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E-values (“e” for “expectation”) are an alternative to p-values (“p” for
“probability”). Since 2019, e-values have been used for statistical testing by
Shafer (2021), Vovk and Wang (2021), Grünwald et al. (2023) and Howard et
al. (2021). These authors used various names for the concept, but the litera-
ture has converged on the terminology “e-value” proposed by Vovk and Wang
(2021). Tests with e-values are usually based on martingale techniques, and the
notion of “e-processes” generalizes the notion of likelihood ratios to composite
hypotheses.

The use of martingales in statistical testing can be traced back to Wald
(1945) and has been an important part of sequential analysis since the work by
Darling and Robbins (1967), Lai (1976) and Siegmund (1978). The recent work,
which is intimately connected to the game-theoretic probability and statistics of
Shafer and Vovk (2001, 2019), emphasizes optional stopping or continuation of
experiments. For a review on e-values and game-theoretic statistics, see Ramdas
et al. (2022).

Definitions

Fix a measurable space (Ω,F) which is our sample space. A hypothesis is a
collection H of probability measures on the sample space. A hypothesis is
simple if it contains only one probability measure, and for simplicity we use the
probability measure Q to represent the simple hypothesis {Q}.

An e-variable E for a hypothesis H (or, an e-variable testing H) is a [0,∞]-
valued random variable satisfying EQ[E] ≤ 1 for all Q ∈ H. In contrast, a
p-variable for a hypothesis H is a [0, 1]-valued random variable P satisfying
Q(P ≤ α) ≤ α for all α ∈ (0, 1). An e-process M = (Mt)t=0,1,...,T , where T can
be finite or infinite, is a nonnegative stochastic process adapted to a pre-specified
filtration such that EQ[Mτ ] ≤ 1 for any stopping time τ and any Q ∈ H; in
other words, Mτ is an e-variable for H. This filtration is often chosen as the
one generated by sequentially observed data points.

An e-variable is allowed to take the value ∞; observing E = ∞ for an
e-variable E means that we are entitled to reject the null hypothesis; this corre-
sponds to observing 0 for a p-variable. Realizations of p-variables and e-variables
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are referred to as p-values and e-values. Many authors use “e/p-variables” and
“e/p-values” interchangeably when the distinction is not essential for their study.
A large observed e-value suggests evidence against the null hypothesis similarly
to a small observed p-values.

Basic examples and properties

For the simplest example, suppose that we are testing a simple hypothesis
Q0 versus a simple hypothesis Q1, where Q1 is absolutely continuous with
respect to Q0. For this setting, a natural e-variable is the likelihood ratio
E = dQ1/dQ0(X) where X is the observed data. It is straightforward to
verify that E ≥ 0 and it satisfies EQ0 [E] = 1. If we observe iid data X1, X2, . . .
sequentially, then the likelihood ratio process M given by

M0 = 1 and Mt =

t∏
k=1

dQ1

dQ0
(Xk) for t = 1, 2, . . .

is an e-process adapted to the filtration generated by the data. Moreover, we
can easily see that M is a martingale. Indeed, when testing simple hypotheses,
it is optimal in a natural sense to use a martingale to construct e-processes. For
composite hypotheses, the situation is much more complicated, as non-trivial
composite martingales may not exist while non-trivial e-processes may exist
(Ramdas et al. (2020)).

Let E be an e-variable for H. An important property of e-variables is the
inequality Q(E ≥ 1/α) ≤ α for any α ∈ (0, 1) and Q ∈ H, due to Markov’s
inequality. Moreover, for any non-negative supermartingale M under Q with
M(0) = 1, Ville (1939)’s inequality gives

Q

(
sup

t=0,1,...,T
Mt ≥

1

α

)
≤ α, α ∈ (0, 1);

here T may be finite or infinite. Moreover, any e-process for H is dominated
by a class of supermartingales MQ with initial value 1 for Q ∈ H, all with
respect to the same filtration (Ramdas et al. (2020)). This insight implies that
tests formulated by rejecting the null hypothesis if an e-process goes above 1/α
are anytime-valid ; that is, its type-I error is controlled at α regardless of the
stopping rule.

Calibration

P-values and e-values can be converted between each other. A p-to-e calibrator
(we often omit “p-to-e”) is a decreasing (in the non-strict sense) function f :
[0, 1]→ [0,∞] such that f(P ) is an e-variable any p-variable P testing the same
hypothesis. An e-to-p calibrator is a decreasing function g : [0,∞]→ [0, 1] such
that g(E) is a p-variable for any e-variable E testing the same hypothesis. A
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calibrator f is said to dominate a calibrator g if f ≥ g (p-to-e) or f ≤ g (e-to-
p), and the domination is strict if f 6= g. A calibrator is admissible if it is not
strictly dominated by any other calibrator.

Calibrators, under various names, are studied by Shafer et al. (2011), Shafer
(2021) and Vovk and Wang (2021). A decreasing function f : [0, 1]→ [0,∞] is an
admissible p-to-e calibrator if and only if f is upper semicontinuous, f(0) =∞,

and
∫ 1

0
f = 1. Simple examples of p-to-e calibrators are f(p) = κpκ−1 for

some κ ∈ (0, 1) and f(p) = p−1/2 − 1 (Shafer’s). On the other hand, the only
admissible e-to-p calibrator is given by f : [0,∞] → [0, 1], f(e) = min(1/e, 1);
this is again due to Markov’s inequality. Hence, for any e-variable E, 1/E
truncated at 1 is a p-variable. If further E has a decreasing density on (0,∞),
then 1/(2E) is a p-variable (Wang (2023)). Converting a p-value to an e-value
using a p-to-e calibrator and then back to p-value using an e-to-p calibrator
generally loses quite a lot of evidence. For instance starting with p = 0.01, a
conversion with the p-to-e calibrator p 7→ p−1/2 − 1 gives e = 9, and another
conversion with the e-to-p calibrator e 7→ min(1/e, 1) yields p′ = 1/9.

A compromise between the above two calibration directions is the Vovk-
Sellke (VS) bound f(p) = max(−(exp(1)p log p)−1, 1). This function is not a
p-to-e calibrator, but it is the supremum of the class of the p-to-e calibrators
f(p) = κpκ−1 for κ ∈ (0, 1).

Recommended thresholds

In testing scientific hypotheses, thresholds for p-values are often chosen as 0.01
or 0.05 which correspond to type-I errors controlled at these levels. The e-to-p
calibrator e 7→ min(1/e, 1) implies that thresholds of 100 and 20 for e-values
also have the above type-I error control. However, it is not recommended in
practice to directly use these thresholds as the conversion e 7→ min(1/e, 1) is
typically wasteful.

In order to judge how significant results of testing using e-values are, the
type-I error, based on which p-values are defined, may not be the desirable met-
ric. Although there is no universally agreed thresholds to use for e-values, the
rule of thumb of (Jeffreys, 1961, Appendix B), originally designed for likelihood
ratios, may be useful as e-values are generalizations of likelihood ratios. We
summarize this rule of thumb in Table 1 below. Our rough recommendation
in line with Jeffreys (1961) is to use e > 4 in place of p < 0.05 and e > 10
in place of p < 0.01, but one should keep in mind that these choices are quite
arbitrary since p-values and e-values are not one-to-one corresponding to each
other. Kelter (2021, Table 1) summarizes some variations of Jeffreys’s rule.

Growth optimality and e-power

The most simple and well-accepted criterion to quantify the power of an e-
variable E is through its growth rate under an alternative probability measure
Q1, defined as EQ1 [logE]. This ideas goes back to Kelly (1956), and it is studied
by Shafer (2021), Grünwald et al. (2023) and Waudby-Smith and Ramdas (2023)
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e-value evidence Shafer’s p-value
0 ≤ e < 1 null hypothesis is supported 0.25 < p ≤ 1
1 < e < 3.16 no more than a bare mention 0.0577 < p < 0.25
3.16 < e < 10 substantial 8.3×10−3 < p < 0.0577
10 < e < 31.6 strong 9.4×10−4 < p < 8.3×10−3

31.6 < e < 100 very strong 9.8×10−5 < p < 9.4×10−4

100 < e decisive 0 ≤ p < 9.8×10−5

Table 1: Applying Jeffreys (1961)’s rule of thumb for likelihood ratios to e-
values. For comparison, we also reported Shafer’s p-value, which corresponds
to the range of p via e = p−1/2 − 1. The boundary values can be put in either
of the two adjacent categories.

in detail. The quantity EQ1 [logE] is called the e-power of E by Vovk and Wang
(2022).

The intuition behind e-power is built on the fact that e-variables for sequen-
tial data are often multiplicative. That is, very often one relies on the e-process
M given by Mt =

∏t
k=1Ek where E1, E2, . . . are sequential e-variables, mean-

ing that E[Ek | Ek−1, . . . , E1] ≤ 1 for each k. If E1, E2, . . . are iid, then the
asymptotic growth rate of the e-process M , limt→∞(logMt)/t, is the e-power
of E1 by the Law of Large Numbers.

For the test of a simple null Q0 versus a simple alternative Q1 which ab-
solutely continuous with respect to Q0, the growth rate is maximized by the
likelihodo ratio E = dQ1/ dQ0. Grünwald et al. (2023) developed a theory on
finding the optimal e-variable maximizing the e-power for a given composite
null hypothesis and a composite alternative hypothesis.

Multiple testing with e-values

One advantage of e-values is that they can be combined in a straightforward
manner; this is different from the situation of p-values where many complicated
methods exist (e.g., Vovk and Wang (2020)).

Let Ek be an e-variable for a hypothesis Hk, for k ∈ [K] := {1, . . . ,K}. Let
H =

⋂
k∈[K]Hk which represents the global null (it does not hurt to think about

the situation where H1 = · · · = HK). The arithmetic average (
∑K
k=1Ek)/K is

an e-variable for H, regardless of how E1, . . . , EK are dependent. If we know
that E1, . . . , EK are independent, then the product

∏K
k=1Ek is also an e-variable

for H. These two choices are admissible ways of merging e-variables, and each
of them is optimal in a different sense (Vovk and Wang (2021)).

In the context of testing multiple hypotheses, a popular metric is the false
discovery rate (FDR), which is the expected proportion of false rejections among
all rejections. The celebrated BH procedure of Benjamini and Hochberg (1995)
controls the FDR for p-values which are independent or positively dependent
in the sense of Benjamini and Yekutieli (2001). Wang and Ramdas (2022)
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developed the so called e-BH procedure which uses e-values instead of p-values.
They showed that the e-BH procedure controls FDR under arbitrary dependence
structures.

Constructing e-processes based on betting strategies

There is a standard way of constructing e-processes from data based on betting
strategies, studied by Shafer and Vovk (2019) and Shafer (2021). An e-process
(Mt)t∈T, where T = {1, . . . , T} with T possibly finite or infinite, is often con-
structed by combining several sequential e-variables E = (Et)t∈T from the data
via a method of martingale:

Mt =

t∏
s=1

(1− λs(Es − 1)) , t ∈ T,

where λ = (λt)t∈T is called a betting strategy. A betting strategy λ takes values
in [0, 1]T and is predictable, in the sense that λt is determined by X1, . . . , Xt−1
for each t, where X1, . . . , Xt are the data points available to time t (from which
Et is computed). One can easily verify that M defined in this way is a valid
e-process for any choice of the betting strategy λ. Nevertheless, optimally choos-
ing a betting strategy λ that maximizes the e-power is nontrivial since we typi-
cally do not know the true data-generating probability. Some methods, such as
those computing λ from the empirical distribution of the data, are studied by
Waudby-Smith and Ramdas (2023) and Wang et al. (2022).

E-confidence regions

Like p-values, e-values can be used to construct e-confidence regions. These con-
fidence regions are historically studied as confidence sequences (Robbins (1970));
see Howard et al. (2021) for a more recent study. Suppose that θ ∈ Θ is a pa-
rameter of interest, which corresponds to a probability measure Qθ. The usual
confidence region at level α formulated via a class of p-variables Pθ testing Qθ
for θ ∈ Θ, is defined by

{θ ∈ Θ | Pθ > α}, α ∈ (0, 1).

Analogously, an e-confidence region at level α is defined by

{θ ∈ Θ | Eθ < 1/α}, α ∈ (0,∞),

where Eθ is an e-variable testing Qθ for each θ ∈ Θ (Shafer (2021) and Vovk
and Wang (2023)). Since 1/Eθ is a p-variable for Qθ, an e-confidence region is
a confidence region in the classic sense, but it offers something stronger. For
instance, when the procedure of Benjamini and Yekutieli (2005) is applied to
e-confidence regions, the false coverage rate can be controlled under arbitrary
dependence (Xu et al. (2022)); this is not the case for the classic confidence
regions based on p-values.
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Remark 1. The e-values in this article should not be confused with other con-
cepts bearing the name of “e-value”. For instance, the term “e-value” of Van-
derWeele and Ding (2017) is a different object which measures causality.
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