2022). An algorithmic solution to the Blotto game

using multi-marginal couplings. arXiv : 2202.07318.

Puccetti, G., Rigo, P., Wang, B. and Wang, R. (2019). Centers of probability measures without

the mean. Journal of Theoretical Probability, 32(3), 1482–1501.
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A Proofs of all results

Some notions of negative dependence introduced in Section 2 are related to stochastic

orders. We first introduce some concepts of stochastic order.

For two n-dimensional random vectors X and Y, X is said to be less than Y in lower

concordance order (denoted by X ⩽cL Y) if P(X ⩽ t) ⩽ P(Y ⩽ t) for all t ∈ Rn, upper

concordance order (denoted by X ⩽cU Y) if P(X > t) ⩽ P(Y > t) for all t ∈ Rn, concordance

order (denoted by X ⩽c Y) if X ⩽cL Y and X ⩽cU Y, and in supermodular order (denoted

by X ⩽sm Y) if E[ψ(X)] ⩽ E[ψ(Y)] for all supermodular functions ψ : Rn → R such that the

expectations exist. Using these notations of stochastic order, the notions of negative dependence

NLOD, NUOD, NOD and NSD for an n-dimensional random vector X = (X1, . . . , Xn) are

denoted by X ⩽cL X⊥, X ⩽cU X⊥, X ⩽c X
⊥ and X ⩽sm X⊥, respectively, where we recall that

X⊥ = (X⊥
1 , . . . , X

⊥
n ) is a random vector with independent components such that Xi

d
= X⊥

i ,

i ∈ [n].

Proof of Proposition 1. In part (a), the implication from (v) to (i) is shown by Joag-Dev and

Proschan (1983). The other implications follow from (3). Parts (b) and (c) can be easily checked

by definition. Finally, part (d) follows from the fact that a CT random vector for n ⩾ 3 cannot

have continuous marginal distributions (Dall’Aglio, 1972; Puccetti and Wang, 2015).

Proof of Theorem 1. Note that to show NA, it suffices to show (1) for A,B that form a partition

of [n], as we can choose increasing functions in (1) that only depend on a subset of A and B.

Let f and g be two increasing functions on Rd and Rn−d, respectively, where d is the cardinality

of A. Note that

Cov(f(XA), g(XB)) = E[Cov(f(XA), g(XB)|SA)] + Cov(E[f(XA)|SA],E[g(XB)|SA]);

see (1.1) of Joag-Dev and Proschan (1983). Using conditional independence (a), we get

Cov(f(XA), g(XB)) = Cov(E[f(XA)|SA],E[g(XB)|SA]).

Since SA + SB is a constant, condition (b) implies that E[f(XA)|SA] is an increasing function

of SA, and E[g(XB)|SA] = E[g(XB)|SB] is a decreasing function of SA. This shows that their

covariance is non-positive. Therefore, X is NA.
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Proof of Proposition 2. Denote by X = (X1, . . . , Xn) the NSD n-joint mix with joint distribu-

tion FX. Let XΠ = (XΠ(1), . . . , XΠ(n)) be an exchangeable joint mix, where Π follows a uniform

distribution on Sn and is independent of X. Obviously XΠ is a joint mix, and has the same

marginal distributions as X. Let F̄ = 1
n!

∑
π∈Sn

FXπ be the distribution function of XΠ. Then

F̄ is exchangeable. Moreover, F̄ is NSD since

E[ψ(XΠ)] =
1

n!

∑
π∈Sn

E[ψ(XΠ)] ⩽
1

n!

∑
π∈Sn

E[ψ(X⊥)] = E[ψ(X⊥)]

for every supermodular function ψ such that the expectations above exist. Other cases of NOD,

NUOD and NLOD are shown analogously.

Proof of Proposition 3. Without loss of generality, assume σ2n is the maximum of {σ21, . . . , σ2n}.

Note that NCD implies that the bivariate correlations are non-positive. If (X1, . . . , Xn) is an

NCD joint mix where Xi ∼ Fi, i ∈ [n], then

σ2n = Var(Xn) = Var(X1 + · · ·+Xn−1) ⩽
n−1∑
i=1

Var(Xi) =
n−1∑
i=1

σ2i ,

which yields (4) by adding σ2n to both sides.

Proof of Theorem 2. The necessity follows from Proposition 3, and below we show sufficiency.

Suppose that (4) holds. Without loss of generality, we can assume σn ⩾ σn−1 ⩾ · · · ⩾ σ1. It

suffices to consider n ⩾ 3 and σn−1 > 0, and otherwise the problem is trivial. Moreover, the

location parameters of the Gaussian distributions are not relevant, and they are assumed to be

0.

Let λ be a constant such that

λ2
n−1∑
i=1

σ2i + (1− λ2)σ2n−1 = σ2n. (17)

By (4), we have
∑n−1

i=1 σ
2
i ⩾ σ2n ⩾ σ2n−1, and this ensures that we can take λ ∈ [0, 1].

Let P ∗
n be a matrix with diagonal entries being 1 and off-diagonal entries being −1/(n−1),

and let P⊥
n be a matrix with diagonal entries being 1 and off-diagonal entries being 0. Take

Y = (Y1, . . . , Yn−1) ∼ Nn−1(0n−1, P
⊥
n−1) and

Z(m) = (Z(m)
m , . . . , Z(m)

n ) ∼ Nn−m+1(0n−m+1, P
∗
n−m+1), m = 1, . . . , n− 1,
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such thatY,Z(1), . . . ,Z(n−1) are independent. Note that Z(n−1) = (Z
(n−1)
n−1 , Z

(n−1)
n ) ∼ N2(02, P

∗
2 )

is 2-dimensional, and each Z(m) is a joint mix.

For notational simplicity, let the function d be given by d(a, b) = (a2− b2)1/2 for a ⩾ b ⩾ 0.

Note that a2 = d(a, b)2 + b2. Moreover, for k = 1, . . . , n− 1, let

αk = d(σk, σk−1) =
(
σ2k − σ2k−1

)1/2
,

with σ0 = 0, and thus α1 = σ1. For k = 1, . . . , n− 1, let

Xk = λσkYk + d(1, λ)
k∑

j=1

αjZ
(j)
k .

Moreover, let

Xn = −λY ∗ + d(1, λ)

n−1∑
j=1

αjZ
(j)
n , where Y ∗ =

n−1∑
k=1

σkYk.

For k = 1, . . . , n− 1, using independence among Z
(1)
k , . . . , Z

(k)
k , we get

Var

 k∑
j=1

αjZ
(j)
k

 =
k∑

i=1

α2
j = σ21 + d(σ2, σ1)

2 + · · ·+ d(σk, σk−1)
2 = σ2k.

Hence,
∑k

j=1 αjZ
(j)
k ∼ N1(0, σ

2
k), and again using independence of Yk and

∑k
j=1 αjZ

(j)
k , we get

Xk ∼ N1(0, σ
2
k). By (17), we have

Var(Xn) = Var

(
λ

n−1∑
k=1

σkYk

)
+Var

d(1, λ) n−1∑
j=1

αjZ
(j)
n

 = λ2
n−1∑
i=1

σ2i + (1− λ2)σ2n−1 = σ2n.

Hence, Xn ∼ N1(0, σ
2
n).

Next, we show that (X1, . . . , Xn) is a joint mix. We can directly compute

n∑
k=1

Xk =
n−1∑
i=k

λσkYk + d(1, λ)
n−1∑
k=1

k∑
j=1

αjZ
(j)
k − λ

n−1∑
k=1

σkYk + d(1, λ)
n−1∑
j=1

αjZ
(j)
n

= d(1, λ)

n−1∑
j=1

n∑
k=j

αjZ
(j)
k = 0,

where the last equality follows from the fact that Z(j) is a joint mix for each j = 1, . . . , n− 1.

We check that (X1, . . . , Xn) is NA. This follows from the fact that (X1, . . . , Xn) is the

weighted sum of several independent NA random vectors (σ1Y1, . . . , σn−1Yn−1,−Y ∗) and (0m−1,Z
(m))
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for m = 1, . . . , n − 1. Alternatively, one can check that all non-zero terms in Cov(Xi, Xj) are

negative for i ̸= j as follows. For Xk, Xl with k, l ⩽ n− 1 and k < l, we have

Cov(Xk, Xl) = Cov

λσkYk + d(1, λ)
k∑

j=1

αjZ
(j)
k , λσlYl + d(1, λ)

l∑
i=1

αiZ
(i)
l


= λ2σkσlCov(Yk, Yl) + λσkd(1, λ)

l∑
i=1

αiCov(Z
(i)
l , Yk)

+ λσld(1, λ)

k∑
j=1

αjCov(Z
(j)
k , Yl) + d2(1, λ)

k∑
j=1

l∑
i=1

αjαiCov(Z
(j)
k , Z

(i)
l )

= −d2(1, λ)
k∑

j=1

α2
j

n− j
⩽ 0.

For Xk, Xn for all k ⩽ n− 1, we have

Cov(Xk, Xn) = Cov

λσkYk + d(1, λ)

k∑
j=1

αjZ
(j)
k ,−λ

n−1∑
i=1

σiYi + d(1, λ)

n−1∑
i=1

αiZ
(i)
n


= −λ2σk

n−1∑
i=1

σiCov(Yk, Yi) + λσkd(1, λ)

n−1∑
i=1

αiCov(Z
(i)
n , Yk)

− λd(1, λ)
k∑

j=1

n−1∑
i=1

σiαjCov(Z
(j)
k , Yi) + d2(1, λ)

k∑
j=1

n−1∑
i=1

αjαiCov(Z
(j)
k , Z(i)

n )

= −λ2σ2k − d2(1, λ)
k∑

j=1

α2
j

n− j
⩽ 0.

Finally, the joint mix can be chosen as multivariate Gaussian by the construction of

(X1, . . . , Xn) as the sum of Gaussian vectors.

Proof of Theorem 3. The “if” statement is straightforward, and we will check the “only if”

statement. Let X = (X1, . . . , Xn) be a joint mix and denote by c =
∑n

i=1Xi ∈ R. First,

suppose that each component of X is positive. Denote by V ⊂ R the set of all possible values

taken by random variables of the form
∑j

i=1Xi for j = 0, . . . , n, with the convention that∑0
j=1Xj = 0. Clearly, V is finite. The elements of V are denoted by v0, v1, . . . , vK such

that v0 < v1 < · · · < vK . Our assumptions imply that v0 = 0, v1 > 0 and vK = c because∑n
i=1Xi = c. For k ∈ [K] and i ∈ [n], let

Yk,i = 1{
∑i

j=1 Xj⩾vk} − 1{
∑i−1

j=1 Xj⩾vk}
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and let Yk = (Yk,1, . . . , Yk,n). Since each Xj is positive, the value of Yk,i is either 0 or 1, and

n∑
i=1

Yk,i = 1{
∑n

j=1 Xj⩾vk} − 1{0⩾vk} = 1{c⩾vk} = 1.

Therefore, Yk follows a binary multinomial distribution for each k ∈ [K]. Let Xk = (vk −

vk−1)Yk for k ∈ [K] with v0 = 0. Note that for i ∈ [n],

K∑
k=1

Xk,i =
K∑
k=1

(vk − vk−1)
(
1{

∑i
j=1 Xj⩾vk} − 1{

∑i−1
j=1 Xj⩾vk}

)
=

i∑
j=1

Xj −
i−1∑
j=1

Xj = Xi,

where we used the identity
∑K

k=1(vk − vk−1)1{x⩾vk} = x for x ∈ V . Therefore,
∑K

k=1Xk = X,

showing that X can be represented as a finite linear combination of binary multinomial random

vectors.

If some components of X are not positive, we can take m ∈ R such that Xi > m for each

i ∈ [n]. Applying the above result, we know that (X1 −m, . . . ,Xn −m) can be decomposed as

the sum of JM joint mixes. Note that X = (X1−m, . . . ,Xn−m)+(m, . . . ,m), and (m, . . . ,m) is

m times the sum of n binary multinomial random vectors (1, 0, . . . , 0), . . . , (0, . . . , 0, 1). Hence,

X admits a finite linear combination of binary multinomial random vectors.

Proof of Proposition 4. Let G be the joint distribution of an exchangeable joint mix. Let us

write

G̃(A) =

∫
Rn

δa(A)dG(a), A ∈ B(Rn),

where δa is the point-mass at a. By exchangeability, we have G(Aπ) = G(A) for π ∈ Sn and

A ∈ B(Rn), where Aπ is π applied to elements of A. Therefore,

G(A) =

∫
Rn

δaπ(A)dG(a).

Taking an average of the above formula over Sn, we have

G(A) =

∫
Rn

Ua(A)dG(a).

It is known that each Ua is NA (Joag-Dev and Proschan, 1983, Theorem 2.11). Moreover, the

center of the joint mix distributed as Ua is µ since G is supported on {(x1, . . . , xn) ∈ Rn :

x1 + · · ·+ xn = µ}.

Proof of Proposition 5. As M is symmetric, we have supµ∈MCf
µ(X) = supµ∈MCf

µ(Xπ) for all
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π ∈ Sn. Let Π be uniformly distributed on Sn and independent of X. Plugging XΠ in the

objective (7), we have

sup
µ∈M

Cf
µ(X

Π) = sup
µ∈M

∑
K⊆[n]

E

[
f

(∑
i∈K

XΠ
i

)]
µ(K)

= sup
µ∈M

∑
K⊆[n]

1

n!

∑
π∈Sn

E

[
f

(∑
i∈K

Xπ
i

)]
µ(K)

⩽
1

n!

∑
π∈Sn

sup
µ∈M

∑
K⊆[n]

E

[
f

(∑
i∈K

Xπ
i

)]
µ(K)

=
1

n!

∑
π∈Sn

sup
µ∈M

Cf
µ(X

π) = sup
µ∈M

Cf
µ(X).

Hence, supµ∈MCf
µ(XΠ) ⩽ supµ∈MCf

µ(X). Furthermore, as X is a joint mix, we have that XΠ

is an exchangeable NCD joint mix with marginals F and correlation matrix P ∗
n .

Proof of Theorem 4. Without loss of generality, we assume that the variance of F is 1. Using

the same argument in the proof of Proposition 5, for any X with identical marginals F , we

have supµ∈MC2
µ(X

Π) ⩽ supµ∈MC2
µ(X), where Π is uniformly distributed on Sn. Let Xρ be a

random vector with identical marginals F and a correlation matrix whose off-diagonal entries

are all ρ. Since correlation matrices are positive semi-definite, we have ρ ∈ [−1/(n− 1), 1], with

ρ = −1/(n − 1) attainable since F is n-completely mixable. The value of supµ∈MC2
µ(X) only

depends on the correlation matrix. Therefore, it suffices to find an optimizer of the form Xρ for

some ρ ∈ [−1/(n− 1), 1]. Note that

sup
µ∈M

C2
µ(Xρ) = sup

µ∈M

∑
K⊆[n]

Var

(∑
i∈K

Xi

)
+

(
E

[∑
i∈K

Xi

])2
µ(K)

= sup
µ∈M

n∑
k=1

∑
K⊆[n],|K|=k

(
k + (k2 − k)ρ+ kE[X1]

)
µ(K).

It is clear that supµ∈MC2
µ(Xρ) increases in ρ. Therefore, the minimum is achieved at ρ∗ =

−1/(n − 1), which implies that Xρ∗ is an NCD joint mix with correlation matrix P ∗
n . As the

value of (11) only depends on the correlation matrix, we have the desired result.

Proof of Theorem 5. The “if” part is shown by Theorem 4 by choosing M as both (12) and

(13) are special cases of (11). Next, we show the “only if” part by showing that the correlation

matrix of the minimizer to (12) or (13) with any k ∈ [n] \ {1, n− 1, n} is P ∗
n .
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Without loss of generality, we assume that the variance of F is 1. As the mean of F is zero,

we have E[(
∑

i∈K Xi)
2] = Var(

∑
i∈K Xi). By plugging an NCD joint mix XE with correlation

matrix P ∗
n into (12), the optimal value for (12) is

max
K⊆[n]

E

(∑
i∈K

Xi

)2
 = max

K⊆[n]
Var

(∑
i∈K

XE
i

)
= max

k∈[n]

k(n− k)

n− 1
=
k∗(n− k∗)

n− 1
, (18)

where k∗ = ⌊n/2⌋.

First, we consider the case n = 3. In this case, [n] \ {1, n − 1, n} is empty, and we only

need to show that P ∗
n is the unique correlation matrix of the minimizer to (12). Suppose that

X with covariance matrix Σ is a minimizer to (12). By (18), optimal value for (12) is 1. Hence,

Var

(∑
i∈K

Xi

)
⩽ 1 for each K with |K| = 2,

and this implies

σij ⩽ −1/2, for i ̸= j. (19)

Since Σ is positive semi-definite, we have
∑

i,j∈[3] σij ⩾ 0, which leads to 3+2σ12+2σ13+2σ23 ⩾ 0,

implying σ12 + σ13 + σ23 ⩾ −3/2. Together with (19), we get σ12 = σ13 = σ23 = −1/2, and

hence Σ = P ∗
n .

Next, we consider the case n ⩾ 4. We first show that the correlation matrix of the minimizer

to (13) is unique for 1 < k < n− 1. Fix k ∈ [n] \ {1, n− 1, n}. Suppose that X with covariance

matrix Σ is a minimizer to (13). Our goal is to show Σ = P ∗
n .

Let Kℓ, ℓ = 1, . . . , nk, be all subsets of [n] with cardinality k, where nk =
(
n
k

)
. Then we

have

1

nk

nk∑
ℓ=1

Var

∑
i∈Kℓ

Xi

 ⩾ k − k(k − 1)

n− 1
=
k(n− k)

n− 1
. (20)

As X is a minimizer, for each K with |K| = k, we have

Var

(∑
i∈K

Xi

)
= E

(∑
i∈K

Xi

)2
 ⩽ max

K⊆[n], |K|=k
E

(∑
i∈K

XE
i

)2
 =

k(n− k)

n− 1
. (21)

Combining (20) and (21), we have

Var

(∑
i∈K

Xi

)
=
k(n− k)

n− 1
for each K with |K| = k.
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Take k = 2. For any i, j ∈ [n] such that i ̸= j, the above equation implies

Var(Xi +Xj) = Var(Xi) + Var(Xj) + 2Cov(Xi, Xj) =
2(n− 2)

n− 1
.

As a result, we have Cov(Xi, Xj) = −1/(n − 1) for all i, j ∈ [n] such that i ̸= j. Hence, we

conclude that Σ = P ∗
n .

Finally, note that k∗ in (18) satisfies 1 < k∗ < n− 1 for n ⩾ 4. We have justified that the

correlation matrix for optimizers to (13) with k = k∗ is unique. Therefore, by using (18), the

correlation matrix for optimizers to (12) is also unique.

The above arguments show that, for n ⩾ 3, if X is a minimizer to (12), then the correlation

matrix of X is P ∗
n , which implies that X is an NCD joint mix with correlation matrix P ∗

n . The

same conclusion holds true if (12) is replaced by (13) with any k ∈ [n] \ {1, n− 1, n}.

Proof of Proposition 6. As the given marginal distributions have zero means, for any (Y1, . . . , Yn)

with variance vector (σ21, . . . , σ
2
n),

max
K⊆[n]

E

(∑
i∈K

Yi

)2
 = max

K⊆[n]
Var

(∑
i∈K

Yi

)
⩾ max

i∈[n]
Var(Yi) = max

i∈[n]
σ2i .

In case n = 3, a joint mix X with variance vector (σ21, . . . , σ
2
n) satisfies

max
K⊆[3], |K|=1

Var

(∑
i∈K

Xi

)
= max

K⊆[3], |K|=2
Var

(∑
i∈K

Xi

)
= max

i∈[3]
Var(Xi) = max

i∈[3]
σ2i ,

and Var(X1 +X2 +X3) = 0. Hence, the joint mix minimizes (12).

To show that no positive covariance is allowed, suppose that (X1, X2, X3) is a minimizer

to (12) and Cov(Xi, Xj) > 0 for some i ̸= j. We have

max
K⊆[n]

E

(∑
i∈K

Xi

)2
 ⩾ E

[
(Xi +Xj)

2
]
= Var(Xi +Xj) > σ2i + σ2j ⩾ max

(
σ21, σ

2
2, σ

2
3

)
, (22)

where the last inequality follows from the necessary condition (4) of the existence of an NCD

joint mix. Since we have seen that the optimal value of (12) is maxi∈[3] σ
2
i , (22) implies that

(X1, X2, X3) does not minimize (12).

Proof of Lemma 1. One of the key properties of elliptical distributions is that they are closed

under linear transformations, which is clear from (16). Hence, for X ∼ En(µ,Σ, ψ), the random
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variable
∑n

i=1Xi follows En(1
⊤
nµ,1

⊤
nΣ1n, ψ), which is degenerate if and only if 1⊤nΣ1n = 0.

Hence, X is a joint mix if and only if 1⊤nΣ1n = 0 or ψ = 1 on R+.

Proof of Proposition 7. Necessity follows from Proposition 3. To show sufficiency, let X ∼

En(µ,Σ, ψ), where Σ is the dispersion matrix of the multivariate Gaussian distribution con-

structed in the proof of Theorem 2. Then Xi ∼ E1(µi, σi, ψ), i ∈ [n]. Moreover, it is checked in

the proof of Theorem 2 that 1⊤nΣ1n = 0 and σij ⩽ 0 for i, j ∈ [n] such that i ̸= j. Therefore, X

is the desired NCD joint mix.

Proof of Theorem 6. The statement (i) immediately follows from the facts that ψ generates an n-

dimensional elliptical distribution for every n ∈ N if and only if the corresponding elliptical class

is a Gaussian variance mixture family (Fang et al., 1990, Section 2.6), and that En(0n, P
∗
n , ψ) is

an NCD joint mix, where P ∗
n is an n × n matrix whose diagonal entries are 1 and off-diagonal

entries are −1/(n− 1).

To show (ii), we need two lemmas.

Lemma 2 (Corollary 4 of Yin (2021)). Let X ∼ En(µ,Σ, ψ) and Y ∼ En(µ,Σ
′, ψ) be two

elliptical distributions such that Σ = (σij) and Σ′ = (σ′ij) satisfy σii = σ′ii for all i ∈ [n]. Then

X ⩽cU Y if and only if σij ⩽ σ′ij for all i ̸= j.

Let P⊥
n be the identity matrix, which is the correlation matrix of an independent random

vector. Although Lemma 2 implies that En(µ, P
∗
n , ψ) ⩽c En(µ, P

⊥
n , ψ) for general elliptical

distributions, En(µ, P
∗
n , ψ) is not necessarily NOD in general since En(0n, P

⊥
n , ψ) does not have

independent components. In fact, an elliptical distribution En(0n, P
⊥
n , ψ) is not NOD unless it

is Gaussian.

Lemma 3. The elliptical distribution En(µ,Σ, ψ) where Σ is diagonal is not NOD unless it is

Gaussian.

Proof. Assume that X ∼ En(µ,Σ, ψ) is NOD. Since NOD is location invariant, it suffices to

show the case when µ = 0n. When X is NOD, then so is (X1, X2), that is,

P(X1 ⩽ x1, X2 ⩽ x2) ⩽ P(X1 ⩽ x1)P(X2 ⩽ x2) for all (x1, x2) ∈ R2.

Since (X1, X2) and (−X1, X2) are identically distributed, we have

P(X1 ⩾ x1, X2 ⩽ x2) ⩽ P(X1 ⩾ x1)P(X2 ⩽ x2) for all (x1, x2) ∈ R2,
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and similarly, by symmetry,

P(X1 ⩾ x1, X2 ⩾ x2) ⩽ P(X1 ⩾ x1)P(X2 ⩾ x2) for all (x1, x2) ∈ R2,

P(X1 ⩽ x1, X2 ⩾ x2) ⩽ P(X1 ⩽ x1)P(X2 ⩾ x2) for all (x1, x2) ∈ R2.

Adding the above four inequalities together, we get 1 ⩽ 1. Hence, each of them is an equality.

However, (X1, X2) follows a bivariate elliptical distribution with generator ψ, and thus X1 and

X2 are not independent unless it is Gaussian; see Theorem 4.11 of Fang et al. (1990). Therefore,

X cannot be NOD unless it is Gaussian.

Now we are ready to prove Theorem 6. The “if” statement follows from Proposition 1. It

remains to show the “only if” statement. Let ψ be a characteristic generator different from that

of the Gaussian distribution. For n ⩾ 2, let X ∼ En(µ,Σ, ψ) be an NOD joint mix where Σ has

positive diagonal entries. We start by observing from Lemma 2 that if σij > 0 for i ̸= j, then the

bivariate projection (Xi, Xj) of X satisfies (Xi, Xj) ⩾c (X
′
i, X

′
j) where (X ′

i, X
′
j) ∼ En(µ,Σ

′
ij , ψ)

with

Σ′
ij =

σii 0

0 σjj

 .

Using Lemma 3, we know that (X ′
i, X

′
j) is not NOD, that is, there exists (xi, xj) ∈ R2 such that

P(X ′
i ⩽ xi, X

′
j ⩽ xj) > P(X ′

i ⩽ xi)P(X ′
j ⩽ xj); (23)

note that it suffices to consider the inequality needed for NLOD (not NUOD) by symmetry of

the elliptical distribution and location invariance of NOD. Therefore, we have that

P(Xi ⩽ xi, Xj ⩽ xj) > P(X ′
i ⩽ xi, X

′
j ⩽ xj). (24)

The two inequalities (23) and (24) imply that

P(Xi ⩽ xi, Xj ⩽ xj) > P(Xi ⩽ xi)P(Xj ⩽ xj),

that is, (Xi, Xj) is not NOD. This leads to a contradiction.

Next, we assume σij ⩽ 0 for all i ̸= j. Since a⊤Σa ⩾ 0 for all a ∈ Rn and Σ has positive
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diagonal entries, we can take a = (1/
√
σ11, . . . , 1/

√
σnn), and this yields

n∑
i,j=1

σij√
σiiσjj

= n+
∑
i ̸=j

σij√
σiiσjj

⩾ 0.

Hence, there exist i, j with i ̸= j such that

ρij :=
σij√
σiiσjj

⩾ − 1

n− 1
.

Since NOD is location-scale invariant, the NOD of (Xi, Xj) implies that E2(02, Pij , ψ) is NOD,

where

Pij =

 1 ρij

ρij 1

 .

Taking a limit as n→ ∞, and noting that NOD is closed under weak convergence (Muller and

Stoyan, 2002), we conclude that E2(02, P
⊥
2 , ψ) is also NOD, which contradicts Lemma 3 if E(ψ)

is not Gaussian.

Finally, by Proposition 1, this characterization result follows if NOD is replaced by NSD

or NA.
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