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Regression in R

e To fit a linear model with two predictors x1 x2,
out <- Im(y ~ x1 + x2)

 To generate the ANOVA table “summary(out)” produces
o Call

 Im(formula =y ~ x1 + x2)

 Residuals:

. Min  1Q Median 3Q Max

e -1.4445-0.7684 0.1912 0.5417 1.2968

 Coefficients:

. Estimate Std. Error t value Pr(>[t|)

* (Intercept) 1.22953 0.57489 2.139 0.0473*
e x1 0.96293 0.03337 28.853 7.00e-16 ***
s X2 0.87006 0.07733 11.251 2.68e-09 ***

e Signif. codes: 0 ***' 0.001 *' 0.01 *0.05°.'0.1 " '1

 Residual standard error: 0.8504 on 17 degrees of freedom
 Multiple R-Squared: 0.9846, Adjusted R-squared: 0.9827
* F-statistic: 542.1 on 2 and 17 DF, p-value: 4.007e-16



Estimating the Risk of the James-
Stein Estimator

Suppose X is multivariate MVN(6, 1)

We wish to use an estimator of the form

5(X)=(1-——)" X for0<a<2(p-2)

wheredim(X) =p

Robert&Casella, p.110-112



Matlab Function for James-Stein

Risk
function james_stein_risk(nsim,p)
theta=.1:.1:4; a=.1:.2:2*(p-2); ntheta=length(theta); na=length(a);
x=randn(nsim,p);
risk=zeros(ntheta,na);
for i=1:ntheta
for j=1:na
z=theta(i)+x;
m=max(0,(1-a(j)./sum(z'.*2)));
m=repmat(m',1,p);
d=z.*m;
risk(i,j)=sum(mean((d-theta(i)).”2));
end
end
mesh(repmat(theta’,1,na),repmat(a,ntheta,1),risk)
xlabel(‘theta')
ylabel('a’)
zlabel('risk")
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Simulating a time-homogeneous Poisson
process

For time -homogeneous Poissonprocess the
times between arrivals are independent exp(A4)
EXAMPLE : Generate Poisson(A) on interval[0,10].
l.sett=0,1=1
2.Generate U, uniform[0,1]

3.5ett=T. :t—%ln(ui) (time of 1'th arrival)

4.1f T. <10, puti=1i+1,goto 2, otherwise stop



A Non-homogeneous Poisson
Process

e Suppose arrivals at a ticket office begin at
time t=7 and the intensity of arrivals occur
at rate

A(t)=100-10(t-7), for 7<t<12.

Arrivals occur at a rate higher after 7 a.m
than later in the morning and the rate
drops off linearly until noon. How do we
simulate such a process?



Simulating a non-homogeneous
Poisson process

e Suppose we first

simulate a Poisson A>A(t) forallt.
process with intensity A

lambda




Simulating a non-homogeneous Poisson
process

Let T. bearrival times of homogeneous
poIsson process with intensity A.
For pointat T. ~accept" point with

probability —= Z(T)

hen the "thinned" process of accepted
points has intensity A(t).



Algorithm for non-homogeneous

Poisson process intensity
A(t)=100-10(t-7), for 7 <t <12.
1l.sett=7,1=1
2. Generate U, uniform[0,1]

3. Sett:t—iln(ui).
100

4. If t>12,STOP.
5. Generate V. uniform[0,1]

100-10(t-7)

100
(i.e.reject as an arrival time and proceed to next time)
7. Otherwise, T. =t (accept time of arrival),i =1+1
8. Goto 2.

6. If V, >

, goto?2



Matlab code for non-homogeneous Poisson process
A(t)=100-10(t-7), for 7 <t <12.

t=7+nonhomopp('100-10*',5);

function x=nonhomopp(intens,T)

%generate a nonhomogeneous| poisson process on
with intensity function intens

x=0:.1:T;

|=eval([intens 'X]);

lamO=max(l); % generate homogeneouos poisson
process 4
u=rand(1,ceil(1.5*T*lamO0));
x=cumsum(-(1/lam0)*log(u)); %points of homogen

pp i)
x=X(X<T); n=length(x); % select those points less t

|I=eval([intens 'x']); % evaluates intensity function,
x=x(rand(1,n)<l/lam0); % filter out some points
hist(x,10)
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Ice Storm damage tallied

By DENNIS BUECEERT -- Asszociated Press

OTTAWA (CP) - Almost a vear after the great ice stonm slammed
Chebec, Ontano and parts of the Martimes, Statistics Canada has
produced a storm of numbers on precisely what went down,

Ilore than 1,000 power transmizsion towers and 30,000 wooden utility
poles, for starters.

Close to 1.4 million people in Cuebec and 230,000 1 Ontario without
electnicity. In many municipalities, power not fully restored for at least a
week,

Apprommately 100,000 people taking refige in shelters.

Mlore than 2.6 milhon people, 19 per cent of Canada's labour force, had
difficulty getting to work or couldn't get to work at all

It was the most disruptive and destructive storm in Canadian history,
Dawid Phallips, senior chimatologist at the Enwironment Department, said 1
an interwew MMonday.

"Blizzards and floods and wind storms come and go but an ice storm like
that 0.0 1z unprecedented.”

He zaid the storm probably will rank as the most spectacular Canadian
weather event of the entire century because it affected 0 many people
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Montreal receives power If

1,2, 7 or
1,6,5,8 or
1,2,3,48 or

1,6,5,4,3,7 are all
operating. Suppose
times until failure of each
of these components
under certain
circumstance (e.g. ice
storm) independent

o System still operating

at time t if
min(T,, T,,T,)
min(T,, T, T;,
min(T,,T,, T,
min(T,, T, T;,

>1 or
o) >t or
41 Tg) >1

4113, T7) >1

whereT. = failure time of link 1.
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SYSTEM FAILURI:—I'IMEL:
max(min{,, T,,T;),min(T,, T, T., T;), min(T,, T, T,,T,,Ty),min(T,, T, T., T,, T,,T,))



Simulation of Montreal power
grid
e function L=l1fepowr(T)

« % 1nput vector T of length 8,
lifetimes of components of montreal

% power grid. Outputs lifetime L of
the systenm.

1=min(T([1 2 7D);
2=min(T([1 5 6 8]));

L 3=min(T([1 2 3 4 8]))
4=min(T([1 3 4 5 6 7]));
=max([L1,L2,L3,L4]);




Run Montreal power grid

simulation.
 Assume exponential lifetimes, mean=20
years. (Matlab code)
* L=[];
e fori1=1:10000
o L=[L lifepowr(exprnd(20,1,8))];
e end
e hist(L,50)
(or try L=[L lifepowr(unifrnd(0,40,1,8))]; )



min(L)
ans =

0.0185
» mean(L)
ans =

9.1255

Results:
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Number of simulations for given
accuracy.

95% CI for parameter IS mean + 2S //n

where S?is sample variance obtained from pilot simulation .
To ensure estimator within o,
(with confidence around 95%)

set & =2S/+/n

2
Solve for n. n> (—j



95% confidence interval for
mean system life

M=mean(L)
S=sqrt(var(L))
M+[-1 1]*2*S/sqrt(length(L))
to achieve accuracy to 2 decimals, need
delta=.01
sample size=(2*S/.01)"2

TOO LARGE-- we need VARIANCE
REDUCTION (better simulations)



The Brownian Motion (Wiener)
Process

and diffusion. First, we define a stochastic process JI'; called the

standard Brownian motion or Wiener process having the following

}properties;

1. Foreachh > 0, the increment W(t+ h) — W(t) has a N0, h)
distribution and is independent of all preceding increments

W(u) — W), t>u>v>0.
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Stochastic integral and
approximating sums

jjh(r)dWl‘ ~ Z_:h(fi)(W(fm) — W), 0=ty <t <..<th=T.



*Denote by dW a small
increment [17(¢;.) — W(¢;)

Then dW distributed
N(O,dt).

dW has standard _
deviation ¢ = 7=



Taylor’'s expansion

*Define a new process

(e.g. derivative price)
VI = g(WI: t)

By Taylor's Theorem

)dWQ . 0 o (W, )dt + (stufh) x (dW)? +




Meaning of differentials

fin e h(t)dWr

then this only has real meaning through 1its integrated version
£

X, = X, + L h(DdW,




Ito’s lemma

[What about the terms involving (d77)* ? What meaning should we assign to a term
like Ik(t)(dW)z‘? Consider the approximating function » | (¢, )(W(t,.1) — W(t,))*.
Notice that, at least in the case that the function 2 1s non-random we are adding up
independent random variables A(#,)((z,,,) — W(¢,))* each with expected value
h(t;)(t, —t;) and when we add up these quantities the limit 1s I h(t)dt by the law
of large numbers. Roughly speaking, as differentials, we should interpret (di7)* as
dt because that is the way it acts in an integral. Subsequent terms such as (di7)? or
(d)(dW)?  are all o(di), i.e. they all approach O faster than does df as df — 0.

So finally substituting for (di#)” in ref: it02| and 1gnoring all terms that are o(df),
we obtain a simple version of Ito’s lemma

dg(Ws, 1) = 2o (W,, )W + { W h+ —g(Wr ALdt

oW W2




Example of Ito’s lemma

This rule results, for example, when we put g(i¥..7) = ¥* in
A2 = 2W,dW, + dit \

or on integrating both sides and rearranging,

2 d 1 2 2 1 bd
[ = 0w -3 [ a




Martingale property of
stochastic integrals

There 1s one more property of the stochastic mtegral that makes 1t a valuable
tool in the construction of models n fmance, and that 1s that a stochastic mtegral
with respect to a Brownian motion process 1s always a martingale. To see this,
note that m an approximating sum

1

RICEAD WAUCHEID)

i=(

each of the summands has conditional expectation O given the past, ve.
E[A(t )W (t1) = WD, | = h(t)E[(W(Ly) - W(E))H] = 0

since the Browman increments have mean O given the past and since /(1) 1
measurable with respect to ;.




The Black-Scholes model for

Stock Prices (discrete time)

* Assume that the price of a stock on day m
IS
S, =S exp{z Z}
where S, Is the stock price at time 0 and the random

variables Z, are independent normal N(z, o/ N)

2
O

2N’
r 1S the annual interest rate (e.g.0.05)
and N Is the number of (trading) daysin a year (e.g. 252).

where 1 = '
N



The model (for pricing financial

derivatives)

Notice that under this model, Sm has a
lognormal distribution

with expected value S e
annual volatility= O

Expected value of future stock price Is the
same as that of bank deposit of equal

amount. (this assumption is forced on us by no-
arbitrage conditions whenever we are pricing a
financial derivative)

rm/ N



Financial derivatives

Financial instruments that derive their value from
an associated asset (e.g. stock, index)

Used to speculate on a rise (call option) or fall
(put option) Iin asset price.

used hedge a portfolio already held-e.g. a
promise to deliver IBM stock at point in future.
Insurance against disadvantageous moves In
asset prices, currency exchange rates, interest
rates, credit changes, etc.

Financial equivalent of insurance company: they
allow for transfer of RISK



What is a Call Option?

A call option is aright, but e« \Ahere stock price at
not an obligation, to maturity = S,

purchase an underlying _
stock for a fixed price K * If interest rates are

(exercise price) at a fixed constantr
time T (maturity). compounded
Payoff at time T years continuously, payoff
= max( S; - K,0) discounted to present
(t=0) Is

e™" max(S; - K,0)



Call Option Price Is..

 the expected present * Example: A stock price
value (i.e. discounted worth $100. | have a call

to present) of future option with strike K=$100
- maturing in 53 business
returns IS

days. If stock sells then
E{e™"" max(S; - K,0)} for $120, the present

where expectation Is ;iguuemﬁﬁ,;h;yﬁ’,ﬁf;‘;est
under the Black-

Scholes model above, ¢ M9 =202
— ¢ 056312%2) mav190 ~100,0)



Value of Call Option

Simulated value of a call option

for a European call option with value function at maturity

V, (X) = max(x—K,0), where K =exercise price and
K=S, =10,r =0.05,0 =0.2,T =0.25

(area under graph below)




Crude simulation for European
call option

Find by simulation the value of a European call option
= expected payoff from option discounted to present

=E{e™ max(S,e” —K,0)} where X isa

Normal random variable with mean rT — GZ% and

variance o°T and S, is the current stock price.



Option value= Expectation with
respect to uniform

Suppose X has cumulative distribution function F so
P[X <x]=F(X).

We may generate X using inverse transform

X =F™*(U) whereU isuniformon[0,1].

Then the option price

E{e™™ max(S,e” ©) —K,0)}
1

= j f (u)du
0

where f (u)=e™ max(S,e” “ —K,0)



Value of Call Option

Call option value
IS area under this graph

For European call option,
f(u)=e™ max(S,e” “ —K,0) where K =exercise price.
For graph, I chose K=S, =10,r =0.05,0 =0.2,T =0.25




Matlab Function for simulated
value call option

function v= fn(u)

% discounted payoff for call option with
%exercise price K, r=annual Interest rate,
%sigma=annual vol, SO=current stock price,
%u=vector of uniform (0,1) 1nput to generate
%normal variate by iInverse transform. %T=maturity
(years)

%(For Black-Scholes price, iIntegrate over(0,1)).
SO0=10 ;K=10;r=.05; sigma=.2 ;T=.25 ;
ST=S0*exp(norminv(u, T*(r-sigman2/2) ,sigma*sqrt(T7)));
% ST 1s the stock price at maturity. Discount
v=exXp(-r*17)*max((ST-K),0);



Black-Scholes price Is integral
over (0,1)

 We assumed
— current stock price=exercise price=10
— Annual vol (sigma)=0.2.
— Interest rate =5%.
— T=1/4 years.

 Monte-Carlo integral obtained by
— u=rand(1,500000); mean(fn(u));



Accuracy of Crude Monte-Carlo

optlon price:

. Recallthat Var(: zf(u ) =—Var(f (U,)

 The standard error or standard deviation
of the estimated Monte-Carlo integral is
estimated by

o se=sqrt(var( fn(u))/length(u));

 True val=.4615, standard error approx
.002



The true value by Black-Scholes
formula ( Matlab)

o [CALL,PUT]=BLSPRICE(SO,K,r,T,sigma,0)
last argument = dividend rate assumed O
In this problem. CALL= price of call option,
PUT=price of put option both assuming
Black-Scholes model.

» [CALL,PUT]=BLSPRICE(10,10,.05,.25,.2,0)




Example of crude Monte Carlo

u=[.1.25.4.6.7.8] mean(fn(u)) gives 0.3146

— This is total area under bars (approximating integral)
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Antithetic Random Numbers

 |f we use agiven uniform random
number u, also use 1-u. Achieves a

balance between large values of f(u) and

.6] gives mean(fn(u)) O.

4222




Why are antithetic random numbers
better? Consider independent uniform

Consider just two uniform random numbers
U,,U, both uniform on [0,1] and independen t.

Estimator is %( fU)+ fU,)).

1

Expected value is E[%(f u,)+ 1U,))] =%(Ef (U,)+Ef (U,)) =j f (u)du.
Estimator has Variance
Va2 (£ (Uy) + £ (U] = 5 (var( £ (Uy) + var( £ (U,)) +2c0v( f (Uy), F(U,)

= %(var( f(U,)) since var( f(U,)) =var(f(U,))
and by independen ce, cov( f(U,), f(U,)) =0



Expected value when they are
antithetic

 The expected value is the same when
antithetic:

U,,U, both uniform on [0,1] and U, =1-U,
Estimator is%(f U)+ f@-uUy)).

Expected value is

E[%(f(um f(L-U))] =%(Ef (U,)+Ef 1-U,))

='1[ f (u)du.



Variance of Antithetic estimator
(n=2)

Estimator has VVariance

var[%(f U+ f@a-Uy)l :%(var(f (U,))+var(f(1-U,))+2cov(fU,), f(1-U,)))

:%(Var(f (Uy)+cov(f (U,), f(1-U,)) since var(f (U,)) = var(f (U,))

This is better than crude if cov(f U,), f (1-U,)) <O0.

In other words when f (U,) islarge, f (1—-U,) tends to be smaller.

TRUE if f(u) is monotone function of wu.

The antithetic estimator has smaller variance provided f is monotone



Summary of antithetic

Instead of using n uniform|[0,1], use n/2 ( u, say)
together with n/2 values of 1-u. This is better than n
crude IF the function f(u) Is monotonic (increasing or

decreasing).

— How much better?? For crude, u=rand(1,500000);
mean(fn(u)) (0.4620)

— var(fn(u))/500000 = 8.7e-007

ANTITHETIC******kkrkkkkkkkkxrk

— u=rand(1,500000); e=(fn(u)+fn(1-u))/2; mean(e) =
0.4630

— var(e)/length(e) (2.23e-7—equivalent to about 2 million
crude)



Efficiency Gain

The same number of calls to the function fn
using antithetic gives ratio of variances
2.1723/1.1244 relative to crude. Nearly twice
as efficient (half the sample size necessary)

In this example, If we Insist on a certain
precision (variance of estimator), antithetic
method will get it with half as many calls to the
function. (script8)



Antithetic: efficiency higher If
function more linear
, 1 213/4
Find jo (1-x?)%*dx.
The true value is approx 0.71888.

e Using crude
— u=rand(1,100000); f= (1-u."2).~(3/4);
—  Mean(f)
— Var(f)/200000
e Using Antithetic
— u=rand(1,50000); f= .5*((1-u."2)./(3/4)+ (1-(1-u)."2).7(3/4));

— mean(f) %mean(f) Var(f)/50000 = 0.7184 1.3704e-007
—  Var(f)/50000

o Efficiency gain=7.18/1.37=5.24

%mean(f) Var(f)/100000= 0.7193 7.1783e-007



