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Abstract

Copula models have been popular in risk management. Due to the properties of

asymptotic dependence and easy simulation, the t-copula has often been employed in

practice. A computationally simple estimation procedure for the t-copula is to first

estimate the linear correlation via Kendall’s tau estimator and then to estimate the

parameter of the number of degrees of freedom by maximizing the pseudo likelihood

function. In this paper, we derive the asymptotic limit of this two-step estimator

which results in a complicated asymptotic covariance matrix. Further, we propose

jackknife empirical likelihood methods to construct confidence intervals/regions for

the parameters and the tail dependence coefficient without estimating any additional

quantities. A simulation study shows that the proposed methods perform well in

finite sample.
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1 Introduction

For a random vector (X,Y ) with continuous marginal distributions F1 and F2, its

copula is defined as

C(x, y) = P (F1(X) ≤ x, F2(Y ) ≤ y) for 0 ≤ x, y ≤ 1.

Due to its invariant property with respect to marginals, requirements in Basel III for

banks and Solvency 2 for insurance companies enhance the popularity of copula models

in risk management. In practice the family of elliptical copulas is arguably the most

commonly employed class because it is quite easy to simulate and is able to specify dif-

ferent levels of correlations. Peng (2008) used elliptical copulas to predict a rare event,

and Landsman (2010) used elliptical copulas for capital allocation. Two important

classes of elliptical copulas are Gaussian copula and t-copula. It is known that financial

time series usually exhibits tail dependence, but Gaussian copula has an asymptoti-

cally independent tail while t-copula has an asymptotically dependent tail. Breymann,

Dias and Embrechts (2003) and Mashal, Naldi and Zeevi (2003) showed that empirical

fit of the t-copula is better than the Gaussian copula. Some recent applications and

generalization of t-copula include: Schloegl and O’Kane (2005) provided formulas for

the portfolio loss distribution when t-copula is employed; de Melo and Mendes (2009)

priced the options related with retirement funds by using the Gaussian and t copulas;

Chan and Kroese (2010) used t-copula to model and estimate the probability of a large

portfolio loss; Manner and Segers (2011) studied the tails of correlation mixtures of the

Gaussian and t copulas; grouped t-copula were given in Chapter 5 of McNeil, Frey and

Embrechts (2005); Luo and Shevchenko (2010) and Venter et al. (2007) extended the

grouped t-copula; tail dependence for multivariate t-copula and its monotonicity were

studied by Chan and Li (2008).
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The t-copula is an elliptical copula defined as

C(u, v; ρ, ν) =

∫ t−ν (u)

−∞

∫ t−ν (v)

−∞

1

2π(1− ρ2)1/2
{1 +

x2 − 2ρxy + y2

ν(1− ρ2)
}−(ν+2)/2 dydx, (1)

where ν > 0 is the number of degrees of freedom, ρ ∈ [−1, 1] is the linear correlation

coefficient, tν is the distribution function of a t-distribution with ν degrees of freedom

and t−ν denotes the generalized inverse function of tν . When ν = 1, the t-copula is also

called the Cauchy copula.

In order to fit the t-copula to a random sample (X1, Y1), · · · , (Xn, Yn), one has

to estimate the unknown parameters ρ and ν first. A popular estimation procedure

for fitting a parametric copula is the pseudo maximum likelihood estimate proposed by

Genest, Ghoudi and Rivest (1995). Although, generally speaking, the pseudo MLE is

efficient, its computation becomes a serious issue when applying to t-copulas especially

with a large dimension. A more practical method to estimate ρ is through the Kendall’s

tau, defined as

τ = E(sign((X1 −X2)(Y1 − Y2))) = 4

∫ 1

0

∫ 1

0
C(u1, u2) dC(u1, u2)− 1.

It is known that τ and ρ have a simple relationship

ρ = sin(πτ/2).

By noting this relationship, Lindskog, McNeil and Schmock (2003) proposed to first

estimate ρ by

ρ̂ = sin(πτ̂/2), where τ̂ =
2

n(n− 1)

∑
1≤i<j≤n

sign((Xi −Xj)(Yi − Yj)),

and then to estimate ν by maximizing the pseudo likelihood function

n∏
i=1

c(Fn1(Xi), Fn2(Yi); ρ̂, ν),

where c(u, v; ρ, ν) = ∂2

∂u∂vC(u, v; ρ, ν) is the density of the t-copula defined in (1),

Fn1(x) = (n+ 1)−1
∑n

i=1 I(Xi ≤ x) and Fn2(y) = (n+ 1)−1
∑n

i=1 I(Yi ≤ y) are marginal
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empirical distributions. In other words, the estimator ν̂ is defined as a solution to the

score equation
n∑
i=1

l(ρ̂, ν;Fn1(Xi), Fn2(Yi)) = 0, (2)

where l(ρ, ν;u, v) = ∂
∂ν log c(u, v; ρ, ν). τ̂ is called the Kendall’s tau estimator. The

asymptotic results of the pseudo MLE for the t-copula are known in Genest, Ghoudi

and Rivest (1995). A recent attempt to derive the asymptotic distribution for the two-

step estimator (ρ̂, ν̂) is given by Fantazzini (2010), who employed the techniques for

estimating equations. Unfortunately the derived asymptotic distribution in Fantazz-

ini (2010) is not correct since the Kendall’s tau estimator is a U-statistic rather than

an average of independent observations. Numeric comparisons for the two estimation

procedures are given in Dakovic and Czado (2011). Explicit formulas for the partial

derivatives of log c(u, v; ρ, ν) can be found in Dakovic and Czado (2011) and Wang,

Peng and Yang (2013).

In this paper, we first derive the asymptotic distribution of the two-step estimator

(ρ̂, ν̂) by using techniques for U-statistics. We remark that one may also derive the same

asymptotic results by combining results in Genest, Ghoudi and Rivest (1995) and Barbe

and Genest (1996). But it ends up with checking the (rather-complicated) regularity

conditions in Barbe and Genest (1996).

It is known that interval estimation is an important way of quantifying the estima-

tion uncertainty and is directly related to hypothesis tests. Efficient interval estimation

remains a necessary part of estimation procedure in fitting a parametric family to data.

As showed in Section 2, the asymptotic covariance matrix for the proposed two-step

estimators is very complicated, and hence some ad hoc procedures such as bootstrap

method are needed for constructing confidence intervals/regions for parameters and some

related quantities. However, it is known that naive bootstrap method performs badly in

general; see the simulation study in Section 3. In order to avoid estimating the compli-
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cated asymptotic covariance matrix, we further investigate the possibility of applying an

empirical likelihood method to construct confidence intervals/regions as empirical like-

lihood method has been demonstrated to be an efficient way in interval estimation and

hypothesis test. See Owen (2001) for an overview on the empirical likelihood method.

Since Kendall’s tau estimator is a nonlinear functional, a direct application of the em-

pirical likelihood method fails to have a chi-square limit in general, i.e., Wilks Theorem

does not hold. In this paper we propose to employ the jackknife empirical likelihood

method in Jing, Yuan and Zhou (2009) to construct a confidence interval for ν without

estimating any additional quantities. We also propose a jackknife empirical likelihood

method to construct a confidence region for (ρ, ν), and a profile jackknife empirical like-

lihood method to construct a confidence interval for the tail dependence coefficient of

the t-copula.

We organize the paper as follows. Methodologies are given in Section 2. Section 3

presents a simulation study to show the advantage of the proposed jackknife empirical

likelihood method for constructing a confidence interval for ν. Data analysis is given in

Section 4. All proofs are delayed till Section 5.

2 Methodologies and Main Results

2.1 The asymptotic distribution of ρ̂, ν̂ and λ̂

As mentioned in the introduction, the asymptotic distribution for the two-step

estimator (ρ̂, ν̂) only appears in Fantazzini (2010), who unfortunately neglected the fact

that Kendall’s tau estimator is a U-statistic rather than an average of independent

observations. Here we first derive the joint asymptotic limit of (ρ̂, ν̂) as follows.
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Theorem 1. As n→∞, we have

√
n{ρ̂− ρ} = cos(πτ2 ) π√

n

∑n
i=1 4{C(F1(Xi), F2(Yi))− EC(F1(X1), F2(Y1))}

− cos(πτ2 ) π√
n

∑n
i=1 2{F1(Xi) + F2(Yi)− 1}+ op(1)

(3)

and

√
n{ν̂ − ν}

= −K−1ν { 1√
n

∑n
i=1 l(ρ, ν;F1(Xi), F2(Yi)) +Kρ

√
n(ρ̂− ρ)

+ 1√
n

∑n
i=1

∫ 1
0

∫ 1
0 lu(ρ, ν;u, v){I(F1(Xi) ≤ u)− u}c(u, v) dudv

+ 1√
n

∑n
i=1

∫ 1
0

∫ 1
0 lv(ρ, ν;u, v){I(F2(Yi) ≤ v)− v}c(u, v) dudv}+ op(1),

(4)

where

lu(ρ, ν;u, v) =
∂

∂u
l(ρ, ν;u, v), lv(ρ, ν;u, v) =

∂

∂v
l(ρ, ν;u, v),

and

Ka = E

(
∂

∂a
l(ρ, ν;F1(X1), F2(Y1))

)
=

∫ 1

0

∫ 1

0

∂

∂a
l(ρ, ν;u, v) dC(u, v), a = ν, ρ.

Using the above theorem, we can easily obtain that

√
n(ρ̂− ρ, ν̂ − ν)T

d→ N

(0, 0)T ,

 σ21 σ12

σ12 σ22


 , (5)

where σ21, σ12 and σ22 are constants whose values are given in the proof of Theorem 1 in

Section 5.

Another important quantity related with t-copula is the tail dependence coefficient

λ = 2tν+1(−
√

(ν+1)(1−ρ)√
1+ρ

), which plays an important role in studying the extreme co-

movement among financial data sets. A natural estimator for λ based on the above

two-step estimator is

λ̂ = 2tν̂+1(−
√

(ν̂ + 1)(1− ρ̂)/
√

1 + ρ̂),

and the asymptotic distribution of λ̂ immediately follows from (5) as given in the fol-

lowing theorem.
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Theorem 2. As n→∞, we have

√
n{λ̂− λ} d→ N(0, σ2),

where

σ2 =

(
∂λ

∂ρ

)2

σ21 +

(
∂λ

∂ν

)2

σ22 + 2
∂λ

∂ρ

∂λ

∂ν
σ12,

and λ = λ(ρ, ν) = 2tν+1(−
√

(ν + 1)(1− ρ)/
√

1 + ρ).

Using the above theorems, one can construct confidence intervals/regions for ν, ρ, λ

by estimating the complicated asymptotic variance/covariance (see the values of σ21, σ12

and σ22 in Section 5 for instance). While estimators for σ21, σ12, σ
2
2 can be obtained

by replacing ρ and ν in those involved integrals by ρ̂ and ν̂, respectively, evaluating

those integrals remains computationally non-trivial. Hence we seek ways of constructing

confidence intervals/regions without estimating the asymptotic variances. A commonly

used way is to employ bootstrap method. However, it is known that naive bootstrap

method performs badly in general; see the simulation results given in Section 3 below.

An alternative way is to employ empirical likelihood method, which does not need to

estimate any additional quantities either. Due to the fact that Kendall’s tau estimator

is non-linear, a direct application of empirical likelihood method can not ensure that

Wilks Theorem holds. Here we investigate the possibility of employing the jackknife

empirical likelihood method. By noting that ρ̂ is a U-statistic, one can directly employ

the jackknife empirical likelihood method in Jing, Yuan and Zhou (2009) to construct a

confidence interval for ρ without estimating the asymptotic variance σ21 of ρ̂. Therefore

in the next we focus on constructing confidence intervals/regions for ν, (ρ, ν) and the

tail dependence coefficient λ = 2tν+1(−
√

(ν + 1)(1− ρ)/
√

1 + ρ).
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2.2 Interval estimation for ν

In order to construct a jackknife sample as in Jing, Yuan and Zhou (2009), we first

define for i = 1, · · · , n

ρ̂i = sin(πτ̂i/2), τ̂i =
2

(n− 1)(n− 2)

∑
1≤j<l≤n,j 6=i,l 6=i

sign((Xj −Xl)(Yj − Yl)),

Fn1,i(x) =
1

n

∑
j 6=i

I(Xj ≤ x), Fn2,i(y) =
1

n

∑
j 6=i

I(Yj ≤ y),

and then define the jackknife sample as

Zi(ν) =
n∑
j=1

l(ρ̂, ν;Fn1(Xj), Fn2(Yj))−
∑
j 6=i

l(ρ̂i, ν;Fn1,i(Xj), Fn2,i(Yj))

for i = 1, · · · , n. Based on this jackknife sample, the jackknife empirical likelihood

function for ν is defined as

L1(ν) = sup{
n∏
i=1

(npi) : p1 ≥ 0, · · · , pn ≥ 0,
n∑
i=1

pi = 1,
n∑
i=1

piZi(ν) = 0}.

By the Lagrange multiplier technique, we have

l1(ν) := −2 logL1(ν) = 2
n∑
i=1

log{1 + 2λ1Zi(ν)},

where λ1 = λ1(ν) satisfies
n∑
i=1

Zi(ν)

1 + λ1Zi(ν)
= 0.

The following theorem shows that Wilks Theorem holds for the above jackknife

empirical likelihood method.

Theorem 3. As n→∞, l1(ν0) converges in distribution to a chi-square limit with one

degree of freedom, where ν0 denotes the true value of ν.

Based on the above theorem, one can construct a confidence interval with level α

for ν0 without estimating the asymptotic variance as

I1(α) = {ν : l1(ν) ≤ χ2
1,α},
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where χ2
1,α denotes the α-th quantile of a chi-square limit with one degree of freedom.

The above theorem can also be employed to test H0 : ν = ν0 against Ha : ν 6= ν0 with

level 1−α by rejecting H0 whenever l1(ν0) > χ2
1,α. For computing l1(ν), one can simply

employ the R package ’emplik’ as we do in Section 3. For obtaining I1(α), one has to

compute l1(ν) for all ν, which is usually done by step searching as we do in Section 4.

2.3 Interval estimation for (ρ, ν)

As mentioned previously, the Kendall’s tau estimator is not a linear functional,

hence one can not apply the empirical likelihood method directly to construct a confi-

dence region for (ρ, ν). Here we employ the jackknife empirical likelihood method by

defining the jackknife empirical likelihood function as

L2(ρ, ν) = sup{
∏n
i=1(npi) : p1 ≥ 0, · · · , pn ≥ 0,

∑n
i=1 pi = 1,

∑n
i=1 piZi(ν) = 0,∑n

i=1 pi(nρ̂− (n− 1)ρ̂i) = ρ}.

Theorem 4. As n → ∞, −2 logL2(ρ0, ν0) converges in distribution to a chi-square

limit with two degrees of freedom, where (ρ0, ν0)
T denotes the true value of (ρ, ν)T .

Based on the above theorem, one can construct a confidence region with level α for

(ρ0, ν0)
T without estimating the asymptotic covariance matrix as

I2(α) = {(ρ, ν) : −2 logL2(ρ, ν) ≤ χ2
2,α},

where χ2
2,α denotes the α-th quantile of a chi-square limit with two degrees of freedom.

2.4 Interval estimation for the tail dependence coefficient λ

In order to construct a jackknife empirical likelihood confidence interval for the tail

dependence coefficient λ for the t-copula, one may construct a jackknife sample based

on the estimator λ̂ given in Section 2.1. This requires calculating the estimator for ν

without the i-th observation. Since ν̂ has no explicit formula, it is very computation-

ally intensive to formulate the jackknife sample. Although the approximate jackknife
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empirical likelihood method in Peng (2012) may be employed to reduce computation,

it requires computing the complicated partial derivatives of the log density of the t-

copula. Here we propose the following profile empirical likelihood method by treating ν

as a nuisance parameter.

Define

Z̃i(ν) = 2ntν+1(−
√

(ν + 1)(1− ρ̂)/
√

1 + ρ̂)−2(n−1)tν+1(−
√

(ν + 1)(1− ρ̂i)/
√

1 + ρ̂i)

for i = 1, · · · , n. Based on the jackknife sample Z∗i (ν, λ) = (Zi(ν), Z̃i(ν) − λ) for i =

1, · · · , n, and the fact that λ = 2tν+1(−
√

(ν + 1)(1− ρ)/
√

1 + ρ), we define the jackknife

empirical likelihood function for (ν, λ) as

L3(ν, λ) = sup{
n∏
i=1

(npi) : p1 ≥ 0, · · · , pn ≥ 0,

n∑
i=1

pi = 1,

n∑
i=1

piZ
∗
i (ν, λ) = 0}.

By the Lagrange multiplier technique, we have

l3(ν, λ) = −2 logL3(ν, λ) = 2
n∑
i=1

log{1 + 2λT3 Z
∗
i (ν, λ)},

where λ3 = λ3(ν, λ) satisfies

n∑
i=1

Z∗i (ν, λ)

1 + λT3 Z
∗
i (ν, λ)

= 0.

Since we are only interested in the tail dependence coefficient λ, we consider the profile

jackknife empirical likelihood function

lp3(λ) = min
ν>0

l3(ν, λ).

As in Qin and Lawless (1994), we first show that there is a consistent solution for ν, say

ν̃ = ν̃(λ), and then show that Wilks theorem holds for l3(ν̃(λ0), λ0), where λ0 denotes

the true value of λ.

Lemma 1. With probability tending to one, l3(ν, λ0) attains its minimum value at

some point ν̃ such that |ν̃ − ν0| ≤ n−1/3. Moreover ν̃ and λ̃3 = λ3(ν̃, λ0) satisfy

Q1n(ν̃, λ̃3) = 0 and Q2n(ν̃, λ̃3) = 0,
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where

Q1n(ν, λ3) =
1

n

n∑
i=1

Z∗i (ν, λ0)

1 + λT3 Z
∗
i (ν, λ0)

and

Q2n(ν, λ3) =
1

n

n∑
i=1

1

1 + λT3 Z
∗
i (ν, λ0)

{∂Z
∗
i (ν, λ0)

∂ν
}Tλ3.

The next theorem establishes the Wilks theorem for the proposed jackknife empir-

ical likelihood method.

Theorem 5. As n → ∞, l3(ν̃(λ0), λ0) converges in distribution to a chi-square limit

with one degree of freedom.

Based on the above theorem, one can construct a confidence interval with level α

for λ0 without estimating the asymptotic variance as

I3(α) = {λ : l3(ν̃(λ), λ) ≤ χ2
1,α}.

3 Simulation Study

We investigate the finite sample behavior of the proposed jackknife empirical like-

lihood method for constructing confidence intervals for ν and compare it with the para-

metric bootstrap method in terms of coverage probability.

We employ the R packge ’copula’ to draw 1, 000 random samples with size n = 200

and 500 from the t-copula with ρ = 0.1, 0.5, 0.9 and ν = 3, 8. For computing the

confidence interval based on the normal approximation, we use the parametric bootstrap

method. More specifically, we draw 1, 000 random samples with size n from the t-

copula with parameters ρ̂ and ν̂. Denote the samples by {(X(j)
i , Y

(j)
i }ni=1, where j =

1, · · · , 1000. For each j = 1, · · · , 1000, we recalculate the two-step estimator based on

the sample {(X(j)
i , Y

(j)
i }ni=1, which results in (ρ̂∗(j), ν̂∗(j)). Let a and b denote the largest

[n(1 − α)/2]-th and [n(1 + α)/2]-th values of ν̂∗(1) − ν̂, · · · , ν̂∗(1000) − ν̂. Therefore a

bootstrap confidence interval for ν with level α is [ν̂ − b, ν̂ − a]. The R package ’emplik’
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Table 1: Coverage probabilities are reported for the proposed jackknife empirical likeli-

hood method (JELM) and the Normal approximation method based on ν̂ (NAM).

(n, ρ, ν) JELM NAM JELM NAM

Level 90% Level 90% Level 95% Level 95%

(200, 0.1, 3) 0.886 0.813 0.935 0.844

(200, 0.5, 3) 0.849 0.771 0.908 0.802

(200, 0.9, 3) 0.878 0.826 0.928 0.849

(200, 0.1, 8) 0.831 0.600 0.909 0.615

(200, 0.5, 8) 0.815 0.594 0.886 0.611

(200, 0.9, 8) 0.837 0.664 0.902 0.680

(500, 0.1, 3) 0.871 0.825 0.923 0.853

(500, 0.5, 3) 0.874 0.838 0.933 0.870

(500, 0.9, 3) 0.876 0.844 0.932 0.869

(500, 0.1, 8) 0.871 0.728 0.939 0.760

(500, 0.5, 8) 0.862 0.747 0.920 0.769

(500, 0.9, 8) 0.892 0.774 0.942 0.797

is employed to compute the coverage probability of the proposed jackknife empirical

likelihood method. These coverage probabilities are reported in Table 1, showing that

the proposed jackknife empirical likelihood method is much more accurate than the

normal approximation method, and both intervals become more accurate when the

sample size gets large.
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4 Empirical Study

First we fit the bivariate t-copula to the log-returns of the exchange rates between

Euro and US dollar and those between British pound and US dollar from January 3,

2000 till December 19, 2007, which gives ρ̂ = 0.726 and ν̂ = 7.543. In Figure 1, we plot

the empirical likelihood ratio function l1(ν) against ν from 4.005 to 14 with step 0.005.

The proposed jackknife empirical likelihood intervals for ν are (6.025, 10.230) for level

0.9, and (5.410, 10.910) for level 0.95. We also calculate the intervals for ν based on the

normal approximation method as in Section 3, which result in (4.656, 9.618) for level 0.9

and (3.847, 9.864) for level 0.95. As we see, the intervals based on the jackknife empirical

likelihood method are slightly shorter and more skewed to the right than those based

on the normal approximation method.

Second we fit the bivariate t-copula to the data set on 3283 daily log-returns of

equity for two major Dutch banks, ING and ABN AMRO Bank, over the period 1991–

2003, giving ρ̂ = 0.682 and ν̂ = 2.617. The empirical likelihood ratio function l1(ν)

is plotted against ν in Figure 2 from 1.501 to 3.5 with step 0.001, which shows that

the proposed jackknife empirical likelihood intervals for ν are (2.280, 3.042) for level 0.9

and (2.246, 3.129) for level 0.95. The normal approximation based intervals for ν are

(2.257, 2.910) for level 0.9 and (2.195, 2.962) for level 0.95. As we see, the intervals based

on the jackknife empirical likelihood method are slightly wider and more skewed to the

right than those based on the normal approximation method. Note that this data set

has been analyzed by Einmahl, de Haan and Li (2006) and Chen, Peng and Zhao (2009)

by fitting nonparametric tail copulas and copulas.

Finally we fit the t copula to the nonzero losses to building and content in the

Danish fire insurance claims. This data set is available at www.ma.hw.ac.uk/∼mcneil/,

which comprises 2167 fire losses over the period 1980 to 1990. We find that ρ̂ = 0.134
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and ν̂ = 9.474. The empirical likelihood ratio function l1(ν) is plotted in Figure 3 against

ν from 5.005 to 20 with step 0.005. The proposed jackknife empirical likelihood intervals

for ν are (6.830, 16.285) and (6.415, 17.785) for levels 0.9 and 0.95 respectively, and the

normal approximation based intervals for ν are (0.978, 12.719) and (−2.242, 13.070) for

levels 0.9 and 0.95 respectively. The above negative value is due to some large values

of the bootstrapped estimators of ν, which is a disadvantage of using the bootstrap

method. It is clear that the proposed jackknife empirical likelihood intervals are shorter

and more skewed to the right than the normal approximation based intervals.

5 Proofs

Proof of Theorem 1. Define

g(x, y) = Esign((x−X1)(y − Y1))− τ

= 4{C(F1(x), F2(y))− EC(F1(X1), F2(Y1))} − 2{F1(x)− 1
2}

−2{F2(y)− 1
2},

ψ(x1, y1, x2, y2) = sign((x1 − x2)(y1 − y2))− g(x1, y1)− g(x2, y2).

It follows from the Hoeffding decomposition and results in Hoeffding (1948) that

√
n{τ̂ − τ} = 2√

n

∑n
i=1 g(Xi, Yi) + 2

√
n

n(n−1)
∑

1≤i<j≤n ψ(Xi, Yi, Xj , Yj)

= 2√
n

∑n
i=1 g(Xi, Yi) + op(1),

(6)

14



which implies (3). By the Taylor expansion, we have

0 = 1√
n

∑n
i=1 l(ρ̂, ν̂;Fn1(Xi), Fn2(Yi))

= 1√
n

∑n
i=1 l(ρ, ν;Fn1(Xi), Fn2(Yi))

+ 1√
n

∑n
i=1{

∂
∂ρ l(ρ, ν;Fn1(Xi), Fn2(Yi))}(ρ̂− ρ)

+ 1√
n

∑n
i=1{

∂
∂ν l(ρ, ν;Fn1(Xi), Fn2(Yi))}(ν̂ − ν) + op(1)

= 1√
n

∑n
i=1 l(ρ, ν;F1(Xi), F2(Yi))

+ 1√
n

∑n
i=1 lu(ρ, ν;F1(Xi), F2(Yi)){Fn1(Xi)− F1(Xi)}

+ 1√
n

∑n
i=1 lv(ρ, ν;F1(Xi), F2(Yi)){Fn2(Yi)− F2(Yi)}

+ 1
n

∑n
i=1{

∂
∂ρ l(ρ, ν;F1(Xi), F2(Yi))}

√
n(ρ̂− ρ)

+ 1
n

∑n
i=1{

∂
∂ν l(ρ, ν;F1(Xi), F2(Yi))}

√
n(ν̂ − ν) + op(1),

(7)

which implies (4). More details can be found in Wang, Peng and Yang (2013).

The values of σ21, σ12 and σ22 can be calculated straightforward by using the Law of

Large Numbers, which are

σ21 = cos2(πτ2 )π2{8
∫ 1
0

∫ 1
0 {2C

2(u, v)− 2(u+ v)C(u, v) + uv} dC(u, v) + 5
3 − τ

2 + 2τ},

σ22 = K−2ν (K2 +R1 +R2 + 2R3 + 2R4 + 2R5 +K2
ρσ

2
1 + 2Kρ(L1 + L2 + L3)),

σ212 = −K−1ν (Kρσ
2
1 + L1 + L2 + L3),

where

K2 =

∫ 1

0

∫ 1

0
l(ρ, ν;u, v)2 dC(u, v),

R1 =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
lu(ρ, ν;u1, v1)lu(ρ, ν;u2, v2)(u1 ∧ u2 − u1u2) dC(u1, v1)dC(u2, v2),

R2 =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
lv(ρ, ν;u1, v1)lv(ρ, ν;u2, v2)(v1 ∧ v2 − v1v2) dC(u1, v1)dC(u2, v2),

R3 =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
lu(ρ, ν;u1, v1)lv(ρ, ν;u2, v2)(C(u1, v2)− u1v2) dC(u1, v1)dC(u2, v2),

R4 =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
lu(ρ, ν;u1, v1)l(ρ, ν;u2, v2)(I(u2 ≤ u1)− u1) dC(u1, v1)dC(u2, v2),
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R5 =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
lv(ρ, ν;u1, v1)l(ρ, ν;u2, v2)(I(v2 ≤ v1)− v1) dC(u1, v1)dC(u2, v2),

L1 = cos(
πτ

2
)π

∫ 1

0

∫ 1

0
l(ρ, ν;u, v){4C(u, v)− 2u− 2v} dC(u, v),

L2 = cos(πτ2 )π
∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 lu(ρ, ν;u1, v1){4C(u2, v2)− 2u2 − 2v2}×

{I(u2 ≤ u1)− u1} dC(u1, v1)dC(u2, v2),

and

L3 = cos(πτ2 )π
∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 lv(ρ, ν;u1, v1){4C(u2, v2)− 2u2 − 2v2}×

{I(v2 ≤ v1)− v1} dC(u1, v1)dC(u2, v2).

Proof of Theorem 2. It follows from (5) and the fact that

√
n(λ̂− λ) =

√
n(λ(ρ̂, ν̂)− λ(ρ, ν)) =

√
n
∂λ

∂ρ
(ρ̂− ρ) +

√
n
∂λ

∂ν
(ν̂ − ν) + op(1).

Proof of Theorem 3. Here we use similar arguments in Wang, Peng and Yang (2013).

Write Zi = Zi(ν0). Then it suffices to prove the following results:

1√
n

n∑
i=1

Zi
d→ N(0, σ23) as n→∞, (8)

1

n

n∑
i=1

Z2
i

p→ σ23 as n→∞, (9)

and

max
1≤i≤n

|Zi| = op(
√
n), (10)

where σ23 = K2
νσ

2
2.

Write

1√
n

n∑
i=1

Zi =
1√
n

n∑
i=1

l(ρ̂, ν0;Fn1(Xj), Fn2(Yj))

+
1√
n

n∑
i=1

∑
j 6=i
{l(ρ̂, ν0;Fn1(Xj), Fn2(Yj))− l(ρ̂i, ν0;Fn1,i(Xj), Fn2,i(Yj))}

and use the arguments in the proof of Lemma 1 in Wang, Peng and Yang (2013), we

have

1√
n

n∑
i=1

∑
j 6=i
{l(ρ̂, ν0;Fn1(Xj), Fn2(Yj))− l(ρ̂i, ν0;Fn1,i(Xj), Fn2,i(Yj))} = op(1).
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Hence, it follows from (7) that

1√
n

∑n
i=1 Zi = 1√

n

∑n
i=1 l(ρ̂, ν0;Fn1(Xj), Fn2(Yj)) + op(1)

= 1√
n

∑n
i=1 l(ρ, ν0;F1(Xi), F2(Yi))

+ 1√
n

∑n
i=1 lu(ρ, ν0;F1(Xi), F2(Yi)){Fn1(Xi)− F1(Xi)}

+ 1√
n

∑n
i=1 lv(ρ, ν0;F1(Xi), F2(Yi)){Fn2(Yi)− F2(Yi)}

+ 1
n

∑n
i=1{

∂
∂ρ l(ρ, ν0;F1(Xi), F2(Yi))}

√
n(ρ̂− ρ) + op(1)

= − 1
n

∑n
i=1{

∂
∂ν l(ρ, ν0;F1(Xi), F2(Yi))}

√
n(ν̂ − ν0) + op(1)

d→ N(0, σ3),

(11)

i.e., (8) holds. Similarly we can show (9) and (10).

Proof of Theorem 4. Write Yi = nρ̂− (n− 1)ρ̂i − ρ. Similar to the proof of Theorem

3, it suffices to show that

1√
n

n∑
i=1

(Zi, Yi)
T d→ N(0,Σ) as n→∞, (12)

1

n

n∑
i=1

(Zi, Yi)
T (Zi, Yi)

p→ Σ as n→∞, (13)

and

max
1≤i≤n

||(Zi, Yi)T || = op(
√
n), (14)

where

Σ =

 σ23 Kνσ12

Kνσ12 σ21

 .

Since
∑n

i=1(τ̂ − τ̂i) = 0 and τ̂ − τ̂i = O(1/n) almost surely, we have

1√
n

n∑
i=1

Yi =
√
n(ρ̂− ρ) +

n− 1√
n

n∑
i=1

(ρ̂− ρ̂i)

=
√
n(ρ̂− ρ) +

n− 1√
n

n∑
i=1

(
π

2
cos(

πτ̂

2
)(τ̂ − τ̂i) +O(1)(τ̂ − τ̂i)2

)

=
√
n(ρ̂− ρ) +O(

√
n)

n∑
i=1

(τ̂ − τ̂i)2

=
√
n(ρ̂− ρ) +O(

√
n)

n∑
i=1

(O(1/n))2

=
√
n(ρ̂− ρ) + op(1).
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Thus result (12) follows from (5) and (11). Results (13) and (14) can be shown by some

similar expansions as in Wang, Peng and Yang (2013).

Proof of Lemma 1. Similar to the proof of Theorem 3, we have

1√
n

n∑
i=1

{Z̃i(ν0)− λ0} = {∂λ
∂ρ

(ρ0, ν0)}
√
n(ρ̂− ρ0) + op(1)

and

1√
n

n∑
i=1

Zi(ν0) = − 1

n

n∑
i=1

∂

∂ν
l(ρ0, ν0;F1(Xi), F2(Yi))

√
n(ν̂ − ν0) + op(1),

where λ(ρ, ν) is defined in Theorem 2. That is, we can show that

1√
n

n∑
i=1

Z∗i (ν0, λ0)
d→ N(0,Σ∗), (15)

where the covariance matrix Σ∗ can be calculated by (5). Further we can show that

1

n

n∑
i=1

Z∗i (ν0, λ0)Z
∗T
i (ν0, λ0)

p→ Σ∗ (16)

and

max
1≤i≤n

||Z∗i (ν0, λ0)|| = op(n
1/2). (17)

Hence, the lemma can be shown in the same way as Lemma 1 of Qin and Lawless (1994)

by using (15)–(17).

Proof of Theorem 5. Using the same arguments in the proof of Theorem 1 of Qin

and Lawless (1994), it follows from (15)–(17) that λ̃3

ν̃ − ν0

 = S−1n

 −Q1n(ν0, 0) + op(n
−1/2)

op(n
−1/2)

 ,

where

Sn =

 ∂Q1n(ν0,0)
∂λ3

∂Q1n(ν0,0)
∂ν

∂Q2n(ν0,0)
∂λ3

0


p→

 S11 S12

S21 0

 =

 −E{Z∗1 (ν0, λ0)Z
∗T
1 (ν0, λ0)} E{∂Z

∗
1 (ν0,λ0)
∂ν }

E{∂Z
∗
1 (ν0,λ0)
∂ν }T 0

 .
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By the standard arguments of empirical likelihood method (see proof of Theorem 1 in

Owen (1990)), it follows from Lemma 1 that

l3(ν̃(λ0), λ0) = 2
∑n

i=1 log{1 + λ̃T3 Z
∗
i (ν̃, λ0)}

= 2n(λ̃T3 , ν̃
T − νT0 )(QT1n(ν0, 0), 0)T

+n(λ̃T3 , ν̃
T − νT0 )Sn(λ̃T3 , ν̃

T − νT0 )T + op(1)

= −n(QT1n(ν0, 0), 0)S−1n (QT1n(ν0, 0), 0)T + op(1)

= −(W T , 0)

 S11 S12

S21 0


−1

(W T , 0)T + op(1),

(18)

as n→∞, where W is multivariate normal random variable with mean zero and covari-

ance matrix S11. Since S11 S12

S21 0


−1

=

 S−111 − S
−1
11 S12∆

−1S21S
−1
11 S−111 S12∆

−1

∆−1S21S
−1
11 −∆−1

 ,

where ∆ = S21S
−1
11 S12, we have

−(W T , 0)

 S11 S12

S21 0


−1

(W T , 0)T

= −W T {S−111 − S
−1
11 S12∆

−1S21S
−1
11 }W

= {(−S11)−1/2W}TS1/2
11 {S

−1
11 − S

−1
11 S12∆

−1S21S
−1
11 }S

1/2
11 {(−S11)−1/2W}

= {(−S11)−1/2W}T {I − S−1/211 S12∆
−1S21S

−1/2
11 }{(−S11)−1/2W}.

(19)

Since

tr(S
−1/2
11 S12∆

−1S21S
−1/2
11 ) = tr(∆−1S21S

−1
11 S12) = 1,

we have tr(I − S−1/211 S12∆
−1S21S

−1/2
11 ) = 1. Hence it follows from (18) and (19) that

l3(ν̃(λ0), λ0)
d→ χ2(1) as n→∞.
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Figure 1: Exchange rates. The empirical likelihood ratio l1(ν) is plotted against ν from

4.005 to 14 with step 0.005 for the log-returns of the exchange rates between Euro and

US dollar and those between British pound and US dollar from January 3, 2000 till

December 19, 2007.
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Figure 2: Equity. The empirical likelihood ratio l1(ν) is plotted against ν from 1.501 to

3.5 with step 0.001 for the daily log-returns of equity for two major Dutch banks (ING

and ABN AMRO Bank) over the period 1991–2003.
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Figure 3: Danish fire losses. The empirical likelihood ratio l1(ν) is plotted against ν

from 5.005 to 20 with step 0.005 for the nonzero losses to building and content in the

Danish fire insurance claims.
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