
STAT 340/CS 437 PROBLEM
SOLUTIONS.

1. 1.1 The following data gives the arrival times and the service times that each
customer will require for the first 13 customers in a single server queue. On
arrival the customer either enters service if the server is free or joins the waiting
line. When the server completes work on a customer, the next one in the queue(
i.e. the one that has been waiting the longest) enters service.

Arrival Times 12 31 63 95 99 154 198 221 304 346 411 455 537
Service Times 40 32 55 48 18 50 47 18 28 54 40 72 12

(a) Determine the departure times of the 13 customers
(b) Repeat (a) when there are two servers and a customer can be served by

either one.
(c) Repeat (a) under the new assumption that when the server completes a ser-

vice, the next customer to enter service is the last to join the line-i.e. the
one who has been waiting the least time.
Results: a) 52, 84, 139, 187, 205, 255, 302, 320, 348, 402, 451, 527, 549.
b) 52, 63, 118, 143, 136, 204, 245, 239, 332, 400, 451, 527, 549.
c) 52, 84, 139, 157, 207, 254, 272, 320, 348, 402, 451, 527, 549.
Matlab Code
% Matlab code for question ONE
% Data
arrival =[12 31 63 95 99 154 198 221 304 346 411 455
537];
service=[40 32 55 48 18 50 47 18 28 54 40 72 12];
%%%%%%%%%%%% a) %%%%%%%%%%%%%%%%%%%%%%%
departure(1)=arrival(1)+service(1);
for i=2:13
if arrival(i)<departure(i-1)
\ departure(i)=departure(i-1)+service(i);
else
\ departure(i)=arrival(i)+service(i);
end
end
%%%%%%%%%%%% b) %%%%%%%%%%%%%%%%%%%%%%%%
departure2(1)=arrival(1)+service(1);
departure2(2)=arrival(2)+service(2);
for i=3:13
if arrival(i)<min(departure2(i-1),departure2(i-2))
\ departure2(i)= min(departure2(i-1),departure2(i-
2))+service(i);
else
\ departure2(i)=arrival(i)+service(i);
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end
end

2. 2.6 The continuous random variable X has probability density function given
by

f(x) = cx, 0<x<1

Find c and P [X > 1/2].
Since f is a probability density function we need to find the constant c so thatR 1
0
f(x)dx = 1 or

R 1
0
cxdx = 1 giving c = 2. Then

P (X >
1

2
) =

Z 1

1/2

f(x)dx = x2|11/2 = (1− 1/4) = 3/4.

3. 2.7 If X and Y have joint probability density function given by

f(x, y) = 2 exp{−(x+ 2y), 0 < x <∞, 0 < y <∞

find
P [X < Y ].

The joint probability density function is

f(x, y) = 2e−(x+2y), 0 < x <∞ and 0 < y <∞.

Therefore

P (X < Y ) =

Z Z
{(x,y);x<y}

f(x, y)dxdy

=

Z ∞
0

{

Z y

0

f(x, y)dx}dy

=
1

3
.

4. 2.15 An airplane needs at least half its engines to safely complete its mission.
If each engine independently functions with probability p, for what values of p
is a two engine plane safer than a three engine plane?
Let c be the number of engines required to safely complete the mission. Then
when there are n engines, c = 1 when n = 2 and c = 2 when n = 3. The
number of engines that operate properly is X, a binomial random variable with
parameters n and p. Therefore the probability that the mission is successful is

P2 = P (X ≥ 1) =
2X
1

µ
2

x

¶
px(1− p)2−x when n = 2

P3 = P (X ≥ 2) =
3X
2

µ
3

x

¶
px(1− p)3−x when n = 3
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When is the two-engine plane better? When P2 > P3 or for values of p for
which

2p(1− p) + p2 ≥ 3p2(1− p) + (1− p)3

1 + 2p3 − p2 − p ≥ 0

and this is true for all 0 · p · 1.

5. 2.16 For a binomial(n, p) random variableX show that p(i) = P [X = i] first
increases and then decreases reaching its maximum value when

i = [p(n+ 1)], the largest integer less than or equal to p(n+ 1).

IfX has a binomial distribution so that P (X = i) =
¡
n
i

¢
pi(1− p)n−i, we can

obtain the ratio
P (X = i)

P (X = i− 1)
=
(n− i+ 1)p

i(1− p)

Note that this ratio is greater than one if

(n− i+ 1)p > i(1− p)

or equivalently if
i < (n+ 1)p.

By a similar argument this ratio is smaller than one if

i > (n+ 1)p.

This means that the terms are increasing i.e. P (X = i) > P (X = i − 1) as
long as i < (n+1)p and subsequently the terms are decreasing. It follows that
the maximum value of P (X = i) is achieved when i is the largest integer less
than or equal to (n+ 1)p or i = [(n+ 1)p].

6. 2.17 If X and Y are independent binomial random variables with parameters
(n, p) and (m, p) respectively, argue without calculations that X + Y is bino-
mial (m+ n, p).
LetX be binomial (n, p) and Y be Binomial(m,p). Then we can obtainX as
the number of successes in n independent trials of an experiment in which the
probability of a success on each trial is p. Similarly Y is the number of successes
in m independent trials of an experiment with the same probability os success
on each trial. ThereforeX+Y is the total number of successes on n+m trials.
It follows thatX + Y is Binomial(n+m, p).

7. 2.19 If X is a Poisson(λ) random variable show that

(a) E(X) = λ
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(b) var(X) = λ
The expected value of a Poisson random variable is

E(X) =
∞X
x=0

xP (X = x)

=
∞X
x=0

x
λxe−λ

x!

= λe−x
∞X
x=1

λx−1

(x− 1)!

= λ.

Note also that

E(X(X − 1)) =
∞X
x=0

x(x− 1)
λxe−x

x!

= λ2e−x
∞X
x=2

λx−2

(x− 2)!

= λ2.

It follows that

var(X) = E(X2)− λ2

= E(X(X − 1)) +E(X)− λ2

= λ.

8. 2.20 Let X and Y be independent Poisson random variables with parameters
λ1 and λ2 respectively. Use question number 6 and a limit theorem for binomial
random variables to argue heuristically that X + Y has a Poisson(λ1 + λ2)
distribution. Then give an analytic proof of this result.
The heuristic argument is as follows. A binomial(n, p) random variable with
a small value of p and large n is approximately Poisson(λ) with λ = np.
Therefore X is approximately Binomial(n1, p) and Y Binomial(n2, p) where
n1 = λ1/p and n2 = λ2/p and p is chosen very small. By 2.17 it follows that
the sumX+Y is approximately binomial (n1+n2, p) which is, since n1+n2 is
large and p is small is approximately Poisson((n1+n2)p) or Poisson(λ1+λ2).
The formal argument is as follows. SupposeX has a Poisson(λ1 ) distribution
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and Y has a Poisson(λ2) distribution and they are independent. Then

P [X + Y = k] =
kX
i=0

P (X = i, Y = k − i)

=
kX
i=0

λi1e
−λ1

i!

λk−i2 e−λ2

(k − i)!

=
1

k!
e−(λ1+λ2)

kX
i=0

µ
k

i

¶
λi1λ

k−i
2

=
(λ1 + λ2)

k

k!
e−(λ1+λ2)

and this is the Poisson distribution with parameter (λ1 + λ2). So the sum of
independent Poisson random variables is also Poisson with the parameters added.

9. 2.28 If X is an exponential random variable with rate parameter λ show that

(a) E(X) = 1
λ

(b) var(X) = 1
λ2
.

For an exponential random variable X, with probability density function
f(x) = λe−λx, x > 0

E(X) =

Z ∞
0

xλe−λxdx

= 1/λ.

and

E(X2) =

Z ∞
0

x2λe−λxdx

= 2/λ2.

Therefore the variance is

var(X) = E(X2)− (EX)2 = 2/λ2 − 1/λ2 = 1/λ2.

10. 2.29 Persons A, B, and C are waiting at a bank having two tellers when it
opens in the morning. Persons A and B each go to a teller and C waits in line.
If the times required to serve customers are independent exponential(λ) random
variables, what is the probability that C is the last to leave the bank? (No
computation is required)
Let us suppose thatB leaves the bank afterA. Then by the memoryless property
of the Exponential distribution, at the moment that A leaves the bank, C has
remaining service time which is exponentially distributed with parameter λ, and
so does B. These two service times have the same continuous exponential
distribution are independent. Therefore the probability that C’s service time is
the larger is 1

2 .
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11. 2.30 Let X and Y be independent exponential random variables with rate
parameters λ and µ respectively. Show that

P [X < Y ] =
λ

λ+ µ
.

The joint probability density function, since X and Y are independent expo-
nential is

f(x, y) = λµe−λxe−µy, x > 0, y > 0.

Therefore

P (X < Y ) =

Z Z
{(x,y);x<y}

f(x, y)dxdy

=

Z ∞
0

{

Z y

0

λe−λxdx}µe−µydy

=
λ

λ+ µ
.

12. 2.31 Consider a Poisson process in which events occur at a rate of 0.3 per hour.
What is the probability that not events occur between 10 AM and 2 P.M.?
LetN(t) be the number of events occurring in an interval of length t. According
the properties of a Poisson process, N(t) has a Poisson distribution with para-
meter given by λt where λ is the intensity of the Poisson process. In this case
the intensity is λ = .3 and so N(4) has a Poisson distribution with parameter
1.2. Therefore

P [N(4) = 0] = e−1.2

13. 2.32 For a Poisson process with rate λ, define N(s) =the number of events in
the interval [0, s]. Find

P [N(s) = k|N(t) = n]

for s < t.
For a Poisson process, recall that N(t) is the number of events in the interval
[0, t]. Therefore for s < t and 0 · k · n,

P [N(s) = k|N(t) = n] =
P [k events in [0, s] and n− k events in [s, t]]

P [n events in [0, t]]

=
n!(λs)ke−λs(λ(t− s))n−ke−λ(t−s)

k!(n− k)!(λt)ne−λt

=

µ
n

k

¶³s
t

´k ³
1−

s

t

´n−k
.

The conditional distribution of the number of events in a subinterval given the
number in an interval is binomial.
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14. 2.36 If X and Y are independent exponential random variables, show that
the conditional distribution of X given X + Y = t is the uniform distribution
on (0, t).
Suppose that f(x, y) denotes the joint probability density function ofX,Y and
fX and fT denote the probability density functions of X and T = X + Y
respectively. Then the conditional probability density function of X given
T = t is

fX|T (x|t) =
fX(x)fY (t− x)

fT (t)
for 0 · x · t.

In this case both X and Y are exponentially distributed with identical prob-
ability density functions fX(x) = λe−λx, x > 0. This is a special case of
the gamma density function and the sum of independent gamma random vari-
ables with the same scale parameter is also gamma. In other words, T has the
Gamma(2, 1/λ) probability density function

fT (t) = λ2te−λt, t > 0

Substituting

fX|T (x|t) =
fX(x)fY (t− x)

fT (t)

=
λe−λxλe−λ(t−x)

λ2te−λt

=
1

t
for 0 · x · t.

In other words given that the sum of two independent exponential random vari-
ables is t the conditional distribution of one of them, say X, is uniform on the
interval of possible values ofX, namely [0, t].

15. 3.1 the sequence is 5, 15, 45, 135, 105, 15, 45, 135, 105, 15, 45, ....Note that
the sequence repeats after the four distinct numbers 15, 45, 135, 105 and so the
sequence has period 4.

16. 3.2 If x0 = 3 and
xn = (5xn−1 + 7)mod 200

find x1, ...x10 and the period of the generator.
Using lcg(3,5,7,200,20) we obtain the first 20 values of xn, 3 22 117 192 167 42
17 92 67 142 117 192,.... Notice that the values 3 and 22 never recur again but
117 appears again after 8 numbers. Indeed after 117 the sequence cycles through
117 192 167 42 17 92 67 142 repeatedly and the period is 8.

17. 3.3 Use simulation to approximate the integralZ 1

0

exp{ex}dx
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The integral cannot be obtained analytically. However a numerical approxima-
tion gives Z 1

0

exp(ex)dx ≈ 6.3166

We can approximate this integral using Monte Carlo with the following Matlab
Code:
T=rand(1,100000); mean(exp(exp(T)))

18. Use the runs (up) test and the normal approximation to its distribution to deter-
mine whether the following sequence is significantly different from independent
U [0, 1] variables.
.427,.321,.343,.474,.558,.746,.032,.522,.604,.745,.251,.310,
.798,.037,.081,.95,.812,.453,.644,.920,.951,.146,.155,.429,.525,.2,. 219,.675,.845,.
676
In this case n = 30 and the observed number of runs is R = 15. The ex-
pected number and standard deviation under the hypothesis that the numbers are
independent Uniform[0,1] is

E(R) =
2n− 1

3
= 19.67, SD(R) =

r
16n− 29

90
= 2.24

In this case, the observed value 15 is within 2SD(R) of the expected value
E(R) and so there is no significant evidence against the hypothesis of indepen-
dent uniform. (note: this is a test of independence that can be applied for any
continuous random variables- it is not sensitive to the particular continuous dis-
tribution)

19. Let x1, ..., x30 be the supposed U [0, 1] values listed in problem 18 and suppose
we plot the 15 points {(x2j−1, x2j), j = 1, 2, ...15}. Divide the unit square is
divided into four equal subsquares, and count the number of points in each of
these four regions. Use the chi-squared test to determine whether the chi-squared
statistic is significant. The number of point in each of the four quadrants
is 3, 4, 4, 4 respectively. The expected number under the assumption that the
points are uniform in the square is 17

4 = 3.75 for each of the four quadrants.
Therefore the Chi-square statistic is

χ2 =
(3− 3.75)2

3.75
+
(4− 3.75)2

3.75
+
(4− 3.75)2

3.75
+
(4− 3.75)2

3.75
= 0.2

This should be compared with a chi-squared distribution having 4 − 1 = 3 de-
grees of freedom and for this distribution the critical value at level 5% is 7.81.
Since the observed value is well below this critical value, there is no evidence
according to this test that the sequence does not consist of independent uniform
random variables.
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20. 3.4 Use simulation to approximate the integralZ 1

0

(1− x2)3/2dx

This is similar to question 17. In this case the integralZ 1

0

(1− x2)3/2dx

can be obtained analytically and it is

[−
x

8
(2x2 − 5)

p
1− x2 +

3

8
sin−1(x)]|10 =

3

16
π

or around 0.58905.We can approximate this integral using Monte Carlo with the
following Matlab Code:
T=rand(1,100000);
mean((1-T.^2).^1.5);

21. 3.5 Use simulation to approximate the integralZ 2

−2
exp{x+ x2}dx

In this case the integral Z 2

−2
ex+x

2

dx

can be obtained in terms of the normal cumulative distribution function or the
“error function” and is around 93.163. We can write this integral as an expected
value of the form

4E(eX+X
2

)

whereX has a uniform distribution on the interval [−2, 2]. Therefore, we can ap-
proximate this integral using Monte Carlo with the following Matlab Code: the
last line obtains the standard error of the estimator
U=-2+4*rand(1,100000);
4*mean(exp(U+U.^2))
se= 4*sqrt(var(exp(U+U.^2))/100000)

22. 3.6 Use simulation to approximate the integralZ ∞
0

x(1 + x2)−2dx

Ross suggests changing variables so that the new variable ranges over the unit
interval to

y = 1/(x+ 1), and x =
1

y
− 1

dy = −1/(x+ 1)2dx = −y2dx

9



So the integral becomes, after a change of variablesZ 1

0

(
1

y
− 1)(1 + (

1

y
− 1)2)−2y−2dy

=

Z 1

0

(
1

y
− 1)(2y2 − 2y + 1)−1dy

and the true value of this integral is 1/2. We can approximate this integral using
Monte Carlo with the following Matlab Code: the last line obtains
the standard error of the estimator
U=rand(1,100000);
T=(1/U-1)./(2*U.^2 -2*U+1)
mean(T)
se= sqrt(var(T)/100000)

23. 3.7 Use simulation to approximate the integralZ ∞
−∞

e−x
2

dx

The exact value of the integral Z ∞
−∞

e−x
2

dx

is
√
π , as can be shown by conversion to polar coordinates. We may rewrite asZ ∞

−∞
e−x

2

dx = 2

Z ∞
0

e−x
2

dx

and then change variables as in the problem above to

y = 1/(x+ 1), and x =
1

y
− 1

dy = −1/(x+ 1)2dx = −y2dx

so the integral becomes

2

Z 1

0

exp{−(
1

y
− 1)2}y−2dy.

which can be estimated using MATLAB
U=rand(1,100000);
F=exp(-(1-1./U).^2)./U.^2;
2*mean(F)
ans = 1.7737 which is in error by about .001.
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24. 3.8 Use simulation to approximate the integralZ 1

0

Z 1

0

e(x+y)
2

dydx

First write this as E(exp(X + Y )2 ) where X and Y are independent U [0, 1].
Then in matlab:
x=(rand(1,100000)); y=(rand(1,100000));
f=exp((x+y).^2); m=mean(f)
ans=4.8924

25. 3.9 Use simulation to approximate the integralZ ∞
0

Z x

0

e−(x+y)dydx

The true value of the integralZ ∞
0

Z x

0

e−(x+y)dydx

is 1/2. Consider a change of variables

t = 1/(x+ 1), x = 1/t− 1

s = y/x, y = sx = s(
1

t
− 1)

so that now both variables are in the unit square. ThenZ ∞
0

Z x

0

e−(x+y)dydx =

Z 1

0

Z 1

0

exp{−(
1

t
− 1)(1 + s)}

¯̄̄̄
∂x
∂t

∂x
∂s

∂y
∂t

∂y
∂s

¯̄̄̄
dsdt

=

Z 1

0

Z 1

0

exp{−(
1

t
− 1)(1 + s)}t−2

¯̄̄̄
1

t
− 1

¯̄̄̄
dsdt

This integral can be approximated using two independent uniform[0, 1], say S, T
and is equal to

E[exp{−(
1

T
− 1)(1 + S)}T−2(T−1 − 1)].

or in matlab
S=rand(1,100000); T=rand(1,100000); mean(exp(-(1./T-1).*(1+S)).*(1./T.^2).*(1./T-1))

26. 3.10 Use simulation to approximate

cov(U, eU )

where U is uniform[0, 1].Compare your approximation with the exact value.
In this case we can write

cov(U, eU ) = E(eU (U −
1

2
))
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and so this gives the following matlab code
U=rand(1,100000); mean(exp(U).*(U-.5)) providing a value of around 0.1405.
Alternatively use the sample covariance. In matlab if we use cov(U,exp(U)) we
obtain the sample covariance matrix�

.0832 .1406

.1406 .2416

¸
and the covariance is the off-diagonal element 0.1406.

27. 3.11 Let U be uniform[0, 1]. Use simulation to approximate

(a) cov(U,
√
1− U2)

(b) cov(U2,
√
1− U2)

The easiest approximation is to use the sample covariance.
U=rand(1,100000);
V=sqrt(1-U.^2);
mean(U.*V)-mean(U)*mean(V). Gives value -0.0597.
Similarly
mean((U.^2).*V)-mean(U.^2)*mean(V) returns value -0.06578.

28. 3.12 Let U1, U2, ... be uniform[0, 1] random variables and define

N = min{n;
nX
i=1

Ui > 1}.

Estimate E(N) by generating 100, 1000, 10,000 and 100, 000 values. What is
the true value of E(N)?
For the expected value of N, note that

P (N ≥ 2) = 1

P (N ≥ 3) = P (U1 + U2 · 1) = 1/2

P (N ≥ 4) = P (U1 + U2 + U3 · 1) =
1

3!

P (N ≥ j) =
1

(j − 1)!

Now notice that
P∞
j=1 P (N ≥ j) can be written as

P (N ≥ 1) = P (N = 1) +P (N = 2) +P (N = 3) +P (N = 4) +...
P (N ≥ 2) P (N = 2) +P (N = 3) +P (N = 4) +...
P (N ≥ 3) P (N = 3) +P (N = 4) +...
P (N ≥ 4) P (N = 4) +...
SUM= P (N = 1) +2P (N = 2) +3P (N = 3) +4P (N = 4) +...

This shows thatE(N) =
P∞

j=1 jP (N = j) =
P∞

j=1 P (N ≥ j) = 1+1+1/2+
... = e.
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We may generate values ofN using the following function. The function is not
perfect however, since it does not allow the event N > 100, an event which has
probability less than 10−157.
function N=generateN(m)
N=[];
for i=1:m
V=cumsum(rand(1,100));
N=[N 1+sum(V<1)];
end

29. 3.13 Let U1, U2, ... be uniform[0, 1] random variables and define

N = max{n;
nY
i=1

Ui > e
−3}.

(a) Find E(N) by simulation.
(b) Find P [N = i] by simulation. What do you think is the distribution of N?

First note that we can write N as

N = max{n;
nX
i=1

ln(Ui) > −3}.

N = max{n;
nX
i=1

− ln(Ui) < 3}.

Since the random variables− ln(Ui) all have an exponential(1) distribution
this counts the total number of points in a Poisson process with intensity
(1) that lie in the interval [0 3] and therefor this has the Poisson distribution
with parameter 3.

P [N = i] =
3i

i!
e−3, i = 0, 1, ...

and E(N) = 3. The following Matlab function can be used to generate k
values of N .

• function N=q29(k)
• %generates a total of k random variables as in ques-

tion 29
• N=[];
• for i=1:k
• x=cumprod(rand(1,10));
• while x(length(x))>exp(-3)
• x=[x x(length(x))*cumprod(rand(1,10))];
• end
• N=[N sum(x>exp(-3))];
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• end
For example the statement mean(q29(1000)) provides the aver-
age of 1000 simulated values of N and mean(3==q29(1000))
provides the value 0.2260 which estimates the probability P (N = 3)
(the true value is about 0.2240).

30. 4.1 Write a program to generate n values of a random variableX with

P [X = i] = i/3, i = 1, 2

Generate n = 100, 1, 000 and 10, 000 values of the random variable and com-
pare the proportion of values of X equal to 1.
The vector of lengthN of suitable values ofX can be generated using X=1+(rand(1,N)>1/3);

31. 4.2 Write a Matlab function which takes a vector of probabilities (p1, ..., pn)
as input and outputs a single value of a random variable having this probability
(mass) function.
function X=simul(p);
X=sum(rand>[0 cumsum(p)]);

32. 4.3 Give an efficient algorithm to simulate the value of a random variable X
such that

P [X = 1] = 0.3, P [X − 2] = 0.2, P [X = 3] = 0.35, P [X = 4] = 0.15

Generate U=Uniform(0,1)
If U<0.35, set x=3 and stop
if U<0.65, set x=1 and stop
if U<0.85 set x=2 and stop
else set x=4

33. 4.4 A deck of 100 cards numbered 1,2,...,100 is shuffled and then turned over one
card at a time. Say a “hit” occurs whenever card i is the ith card to be turned
over. Write a Matlab program to estimate the expected value and the variance of
the total number of hits. Find the true value and compare with your estimates.
Consider the probability that the i0th card is a “hit”. Since all 100 cards are pos-
sible in the i0th location, the probability of a hit on card i is 1/100. Therefore
if Ii = 1 or 0 as the i0th card is a hit or not, then the total number of hits isP100
i=1 Ii. The expected value is therefore 100E(Ii) = 1. We may generate val-

ues of N with the following two functions.

function p=permuternd(n)
% generates a random permutation of the integers 1:n
p=1:n;
for k=n:-1:2
i=ceil(k*rand); q=[p(i) p(k)]; p(k)=q(1) ;p(i)=q(2);
end
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function f=matchesrnd(n,m)
% f is the observed number of matches of n items over m
trials.
f=[];
for i=1:m
f=[f sum(permuternd(n)==(1:n))];
end
f=matchesrnd(100,1000);
mean(f) = 0.98000000000000
var(f) = 0.94254254254255 (the true values are both =1)

34. 4.5 Consider the following recursive algorithm for generating a random permu-
tationΠn of the integers {1, 2, ..., n}. Begin with a random permutation, n = 1,
namely 1. To generate a random permutationΠi+1 from a random permutation
Πi = {j1, j2, ..., ji}, first adjoin the value i + 1 to obtain {j1, j2, ..., ji, i + 1}
and then interchange the last component i + 1 with component J, randomly
selected from the i + 1 values {j1, j2, ..., ji, i + 1} (so that i + 1 can end up
being interchanged with itself). Show that this algorithm produces a random
permutation and write a Matlab function which implements this algorithm. Test
your algorithm by repeatedly generating permutations Π10.
Consider the following function

function v=perm(n)

v=1;

for i=2:n;

j=ceil(i*rand); v=[v j]; v([j i])=[i v(j)];

end
Running this function 1000 times as with
x=[]
for i=1:1000; x=[x;perm(10)]; end

generates a matrix x of 1000 such permutations, each one occupying
a row of the matrix. One can check that the individual columns, say
column 3 has the correct frequency with mean(x(:,3)==1)

35. 4.6 Using n = 100 random numbers explain how to find an approximation
for

NX
i=1

ei/N

where N = 10, 000. Find the approximation and indicate if it is a good one.
We wish to approximate a sum of the form

NX
i=1

ei/N
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with N = 10, 000. Note that if we replace the sum by an average

1

N

NX
i=1

ei/N

then this is approximately
E(eU )

where U is U [0, 1]. This in turn can be approximated using the average of 100
such observations

1

100

100X
i=1

eUi

or in MATLAB,
mean(exp(rand(1,100)))
This gives approximately 1.72 or around e− 1.

36. 4.7 A pair of dice are to be continually rolled until all the possible outcomes
2, 3, . . . , 12 have occurred at least once. Develop a simulation study to estimate
the expected number of dice rolls that are needed.
The following matlab function will generate the number of dice rolls needed. If
we define this function and then enter v=q36(1000) then the vector v con-
sists the results of 1000 simulations and mean(v) produces 59.08, an estimate
of E(N).

function v=q36(nsim)
%nsim=number of simulations. output v=vector of results of nsim simulations
v=[];
for i=1:nsim
y=sum(ceil(6*rand(2,12))); % initializes with 12 rolls
while (length(unique(y))<11)
x=sum(ceil(6*rand(1,2))); %generates sum of two rolls of the dice
y=[y x]; % augments the list of y values until unique(y)=11
end
v=[v length(y)];
end

37. 5.1 Give a method for generating a random variable having density function

f(x) =
ex

e− 1
, 0 < x < 1

Using 10000 simulated values from this distribution, estimate its mean and vari-
ance. Use inverse transform. In this case F (x) = (ex − 1)/(e − 1) and
F−1(U) = ln(1+U(e−1)). x=log(1+rand(1,10000)*(exp(1)-1)); mean(x)=0.58
and var(x)=.0792. The true values are

R 1
0
x ex

e−1dx = 0.58198 and the variance
is
R 1
0
x2 ex

e−1dx− (0.58198)
2 := 0.07932 3.
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38. 5.2 Give a method for generating a random variable having density function

f(x) =

½
x−2
2 if 2· x · 3
1− x

6 if 3· x · 6

Using 10000 simulated values from this distribution, estimate its mean and vari-
ance. Apply the inverse transform method. In this case

F (x) =

½ (x−2)2
4 if 2 · x · 3

1
4 + (x− 3)(

3
4 −

x
12) if 3 < x < 6

Inverting this c.d.f. gives

F−1(U) =
½
2 + 2

√
U if 0 · U · 1/4

6− 2
√
3− 3U if U > 1/4

39. 5.4 Give a method for generating a Weibull random variable having cumulative
distribution function

F (x) = 1− exp(−αxβ), 0 < x <∞

Using 10000 simulated values from this distribution, estimate its mean and vari-
ance when α = 1,β = 2. Again inverse transform. X = (− ln(1 −
U)/α)1/β . The probability density function is

f(x) = F 0(x) = αxβ−1βe−αx
β

, 0 < x <∞

and so the true mean value in the case α = 1,β = 2

2

Z ∞
0

x2e−x
2

dx =
1

2

√
π

Similarly

E(X2) = 2

Z ∞
0

x3e−x
2

dx = 1

and the variance is 1− π
4 .

40. 5.5 Give a method for generating a random variable having density function

f(x) =

½
e2x if −∞ · x < 0
e−2x if 0· x ·∞

Using 10000 simulated values from this distribution, estimate its mean and vari-
ance. As in Ross, page 63-66 we obtain the cumulative
distribution function

F (x) =

½ e2x

2 if x < 0
2−e−2x

2 if x > 0

17



The inverse c.d.f gives the generator

X = F−1(U) =
½ ln(2U)

2 if U < 1/2
− ln(2−2U)

2 if U > 1/2

In Matlab: U=rand(1,10000); x=-.5*log(2-2*U); v=(U<.5);
x(v)=.5*log(2*U(v)); giving mean(x) approximately 0 and var(x) ap-
proximately 0.5 (their true values).

41. 5.6 LetX be an exponential(1) random variable. Give an efficient algorithm for
simulating a random variable whose distribution is the distribution of X given
that X < 0.05. Using 10000 simulated values from this distribution, estimate
the mean and variance of this new distribution. A very inefficient algorithm
is to generate random variable from the Exp(1) distribution and then reject all
those for whichX > 0.05. Much more efficient is the inverse transform method,
F (x) = K(1− e−x), 0 < x < 0.05 withK = 1/(1− e−0.05). Then the inverse
transform provides F−1(U) = − ln(1− U

K ) = − ln(1− (1− e
−.05)U) .

42. 5.7 (The composition method) Suppose it is easy to generate a random variable
Xi having a given c.d.f. Fi(x). How could we generate a random variable with
c.d.f.

F (x) =
nX
i=1

piFi(x)

where the values pi are nonnegative and sum to one? Give an algorithm to
generate a random variableX with c.d.f.

F (x) =
x+ x3 + x5

3
, 0 < x < 1

and by simulating 10000 values of this random variable estimate its mean and
variance. This is a mixture and we use the composition method.
First generate a random variable I with probability function

P (I = i) = pi

Then output the value X = F−1I (U). For this example the integer I is gener-
ated uniformly on the set {1, 2, 3} and so, for example I=3*ceil(rand(1,10000));
X=(rand(1,10000)).^(1./I); mean(X)=0.75 var(X)=.0373

43. 5.9 Give a method to generate a random variable with cumulative distribution
function

F (x) =

Z ∞
0

xye−ydy

by using composition. Note that if X has conditional c.d.f. given Y P [X ·
x|Y = y] = xy and Y has a certain distribution, then F (x) is the uncondi-
tional c.d.f. of X. Generate Y = − ln(U1) andX = U

1/Y
2 with U1, U2

independent U [0, 1].
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44. 5.11 Suppose it is easy to generate random variablesXi from each of the c.d.f.s
Fi(x). Indicate how to generate a random variableX having as c.d.f.

(a)
Qn
i=1 Fi(x )

(b) 1-
Qn
i=1(1− Fi(x)).

(Hint: consider the distribution of max{Xi; i = 1, 2, ...n} andmin{Xi; i =
1, ..., n} where theXi are independent with c.d.f. Fi(x). Suppose
we generate independent random variables Xiwith c.d.f. Fi(x) for each
i = 1, 2, ..., n. Then check that the random variable max(X1, ..., Xn) has
c.d.f. F1(x)F2(x)...Fn(x). Therefore we generateX as

X = max(F−11 (U1), ..., F
−1
n (Un))

It is also easy to show that the minimum

X = min(F−11 (U1), ..., F
−1
n (Un))

has the c.d.f. in part (b).

45. 5.15 Give an algorithm for generating a random variable from the probability
density function

f(x) = 30(x2 − 2x3 + x4), 0 · x · 1

and discuss the efficiency of your algorithm. Use acceptance rejection.
Note that 30x2(1 − x)2 · 30

16 for all 0 < x < 1 and so we may use c times a
U[0,1] probability density function to dominate f(x). We expect to generate on
average 30

16 or nearly two points (i.e. 4 uniform) in order to produce one random
variable with this probability density function.

46. Write a Matlab function which uses the Box-Muller algorithm to generate n
pairs (X1, X2) of independent normal(0,1) random variables. By simulating
10000 random variables from this algorithm, estimate the value of E[(X1 −
X2)

4].
The statement

u=rand(10000,2); r=sqrt(-2*log(u(:,1))); theta=2*pi*u(:,2);
x=r*[cos(theta) sin(theta)];
produces a 10000 by 2 matrix of independent N(0, 1) and to estimate the
expectationE[(X1−X2)4]we may use mean((x(:,1)-x(:,2)).^4).
The true value is 12 so this should give a value near 12.

47. Suppose two stocks are presently both worth exactly $10 and in one month stock
1 will be worth 10 exp(X1) and stock 2 will be worth 10 exp(X2) where
(X1, X2) are both normal random variables with mean 0, variance σ2 = 0.05
and the correlation coefficient is ρ = −0.2. You have exactly $10 to spend but
we are able to borrow one stock in order to invest in the other. In other words
we have the ability to own y+1 shares of stock 1 and −y shares of stock 2 for
any value of y (positive or negative).
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Figure 1:

(a) Determine whether the expected value of the value of your portfolio 10[(y+
1) exp(X1)− y exp(X2)] depends on the value you chose for y.

(b) For various values of y in the interval [−1, 1] determine the variance of
your portfolio 10[(y + 1) exp(X1)− y exp(X2)] by simulation.

(c) What value of y do you recommend if your objective is to achieve the same
mean but with the smallest possible variance?
Notice that the expected value of the portfolio after one month is

10E[(y + 1) exp(X1)− y exp(X2)] = 10EeX1 + y(E[exp(X1)]− E[exp(X2)]

= 10E exp(X1)

since exp(X1) and exp(X2) have the same distribution. Therefore the
mean does not depend on the value we choose for y. We may generate
correlated random variables X1, X2 as follows: first generate correlated
normal(0,1) random variables and modify to have the correct mean and
standard deviation:
x=randn(10000,2); rho=-0.2; x(:,2)=rho*x(:,1)+sqrt(1-

rho^2)+x(:,2); x=sqrt(0.5)*x;
Now consider the variance of the value of possible portfolios for a given

values of y,ranging from −5 to 5.
va=[]; for y=-1:.01:1; v=10*((y+1)*exp(x(:,1))-y*exp(x(:,2)));

va=[va var(v)]; end
we can plot this using

plot((-1:.01:1),va); xlabel(’y’); ylabel(’Variance
of portfolio’)
and this gives a figure like the following: which would appear to in-
dicate that the optimal value of y is around y = −.2. Therefore we
should buy 0.8 shares of stock 1 and 0.2 shares of stock 2.
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48. 4.10 The negative binomial probability mass function with parameters (r, p)
where r is a positive integer and 0 < p < 1 is given by

P [X = j] =

µ
j − 1

r − 1

¶
pr(1− p)j−r, j = r, r + 1, .....

(a) Use the relationship between the negative Binomial and the geometric dis-
tribution to simulate from this distribution

(b) Verify the relationship

P [X = j + 1] =
j(1− p)

j + 1− r
P [X = j]

(c) Use the relationship in (b) to give a second algorithm for generating from
the negative binomial distribution

(d) A Negative binomial random variable is generated as the number of trials
it takes to generate a total of r successes where trials are independent
and the probability of success on each trial is p. Use this fact to generate a
negative binomial random variable.
(a) The sum of r independent geometric random variables has a Nega-
tive binomial distribution. Therefore since we can generate a Geometric
random variable using

1 +

�
ln(Ui)

ln(1− p)

¸
the generator takes the form

X = r +
rX
i=1

�
ln(Ui)

ln(1− p)

¸
.

(b) this should be a routine calculation

P [X = j + 1]

P [X = j]
=

¡
j
r−1
¢
pr(1− p)j+1−r¡

j−1
r−1
¢
pr(1− p)j−r

=
j(1− p)

j + 1− r

(c) Use inverse transform beginning with F (r) = P [X = r] = pr and then
recursively updating the value ofF usingF (j+1) = F (j)+ j(1−p)

j+1−rP [X =

j]. (d) Repeatedly generate trials until exactly r successes have been
observed. Then count the number of trials required.

49. 4.12 Give two methods for generating a random variableX with

P [X = i] =
e−λλi/i!Pk
j=1 e

−λλj/j!
, i = 0, 1, ..., k

one which uses the inverse transform method and the other based on the fact
that this distribution is of the form P [Y = i|Y ∈ A] for some random variable
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Y and some set A. Discuss which method you expect to be more efficient for
large/small values of k.
The crude method is to repeatedly generate Poisson randnom variables until we
observe a value such that X · k and then accept this value. Alternatively we
can use inverse tranform since if the Poisson cumulative distribution function is
F (x) then the cumulative distribution function in this problem takes the form

F (x)

F (k)
, x = 0, 1, ..., k.

We simply generate a uniform[0,1] random variable U and then search for an
integerX which satisfies the inequality

F (X − 1)

F (k)
< U ·

F (X)

F (k)
.

50. 4.13 Let X be a Bin(n, p) random variable. Suppose we want to generate a
random variable Y whose probability distribution is the same as that of X given
that X ≥ k for some k · n. Suppose α = P [X ≥ k] has been computed.

(a) Give the inverse transform method for generating Y
(b) Give a second method for generating Y
(c) For what values of α, large or small would the second method be ineffi-

cient?
Let X be a binomial random variable with parameters n and p. Suppose
that we want to generate a random variable Y whose probability mass func-
tion is the same as the conditional mass function of X given that X ≥ k,
for some k · n. Let α = P [X ≥ k] and suppose that the value of α has
been computed. (a) Give the inverse transform method for generating Y .

P [Y = i] = P [X = i|x ≥ k] =
P [X = i,X ≥ k]

P [X ≥ k]
=

(
P [X=i]

α if n ≥ i ≥ k
0 otherwise.

And this is:

P [Y = i] =

(
n!

αi!(n−i)!p
i(1− p)n−1 if n ≥ i ≥ k

0 otherwise.

We can also use the recursive identity as on page.52 (second edition)

P [Y = i = 1] =
n− i

i+ 1

p

1− p
P [Y = i]

With i denoting the value currently under consideration, pr = P [Y = i]
the probability that Y is equal to i, and F = F (i) the probability that Y is
less than or equal to i, the algorithm can be expressed as:
Algorithm
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Step 1: Generate a random number U.
Step 2: c = p/(1− p), i = k, pr = n!

αk!(n−k)!p
k(1− p)n−k, F = pr

Step 3: If (U < F ), set Y = i and stop.
Step 4: pr = c(n− i)pr/(i+ 1), F = F + pr, i = i+ 1
Step 5: Go to step 3.

(b) Give a second method for generating Y we may use Acceptance-Rejection,
dominating these probabilities using a binomial distribution. Let Z be a
r.v. having a Binomial(n,p) distribution, with probability mass qj , then let
c be a constant such that:

pj
qj
· c for all j such that pj > 0

Let c = 1/α.
Algorithm

Step 1: Simulate the value of Z.
Step 2: Generate a random number U
Step 3: If (U < αpZ/qZ), set Y = Z and stop. Otherwise return to Step 1.

(c) For small values of α the rejection method in (b) will be inefficient.

51. 4.14 Give a method for generatingX from the probability distribution

P [X = j] =

⎧⎨⎩ 0.11 j odd and 5 · j · 13
0.09 j even and 6 · j · 14
0 otherwise.

Using the composition approach:

pj = .55p
1
j + .45p

2
j

where,

p1j = .2, j = {5, 7, 9, 11, 13} and p2j = .2, j = {6, 8, 10, 12, 14}

The probability function is a mixture, f1(x) is the uniform distribution on the set
{5, 7, 9, 11, 13} and f2(x) is the uniform distribution on the set {6, 8, 10, 12, 14}.

52. 4.15 Suppose that a random variable takes on values

i 1 2 3 4 5 6 7 8 9 10
P [X = i] .06 .06 .06 .06 .06 .15 .13 .14 .15 .13

Use the composition method to provide an algorithm for generating the random
variable X.
The probability function is a mixture

f(x) = .3f1(x) + 0.3f2(x) + 0.26f3(x) + .14f4(x)

where f1(x)is the uniform distribution on the set {1, 2, 3, 4, 5},f2(x) uniform on
the two points {6,9}, f3(x) uniform on the points {7,10} and f4(x) = 1 for
x = 8 (all of the mass is at this one point).

23



53. 4.16 Give a method for generating values of the random variableX where

P [X = i] = (
1

2
)i+1 +

2i−2

3i
, i = 1, 2, ...

This is the mixture of two geometric distributions. With probability 1/2 generate
from Geom(1/2) and otherwise from Geom(1/3). If U1 < 1/2 output X =

1 + [ ln(U2)1/2 ] and otherwise if U1 > 1/2 outputX = 1 + [ ln(U2)2/3 ].

54. 4.17 Let X be a random variable taking values on the set {1, 2, 3, ...} such that
for certain values λ1,λ2, ...

P [X = n|X > n− 1] = λn, n = 1, 2, ...

Show that

P [X = n] = λn(1− λn−1)...(1− λ1) for n ≥ 2
P [X = 1] = λ1

and that
λn =

pn

1−
Pn−1
i=1 pi

, n = 2, 3, ...

Show that p1 = λ1 and pn = (1− λ1)(1− λ2) . . . (1− λn−1)λn.

We can verify the formula by induction.
I) We verify for n = 1

λ1 =
p1
1− 0

= p1

II) We assume for n:

pn = (1− λ1)(1− λ2) . . . (1− λn−1)λn

III) We prove for n = n+ 1

λn+1 =
pn+1

1−
Pn
j=1 pj

=
pn+1

1−
Pn−1
j=1 pj − pn

=
pn+1

(1− λ1)(1− λ2) . . . (1− λn−1)− pn

=
pn+1

(1− λ1)(1− λ2) . . . (1− λn−1)− (1− λ1)(1− λ2) . . . (1− λn−1)λn

=
pn+1

(1− λ1)(1− λ2) . . . (1− λn−1)(1− λn)

So,
pn+1 = (1− λ1)(1− λ2) . . . (1− λn)λn+1
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Show that the value ofX when the above stops has the desired mass function.
Suppose that the algorithm stops at X = m then, Um < λm and Um−1 ≥

λm−1, i.e. Um−1 < 1− λm−1 , Um−2 < 1− λm−2 . So we have:

P (X = m) = P (Um < λm)P (Um−1 ≥ λm− 1) . . . P (U1 ≥ λ1) = pm

Suppose that X is a geometric random variable with parameters p. Determine
the values λn, n ≥ 1. Explain what the above algorithm is doing in this
case and why its validity is clear.

IfX is a geometric r.v. then

pn = p(1− p)
n−1 n ≥ 1

Then we have:

λn =
pn

1−
Pn−1
j=1 pj

=
p(1− p)n−1

1−
Pn−1
j=1 pj

=
p(1− p)n−1

1− p[1 + (1− p) + (1− p)2 + . . .+ (1− p)n−2]

=
p(1− p)n−1

1− p1−(1−p)
n−1

1−(1−p)
= p

55. 5.16 Consider generating a N(0, 1) random variable Z by first generating the
absolute value |Z|, having probability density function

f(x) =

r
2

π
exp(−x2/2), x > 0

and then assigning it a random sign. In order to generate a random variable
from the probability density function f, we use acceptance rejection, dominating
f using an exponential density g(x) = λe−λx, x > 0. Show that the choice of
λ which provides the most efficient acceptance-rejection method corresponds to
λ = 1. Determine how many iterations are required on average to generate a
single value of |Z|. Let

c = c(λ) = max
x

f(x)

gλ(x)

where

f(x) =

r
2

π
e−x

2/2 and gλ(x) = λe−λx, for x > 0
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Then it is easy to show by calculus that

c(λ) =
1

λ

r
2

π
eλ

2/2

The best choice of λ is the choice which minimizes the value of c(λ). Again
using calculus we can show that this corresponds to λ = 1.

56. 5.21 Consider a job that consists of a number of a total of k stages that must
be done in sequence. The time required to complete stage i is an exponen-
tial random variable with parameter λi and then after completing stage i, the
worker goes on to stage i + 1 with probability αi, otherwise the worker stops
working with probability (1 − αi). Let X be the total amount of time the
worker spends on the job. Write an algorithm for generating the value of X.
Note that if P [Y = j] = α1α2...αj−1(1 − αj) then P [Y > j] = α1α2...αj .
For independent U[0,1] random variables Ui, define a random variable Y = j
if and only if Ui < αi for all i < j and Uj ≥ αj. Thus Y is the smallest index
such that UY ≥ αY . Alternatively we can use inverse transform to generate
Y with F (y) = 1 −

Qy
i=1 αi(this is in fact the same method). Then Y is

the number of stages required. The amount of time required is the sum of Y
exponentially distributed random variables

X = −
YX
i=1

ln(Vi)

λi
. where Vi are independent U [0, 1].

57. 5.23 Buses arrive at a sporting event according to a Poisson process with rate
5 per hour. Each bus is equally likely to carry 20,21,...,40 fans with the numbers
in different buses being independent. Write an algorithm to simulate the arrival
of fans in the time interval 0 < t < 1. Notice that

λ(t) · 7 for all t > 0.

Ggenerating a sequence of independent bus arrival times Ti independent expo-
nential(5) and then at each generate the number of passengers. Record at event
times in the vector ET the total number of passengers NA that have arrived.

(a) t = 0;NA = [];ET = [];
(b) while (t < 1)

(c) t = t− ln(rand)
5 ;

(d) ET=[ET t]; NA=[NA 19+ceil(21*rand)];
(e) end

58. 5.24 Give an efficient algorithm for generating points on the interval 0 < t < 10
of a Poisson process which has intensity function

λ(t) =

½
t
5 for 0 < t < 5
1 + 5(t− 5) for 5 < t < 10
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See Ross pages 78-79 for a method to generate the Poisson process. Generate
a Poisson process on the interval 0 < t < 5 with intensity 1. Thin using the
above thinning method to obtain the process on 0 < t < 5 which has intensity
function λ(t) = t

5 . For 5 < t · 6, again generate the Poisson process with
intensity λ(t) = 1 + 5(t − 5) by thinning a process with constant intensity 6.
Similarly for 6 < t · 7, thin a process with constant intensity 11, etc. This
is more efficient than using a constant intensity of 26 and thinning to obtain the
process over the whole interval 5 < t < 10.

59. Give two algorithms for generating observations from a distribution with proba-
bility density function

f(x) =
(x− 1)3

20
, for 2 · x · 4.

Record the time necessary to generate the sample mean of 100,000 random vari-
ables with this distribution. Which algorithm is faster?
The simplest method is to use inverse transform, since in this case the cumulative
distribution function

F (x) =
(x− 1)4

80
, for 2 · x · 4

is easily inverted. An alternative might be to use acceptance-rejection dominat-
ing the density with a function like c(x − 1) for 2 · x · 4 but acceptance-
rejection is bound to be slower.

60. Give two different algorithms for generating observations from a distribution
with a density function of the form f(x) = cx3e−x/2 for x > 0 and ap-
propriate constant c. Record the time necessary to generate the sample mean
of 100,000 random variables with this distribution. Which algorithm is faster?
This is a gamma(4,2) distribution and the constant is

c =
1

Γ(4)24
=
1

96

so we can either use the sum of four independent exponential random variables
(each Gamma(1,2))

X = −2
4X
i=1

ln(Ui)

or we can use acceptance-rejection. Try dominating this probability density
function using an exponential random variable with the same mean, so g(x) =
1
8 exp(−x/8), x > 0. Note that

f(x)

g(x)
=

8x3e−x/2

96 exp(−x/8)
=
1

12
x3e−

3
8x

whose maximum value 128
3 e
−3 = 2.124 2 occurs for x = 8 Therefore the value

of c is 2.1242. The algorithm is
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Step 1. GenerateX = −8 ln(U1).

AcceptX if 1
12X

3e−
3
8X · cU2, and otherwise return to step 1.

There are other functions one can use to dominate more closely the gamma
density function (see the notes for example) We might use a function of
the form

g(x) =
pkxp−1

(k + xp)2

and try and find a suitable value for p, k. One suggestion .is to choose these
values so that the mode of the functions f and g match, giving k = αp and
p =

√
2α− 1. In this case

f(x) · cg(x)

with c = 2αα

pΓ(α)eα . This is close to one for α = 4 and this method is very
efficient.

61. Give a precise algorithm for generating observations from a discrete distribu-
tion with P [X = j] = (2/3)(1/3)j ; j = 0, 1, ....Record the time necessary to
generate the sample mean of 100,000 random variables with this distribution.
Compute as well the sample variance. How large would the simulation need to
be if we wanted to estimate the mean within 0.01 with a 95% confidence inter-
val?
This is a variation of the geometric distribution. In this case,X counts the num-
ber of failures we generated before obtaining a single success if the probaiblity
of a success on each trial is 2/3. In other words, X = Y − 1 where Y has
a geometric distribution with p = 2/3. Therefore we can generate, by inverse
transform,

X = [
ln(1− U)

ln(1− p)
]

where [] represents the integer part.

62. Give a precise algorithm for generating observations from a distribution which
has probability density function f(x) = x3, 0 < x <

√
2 . Record the time

necessary to generate the sample mean of 100,000 random variables with this
distribution. Determine the standard error of the sample mean. How large would
the simulation need to be if we wanted to estimate the mean within 0.01 with a
95% confidence interval? This is a simple inverse transform problem. Note
that

F (x) =
x4

4
, 0 < x <

√
2

and so the inverse transform is

X = (4U)1/4.

The mean is E(X) =
R√2
0
xf(x)dx =

R√2
0
x4dx = 4

5

√
2 = 1.131 4. and the

standard deviation of X is around 0.23. In order to estimate the mean within
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0.01 with a 95% confindence interval we need to do n simulations where n
satisfies

2 ×
0.23
√
n

· 0.01

n ≥ 462 = 2116
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63. Consider independent random variablesXi with c.d.f.

Fi(x) = x2, i = 1

=
ex − 1

e− 1
, i = 2

= xex−1, i = 3

for 0 < x < 1. Explain how to obtain random variables with cumulative
distribution functions

G(x) = Π3i=1Fi(x) and G(x) = 1− Π3i=1(1− Fi(x)).

We need to generate three random variables Xi having c.d.f. Fi(x) for i =
1, 2, 3 and then usemax(X1,X2,X3) as a random variable having c.d.f. Π3i=1Fi(x)
andmin(X1, X2, X3) having c.d.f. 1−Π3i=1(1−Fi(x)). The random variables
X1,X2 can be generated by inverse transform. The random variable X3 can
be generated using acceptance-rejection We can use the the density function
g(x) = 2

3(x+ 1) to dominate x since the corresponding density satisfies

f3(x) = (x+ 1)e
x−1 · (x+ 1) on 0 < x < 1

Since in this case c = 3/2 we can expect reasonable efficiency (only an averge
of 1 point in 3 is rejected).

64. Evaluate the following integral by simulation. Give two different methodsZ 1

0

(1− x2)3/4dx.

The true value is 1
2 Beta

¡
1
2 ,

7
4

¢
= 0.718 88. We may either use crude Monte

Carlo, i.e. evaluate
1

n

nX
i=1

(1− U2i )
3/4

or use antithetic random numbers

1

2n

nX
i=1

[(1− U2i )
3/4 + (1− (1− Ui)

2)3/4].

The graph of the function f(x) = 1 − (1 − x2)3/4 shows that the function is
monotone on the interval [0,1] and so the method of antithetic random numbers
should provide some variance reduction.
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65. Evaluate the following integral by simulation:Z 2

0

x3/2(4− x)1/2dx.

This equals
E(2X3/2(4−X)1/2)

where X = 2U has the uniform[0,2] distribution. Therefore the simulated
value is

2

n

nX
i=1

(2U
3/2
i )(4− 2Ui)

1/2

The true value is − 8
3 + 2π = 3.6165

66. Find by simulation the area of the region {(x, y);−1 < x < 1, y > 0,√
1− 2x2 < y <

√
1− 2x4}. The boundaries of the region are graphed in

Figure 1. Which method do you expect to be more efficient, generating random
points in the rectangle (−1 < x < 1, 0 < y < 1) and counting the propor-
tion that lie in the region between these curves or generating a random value
of x in the interval −1 < x < 1 and using a multiple of the average of the
values of

√
1− 2x4 −

√
1− 2x2? We begin by generating values in the rectan-

gle and counting what proportion of these points fall in the region between the
two graphs. Define (Xi, Yi) = (2Ui − 1, Vi) where both Ui, Viare independent
U [0, 1]. Then the crude Monte Carlo estimator is the average of the indicator
random variables

bθcrude = 1

n

nX
i=1

I(
q
1− 2X2

i < Yi <
q
1− 2X4

i ) =
1

n

nX
i=1

Ii

Notice however that if you were told the value ofXi, then the conditional expec-
tation

E[Ii|Xi] =
q
1− 2X4

i −
q
1− 2X2

i

and since the conditional expectation E(Ii|Xi) has the same mean as does Iibut
smaller variance, a second estimator with the same expected value as bθcrude but
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Figure 2:

with smaller variance is

1

n

nX
i=1

(
q
1− 2X4

i −
q
1− 2X2

i ).

67. Briefly indicate an efficient algorithm for generating one random variable from
each of the following distributions and generate such a random variable using
one or more of the uniform[0,1] random numbers.
Ui: 0.794 0.603 0.412 0.874 0.268 0.990 0.059 0.112 0.395

(a) X ∼ U [−1, 2]. 3U − 1

(b) a random variable X with probability density function f(x) = 3
16x

1/2, 0 <

x < 4 X = 4U2/3

(c) A discrete random number X having probability function P [X = x] =

(1− p)xp, x = 0, 1, 2, ..., p = 0.3. Inverse transformX =
h
ln(U)
ln(1−p)

i
68. Briefly indicate an efficient algorithm for generating one random variable from

each of the following distributions and generate such a random variable using
one or more of the uniform[0,1] random numbers.
Ui: 0.794 0.603 0.412 0.874 0.268 0.990 0.059 0.112 0.395

(a) A random variable X with the normal distribution, mean 1 and variance
4. Generate (Z1, Z2) using Box Muller and use (X,Y ) = 1 + 2(Z1, Z2)
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(b) A random variable X with probability density function

f(x) = cx2e−x, 0 · x < 1

for constant c = 1/(2−5e−1). You may either use acceptance rejection,
generating from density such that g(x) = 3x2, 0 < x < 1 or generate
gamma(3,1) variates repeatedly (see the gamma distribution generators)
until one is less than 1.

(c) A random variable X with the following probability function:
x 0 1 2 3

P [X = x] 0.1 0.2 0.3 0.4 If U < .1, put X = 0, if .1 <

u < .3, put X = 1, etc. (Inverse transform).

69. Write two algorithms for generating Gamma(20,1) random variables. One should
use the sum of 20 independent exponential random variables and the other uses
acceptance rejection with a dominating function of the form

constant ×
xp−1

(c+ xp)2

for sensible values of c and p. Compare the speed of the two algorithms.
We wish to generate from a Gamma distribution having mean 20 and variance
20. If I let

g(x) = constant ×
xp−1

(c+ xp)2

can we find parameters p and c so that we have approximately the same location
and shape of distribution? Note thatZ z

0

xp−1

(c+ xp)2
dx = −

1

p (c+ zp)
+
1

pc

and so
g(x) = g(x) = cp

xp−1

(c+ xp)2

and the cumulative distribution function is

G(z) = 1−
c

(c+ zp)
.

This is easy to invert. We find appropriate values of the parameters c, p, for
example, by setting the mode of the distribution (the value of x where the density
reaches its maximum) equal to the mode of the Gamma (=19 in this case). To
this end we must solve

1

2
−
1

p
=

19p

c+ 19p

and this can be used to determine c as a function of p.

c = 19p
p+ 1

p− 1
p = 10
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We now try several values of p to see if we get approximately the right shape of
the distribution. For example in the case p = 10 we obtain a probability density
function that resembles the Gamma

:
0
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0.08

0.1

0.12

10 20 30 40x

70. Haggis Elevators has a total of four elevators installed in MC. A typical elevator
breaks down once every 10 days. One repairman can repair an elevator in an
average of 4 days (from the time that the repair is ordered). Currently there
is one repairmen on call. Service times and the time between breakdowns are
exponentially distributed.

(a) Draw a state diagram including transition rates for the Markov Chain. The
state is the number of elevators operating. Breakdown rate=1/10 per oper-
ating elevator. Service rate=1/4.

Figure 3:
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(b) Assuming that the system begins with all four elevators operating, use the
uniform numbers and their negative logarithms listed below to simulate the
operation of the system for the first 4 events.
Ui : 0.019 0.821 0.445 0.180 0.792 0.922 0.738 0.240
− ln(Ui) : 3.99 0.20 0.81 1.71 0.23 0.08 0.30 1.43
Define the variables below and fill in the following table:
System state=Number of elevators operating {0,1,2,3,4}
Event List=(tB, tS) =(time of next breakdown, time of next service com-
pletion).

Clock Time System State Event List
0 4 (9.975,∞)

9.975 3 (12.675,10.775)
10.775 4 (15.05,∞)
15.05 3 (15.32,15.97)
15.32 2 (16.82,15.97)

(c) Run a simulation and compare the observed proportion of time each of the
5 states are occupied with the expected time when the system is operating
at steady state. (you need to solve for the equilibrium distribution)

71. A communications network transmits binary digits, 0 or 1. There is probability
q that a digit transmitted will be incorrectly received at the next stage. If X0 de-
notes the binary digit originally transmitted,Xn the digit after it has been retrans-
mitted n times, simulate the process for n = 1, 2, .....10000 beginning both
with X0 = 1 and X0 = 0 and for various values of q(e.g. .q = 0.1, 0.2, ...0.5).
Record the proportion of time that the process spends in each of its two states
0 and 1. The proportion of time that the chain is in state 0 should be
close to the equilibrium probability of state 0. This is obtained by solving the
equations π0P = π0 giving solution (1/2,1/2) no matter what the value of q (if
0 < q < 1).

(b) Given that 0 is originally transmitted (X0 = 0 ), what is the probability that
the first error in retransmission (i.e. Xn = 1 for the first time) occurs on the
n0th retransmission. What is the expected time before the chain returns to its
original state. The probability of the first error occurring after n transmissions
is given by the geometric distribution (1− q)n−1q. Expected time to first change
of state = 1/q. Expected time till second change of state and it returns to the
original one = 2/q.

72. Two mechanics are employed to service 3 aircraft. All aircraft not undergoing
repair are in use and the time until breakdown of any one aircraft while in use has
an exponential distribution with expected value 1/λ. One mechanic is assigned
to each aircraft requiring repair, and the time until this repair is completed is
exponential with expectation 1/µ. Let Xt be the number of aircraft requiring
repair at time t (Note that whenXt = 3, only two aircraft are being repaired and
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Figure 4:

one is waiting to begin repair). Draw a state diagram including transition rates
for the Markov Chain. Determine by simulation the answers to the following
questions. Try and indicate some measure of the precision of your estimate and
compare where possible with the theoretical equilibrium values.

(a) Suppose µ = λ = 1. If the company loses $1,000 per unit time that only
one aircraft is operating and $5,000 for each unit of time when no aircraft
are operating, what is the long run average cost to the company per unit
time?

(b) Suppose µ = λ = 1. What is the average length of time that an aircraft
spends waiting before beginning repair?
The state transition diagram with rates of transitions are as in the following
diagram:FIX THESOLUTION. Solving for the equilibrium distribution by
equating flow in and flow out for the various states, we obtain the equations

2π0 = π1

3π1 = π0 + 2π2

3π2 = 2π1 + 3π3

and solving these equations we obtain

π = π0(1, 1, 5/2, 7/6)

so solving for π0 gives π0 = π1 = π2 = 3/11 and π3 = 2/11. Since
the proportion of time that there are no aircraft operating is π0 and the
proportion of time there is only one operating π1, the cost per unit time is
$1000π1 + 5, 000π0. The average length of time before an aircraft begins
repair depends on the number of aircraft in the
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Figure 5:

73. Consider the following network of five components ( components are represented
by directed arcs in Figure 3).The network operates as long as there is flow permit-
ted from the input (source) to the output (sink). The arrows indicate the direction
of flow possible. Find by simulation the expected lifetime of this system if the
individual components all have independent lifetimes

(a) that are exponential with mean 1.
(b) that are uniform on the interval [0,2]. Suppose the lifetimes of the compo-

nents are T1, ...T5. Then the lifetime of the system is max(Y1, Y2, Y3, Y4)
where Y1 = min(T1, T2), Y2 = min(T1, T3, T5), Y3 = min(T4, T5), Y4 =
min(T4, T3, T5).

L=[];
for i=1:10000
T=2*rand(1,5); (for part b) or T = − log(rand(1, 5)) (for part (a)
L=[L max([min(T([1 2])) min(T([1 3 5])) min(T([4 5])) min(T([4 3 2]))])];
end
mean(L); sqrt(var(L)/length(L)); hist(L,50)

74. The interarrival times between consecutive buses at a certain bus stop are inde-
pendent Beta(1/2,1/2) random variables with probability density function

f(x) =
1

π
p
x(1− x)

, 0 < x < 1.

starting at clock time t = 0. You arrive at the bus stop at time t = 10. Determine
by simulation the expected time that you will have to wait for the next bus. Is
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it more than 1/2 ? Repeat when the intarrival times have the distribution of Y 2
where Y is an exponential with parameter λ = 10. Explain how this is possible.

F (y) =
R y
0

1

π
√
x(1−x)dx =

2 arcsin(2y−1)+π
2π . Use inverse transform to generate

interarrival times. F−1(U) = 1
2(1 + sinπ(U −

1
2)).

function q74
% simulated arrival at a bus stop-question 74
%X=.5*(1+sin(pi*(rand(1,10000)-.5))); %beta distribution
%X=-.5*log(rand(1,100000)); % exponential distribution
X=(-.1*log(rand(1,100000))).^2; %wweibull distribution
Z=[];
while (sum(X)>10)
Y=cumsum(X);
i=1+sum(Y<10); Z=[Z Y(i)-10];
X=X((i+1):length(X));
end
disp([’your average wait/average time between buses=’ num2str(mean(Z)/mean(X))])

This gives a mean of around .3711. The average wait is less than the average
time between buses. However, if we use a squared exponential variate in place
of X, i.e. X = E2 where E is exponential with mean (1/10), and replace the
generation of X by X=(-.1*log(rand(1,n))).^2; we discover that your average
wait is 3-4 times the average time between buses. When you arrive at a random
time, the longer interarrival times are more likely to be those in which you arrive.
This is called length-biased sampling–longer intervals are more likely selected
than shorter ones.

75. Ross 7.8 If we add random numbers until them sum exceeds 1, then the expected
number added is e. In other words if

N = min(n;
nX
i=1

Ui > 1}

then E(N) = e. Using a simulation estimate the variance of N and determine
the number of observations of N required in order to estimate e accurately to
within 0.001 (the width of a 95% confidence interval is around 0.002). This is
the same simulation conducted earlier using the function
function N=generateN(m)
N=[];
for i=1:m
V=cumsum(rand(1,100));
N=[N 1+sum(V<1)];
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end
Running this function as with N=generateN(1000); mean(N); var(N);
produces an estimator of the mean around 2.71 and the variance around .7627.
Since the 95% confidence interval takes the approximate form

X ± 2S/
√
n

we have
2S/

√
n · .001

or
n ≥ (

2S

.001
)2 =

4 × .7627

(.001)2

or n ≥ 3, 050, 800.

76. Ross 7.9 Consider a sequence of random U [0, 1] numbers and letM be the first
one that is less than its predecessor:

M = min{n;U1 · U2 · ... · Un−1 > Un}

(a) Argue that P [M > n] = 1
n! , n = 0, 1, ....

(b) Use the identity E(M) =
P∞
n=0 P [M > n} to show E(M) = e.

(c) Use 1000 simulation runs and part b to estimate e with a 95% confidence
interval.

77. Ross 7.14 If n = 2 and X1 = 1, X2 = 3 determine what is the bootstrap
estimator of var(S2). The bootstrap estimator is obtained
by taking random samples of size 2 with replacement from the values {1, 3}
repeatedly and computing the value of the sample variance S2. There are only
three possible samples with probabilities as below

Sample Probability S2

{1, 1} 1/4 0
{1, 3} (either order) 1/2 2
{3, 3} 1/4 0

Therefore the bootstrap estimator of the variance of S2 will be the variance of a
random variable which takes the values 0 and 2 each with probability 1/2. This
is therefore 1.

78. Ross 7.15 If n = 15 and we observe the data

5, 4, 9, 6, 21, 17, 11, 20, 7, 10, 21, 15, 13, 16, 8

obtain a bootstrap estimator of var(S2) using 1000 bootstrap samples.
We use the following function

function s=sample(x,n)
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%takes a sample of size n with replacement from the vec-
tor x

s=unidrnd(length(x),1,n); s=x(s);
and then obtain the bootstrap estimator as follows

x=[5,4,9,6,21,17,11,20,7,10,21,15,13,16,8];

S2=[];

for i=1:1000

bootx=sample(x,length(x)); S2=[S2 var(bootx)];

end

disp([’bootstrap estimate of var(S^2) = ’ num2str(var(S2))])

and this gives a value around 64.7

79. Use both crude and antithetic random numbers to integrate the functionZ 1

0

eu − 1

e− 1
du.

What is the efficiency gain attributed to the use of antithetic random numbers?
First for a crude monte-carlo estimator:
t1=cputime U=rand(1,200000); % crude Monte Carlo

F=(exp(U)-1)/(exp(1)-1); % value of 200000 values of the
function

m=mean(F) % average value

S1=var(F)/length(F) % estimated variance of estimator

t1=[t1 cputime];

Now we use 100000 antithetic pairs for the same number of function evalua-
tions. ************************

U=rand(1,100000);
F=.5*(exp(U)-1)/(exp(1)-1)+.5*(exp(1-U)-1)/(exp(1)-1);
mean(F)
S2=var(F)/length(F) ;
t1=[t1 cputime];

display([’times ’ mat2str(diff(t1))]);
display([’efficiency= ’ num2str(S1/S2)])

This gives means around .4180 and variances S1 = 4.1 × 10−7 and S2 =
1.32 × 10−8 for a ratio (the efficiency gain due to antithetic) of around 31.
Moreover the antithetic takes about 30% less time.

80. Under what conditions on f does the use of antithetic random numbers com-
pletely remove the variance of the Monte-Carlo estimator? i.e. When is var(f(U)+
f(1 − U)) = 0? If the variance of a random variable is 0 then the random
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variable must be constant so f(U) + f(1 − U) = c for all 0 < U < 1. This
implies that f( 12 + x) = c − f(

1
2 − x) or that f is an odd function about the

point (1/2,c).

81. Show that if we use antithetic random numbers to generate two normal random
variables X1, X2, having mean µ and variance σ2, this is equivalent to setting
X2 = 2µ −X1. In other words, it is not necessary to use the inverse transform
method to generate normal random variables in order to permit the use of anti-
thetic random numbers. Use antithetic random numbers to estimate the value of a
European call option E[e−rT max(10eX − 10, 0)] for r = .10, T = .5,σ = .3.
You need to show that if F (x) is the normal c.d.f. with mean µ and vari-
ance σ2 and if X1 = F−1(U) then F−1(1 − U) = 2µ − X1. Notice that
if we let Φ be the standard normal c.d.f. then F (x) = Φ(x−µσ ) so that
F (2µ−X1) = Φ(

µ−X1

σ ) = 1− Φ(X1−µ
σ ) = 1− F (X1) = 1− U.

82. Show that it is better to use U2 than U as a control variate when estimating
E(
√
1− U2). The necessary covariance may be estimated by simulation.

We need to compare the variance of (
√
1− U2 − β1U

2) and the variance of
(
√
1− U2 − β2U) where these coefficients are chosen optimally

β1 =
cov(

√
1− U2, U2)

var(U2)
=
−.0656

.0891
= −.736

β2 =
cov(

√
1− U2, U)

var(U)
=
−.0595

.0833
= −.714

Gives var(
√
1− U2−β1U

2) = .0016, var(
√
1− U2−β2U) = .0075 whereas

crude estimator has variance .05. U2 is a better control variate and produces an
efficiency gain of around 31.

83. Use a stratified random sample to integrate the function

Z 1

0

eu − 1

e− 1
du.

What do you recommend for intervals (two or three) and sample sizes? What is
the efficiency gain over crude Monte Carlo?
By experimentation, two intervals such as [0 55],[55 1] results in optimal sam-
ple sizes (for a total sample of 100000) around 47400 and 52600 respectively
and provides an efficiency gain of around 4 over crude monte carlo. Three inter-
vals e.g. [0 .35],[.35 .75], [.75 1] with sample sizes abou 25229,48686,26083
provides an effeicncy gain of around 8 over crude monte carlo.

84. Use a combination of stratified random sampling and an antithetic random num-
ber in the form

1

2
[f(U/2) + f(1− U/2)]
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to integrate the function

f(u) =

Z 1

0

eu − 1

e− 1
du.

What is the efficiency gain?
The true value of the integral is about 0.41802. Using crude, the estimator has
variance about 0.0822/100000 for a crude monte carlo sample of 100000. The
average of 50,000 estimators of the form 1

2 [f(U/2)+f(1−U/2)] has variance
.0013/50000. The efficiency gain is around 32.

85. In the case f(x) = ex−1
e−1 , use g(x) = x as a control variate to integrate over

[0,1]. Show that the variance is reduced by a factor of approximately 60. Is there
much additional improvement if we use a more general quadratic function of x?
The variance of the control variate estimator (simple version) is determined by
var(f(u)− g(u)) where g(u) = u. The efficiency gain is .0822/.0014 or about
58. What if we use a general quadratic function as control variate. We might
crudely choose a quadratic function that takes the same values i.e. 0,.3775, and 1
as f(x) at the points x = 0, 1/2, and 1. g(x) = .51x+.49x2. Then var(f(u)−
g(u)) is approximately .0000317 and the efficiency gain is .0822/.0000317 or
around 2600!

86. In the case f(x) = ex−1
e−1 , consider using g(x) = x as a control vari-

ate to integrate over [0,1]. Note that regression of f(U) on g(U) yields
f(U)−E(f(U)) = β[g(U)−Eg(U)] + ε where the error term ε has mean 0
and is uncorrelated with g(U) and β = cov(f(U), g(U))/var(g(U). There-
fore, taking expectations on both sides and reorganising the terms, E(f(U)) =
f(U)− β[g(U)− E(g(U))]. The Monte-Carlo estimator

1

n

nX
i=1

{f(Ui)− β[g(Ui)− E(g(Ui))]}

is an improved control variate estimator, equivalent to the one discussed above
in the case β = 1. Determine how much better this estimator is than the basic
contol variate case β = 1 by performing simulations. Show that the variance is
reduced by a factor of approximately 60. Is there much additional improvement
if we use a more general quadratic function of x?
In this case the optimal value of β is given by cov(f(U), g(U))/var(g(U)) =
.0822/.0836 = . 983 25 and var(f(U)−.98325U) = .0013 resulting in an effi-
ciency gain of around .0822/.0013=63. If we allow a general quadratic function
the efficiency gain is even greater than the 2600 observed in problem 86.
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87. Ross 6.1&6.2 Can use OneservQ and replace servicet.

88. Ross 6.3

89. Ross 6.5&6.6

90. Ross 6.11

91. Ross 6.14

92. Ross 6.15

93. Jobs arrive at a single server queue according to a nonhomogeneous Poisson
process with rate function initially 4 per hour, increasing steadily until it reaches
19 per hour after 5 hours and then decreases steadily to 4 per hour after an ad-
ditional 5 hours. Suppose that the service times are exponential with a mean
service time of 1/25 hours. Suppose that whenever the server finds the system
empty he goes on a break for 10 minutes (1/6 hours). If, on returning, there
are no jobs waiting, he goes on another break. Use simulation to estimate the
expected amount of time spent on breaks in the course of a 10 hour day. Assume
that the system begins the day empty (so there is an immediate 10 minute break).

94. Show that a single server M/M/1/∞/∞ queue has steady state distribution
for the number in the system which is geometric and find the expected number
in the system. Run a simulation and compare the theoretical distribution with
the observed amounts of time that the various states are occupied for values of
λ
µ = 0.1, 0.5, 0.9.

95. In the case f(x) = ex−1
e−1 , use importance sampling with a probability density

function proportional to g(x) = x to integrate over [0,1]. What is the efficiency
gain over crude Monte Carlo?
A suitable probability density function is g(x) = 2x, 0 < x < 1. Then
E(f(U)) = E[f(X)/g(X)] where X = U1/2 has probability density func-
tion g(x) so the estimator is the average of sample values f(U1/2)/g(U1/2)
and the variance of the importance sampling estimator if we do n simulations is
1
nvar(f(U

1/2)/g(U1/2)) = 1
n× .0028. The efficiency gain is about .0822/.0028

or around 30.

96. Suppose I have three different simulation estimators Y1, Y2, Y3 whose means
depend on two unknown parameters θ1, θ2. In particular, suppose Y1, Y2, Y3,
are unbiased estimators of θ1, θ1 + θ2, θ2 respectively. Let us assume for the
moment that var(Yi) = 1, cov(Yi, Yj) = −1/2. I want to estimate the para-
meter θ1. Should I use only the estimator Y1 which is the unbiased estimator
of θ1, or some linear combination of Y1, Y2, Y3? Compare the number of sim-
ulations necessary for a certain degree of accuracy (say we wish the variance
of the estimator to be less than 1/10000). Simulate 10,000 multivariate normal
random variables (Y1, Y2, Y3) with this covariance matrix and θ1 = 1, θ2 = 2
and compare your suggested estimator with Y1 in this case. (Note: If X is a
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column vector of 3 independent standard normal random variables, µ a column
vector and A a 3× 3 matrix of constants then µ+ AX is multivariate normal
with mean vector µ and covariance matrix AA0).
Suppose the covariance matrix of (Y1, Y2, Y3) is denoted by V, We wish to find
a linear combination

a1Y1 + a2Y2 + a3Y3

such that the expected value is θ1 and the variance is minimized. Since the
expected value is θ1, E(a1Y1+a2Y2+a3Y3) = a1θ1+a2(θ1+θ2)+a3θ2 = θ1
and so a2 = −a3 and a1 + a2 = 1. Therefore the combination takes the form
(1−a)Y1+aY2−aY3. The variance of the estimator isAV A0 whereA = [1−a
a −a]. This gives

(1− a)2 + 2a2 − a(1− a) + a(1− a) + a2 = 1− 2a+ 4a2

this variance is minimum and equals 3/4 when a = 1
4 . The simple estimator Y1

has variance 1. If I want the variance less than 1/10000 I need to solve for n,
3/4
n · 1

10000 giving n ≥ 7500.

97. In the case f(x) = ex−1
e−1 , use g(x) = x as a control variate to integrate

over [0,1]. Find the optimal linear combination using estimators 1
2 [f(U/2) +

f(1 − U/2)] and 1
4 [f(U/2) + f(

1
2 − U/2) + f(

1
2 + U/2) + f(1 − U/2)], an

importance sampling estimator and the control variate estimator above. What
is the efficiency gain over crude Monte-Carlo?
A modification of the matlab function optimal will do. OurX matrix is of the
form X = [Y 10Y 20 Y 30 Y 40] and cov(X) gives the covariance matrix V. Then
with Z = ones(1, 4), V 1 = inv(V ), we find b = V 1∗Z/(Z0 ∗V 1∗Z) = [.366
.622 -.217 .229] and the combination

.366Y1 + .622Y2 − .217Y3 + .229Y4

has efficiency gain in excess of 60,000.

98. For independent uniform random numbers U1, U2,.... define the random variable
N = minimum{n;

Pn
i=1 Ui > 1}.

Estimate E(N) by crude Monte Carlo simulation and using antithetic random
numbers. What is the efficency of the use of antithetic random numbers. Can
you suggest any other variance reduction techniques? What do you think is the
value of E(N)?
Define the functions hn(x) = P [N > n] = P [U1 + ...+Un · x] when x · 1.
Then check that h1(x) = x and

hn(x) =

Z x

0

hn−1(x− u)du

and so hn(1) = 1/n!. Therefore

E(N) =
∞X
n=0

P (N > n) =
∞X
n=0

1

n!
= e
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99. We are interested in the equilibrium number of customers in an M/G/1/∞/∞
system with Poisson(.8) arrivals and service time distribution Gamma(1.1,1).
This distribution has probability density function

f(x) =
1

Γ(1.1)
x1/10e−x, x > 0.

Conduct a crude Monte Carlo simulation designed to determine the probability
of 0,1,2,... customers in the system.
Repeat using a suitable M/M/1/∞/∞ queue as a control variate. What is the
efficiency gain due to using the control variate?

100. Ross 8.1 Suppose we want to estimate the parameter

θ =

Z 1

0

ex
2

dx.

Show that generating a random uniform[0,1] U and then using the estimator

1

2
eU

2

(1 + e1−2U )

is better than generating two independent uniform U1, U2 and using

1

2
(exp(U21 ) + exp(U

2
2 )).

Notice that the antithetic variate estimator is

1

2
(eU

2

+ e(1−U)
2

) =
1

2
eU

2

(1 + e1−2U )

and so this estimator uses antithetic random numbers. Since they are applied to
the function ex which is monotone, it results in a variance reduction. var(exp(u.^2))
gives .2255 and » var(.5*(exp(u.^2)+exp((1-u).^2))) gives .0279 so the effi-
ciency gain is around .2255/.0279 or about 8.

101. Ross 8.2 Explain how to use antithetic random numbers to estimate by simula-
tion the value of the integralZ 1

0

Z 1

0

exp((x+ y)2)dydx

and compare the use of antithetic to crude Monte Carlo.
We wish to use antithetic random numbers to integrate

R 1
0

R 1
0
e(x+y)

2

dydx =
4.8992. If we generate two random variables X and Y both uniform on [0, 1]
we would like a large value of (X + Y )2 to be balanced by a subsequent small
value. A simple use of antithetic random numbers takes the form

1

2
[exp{(U1 + U2)

2}+ exp{(2− U1 − U2)
2}]
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To determine the extent of the variance reduction, this has variance around 11.4
while a crude estimator using only one function evaluation has variance around
36.2. Therefore after adjusting for the number of function evaluations the effi-
ciency gain due to the use of antithetic random numbers is 18.1/11.4 or around
1.6. Very little improvement due to using antithetic random numbers in this
case.

102. Ross 8.3 Let Xi, i = 1, ..., 5 be independent exponential random variables
each with mean 1. Define

θ = P [
5X
i=1

iXi > 21.6].

(a) Explain how to use simulation to estimate θ.
(b) Give an estimator based on antithetic random variates
(c) What is the efficiency of the antithetic method?

Note in this case that the distribution of iXi is Gamma(1, i). The sum
can be generated in MATLAB using sum(-(1:5).*log(rand(1,5))). So the
estimator is I(

P
−i ln(Ui) > 21.6). Be careful when using antithetic

random numbers to average the estimators itself not the random variables
that the estimator uses (in this case the exponential random variables). So
the antithetic estimator is

.5[I(
X

−i ln(Ui) > 21.6) + I(
X

−i ln(1− Ui) > 21.6)]

The following MATLAB code c=[]; a=[];

for i=1:10000
u=rand(1,5); c= [c (sum(-(1:5).*log(u))>21.6)];
a=[a .5*((sum(-(1:5).*log(u))>21.6)+(sum(-(1:5).*log(1-u))>21.6))];

end
[mean(c) mean(a)]
[var(c) var(a)] results in variances 0.1437 for crude and 0.0582 for anti-
thetic which, after adjusting for the number of function evaluations, implies an
efficiency of .1437

2×.0582 : 1.234 5 which again gives very little improvement over
crude Monte Carlo.

103. Ross 8.4 Show that if X,Y have the same distribution then

var(
X + Y

2
) · var(X)

Use this to show that a pair of antithetic random numbers will never have a
larger variance than using a single random number. (However it may be worse
than using two independent random numbers)
Here
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var(
X + Y

2
) =

1

4
(var(X) + var(Y ) + 2cov(X,Y ))

=
1

2
(var(X) + cov(X,Y )) · var(X)

since cov(X,Y ) ·
p
var(X)

p
var(Y ) = var(X). The variance using two

independent random numbers is var(X)/2. Using two antithetic random num-
bers to generateX and Y, cov(X,Y ) · 0 and so

var(
X + Y

2
) =

1

2
(var(X) + cov(X,Y )) · var(X)/2

(better than two independent random numbers).

104. Ross 8.5 If Z is a standard normal random variable, use antithetic random
numbers to estimate

θ = E[Z3eZ ].

Design your simulation above so that a 95 percent confidence interval for the
value of θ has a length no greater than 0.1.
Here are three possible estimators. There are af course many others as well. We
could use antithetic random numbers: (this isthe first estimator bθ1), or a control
variate g(Z) = Z3 since we know that E(Z3) = 0 for bθ2, the second estimator
or finally we could use importance sampling from a normalN(µ, 1) probability
density function for the third estimator where µ is a parameter chosen roughly
to minimize the variance of the estimator. For bθ1, recall that use of antithetic
random numbers to generate a Normal(0,1) variate is equivalant using the pair
Z,−Z. This is because if Φ denotes the standard normal c.d.f. and if Z =
Φ−1(U) for some uniform[0,1] random variable then it is easy to show that
−Z = Φ−1(1− U). The three suggested estimators are therefore

bθ1 =
1

2
(Z3eZ + (−Z)3e−Z) =

1

2
Z3(eZ − e−Z)bθ2 = Z3(eZ − 1)

bθ3 = X3eX
exp(−X2/2)

exp(−(X − µ)2/2)
whereX = µ+ Z

To determine the estimator and its variance in Matlab

z=randn(1,100000); est=.5*(z.^3).*(exp(z)-exp(-z));
mean(est); (ans = 6.7509)
var(est) (ans = 2.2750e+003)

In order that the 95% confidecne interval has length less than or equal to
0.1 we require that

4S/
√
n · 0.1
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where S = 47.69 and this gives n ≥ (40S)2 and this is around 3.64
million. This is the number of antithetic pairs required so the total number
of function evaluations is twice this.

105. Ross 8.10

106. Ross 8.6 & 8.9

(a) Give a pair of exponential random variables with mean 2 which are nega-
tively correlated. Repeat for a pair of exponential random variables with
positive correlation.

(b) Explain why it is unusual to achieve much additional variance reduction
from the use of anithetic variates if we use a control variate and then intro-
duce an antithetic variate.

107. Ross 8.12 Show that the variance of a weighted average

var(αX + (1− α)W )

is minimized over α when

α =
var(W )− cov(X,W )

var(W ) + var(X)− 2cov(X,W )

Determine the resulting minimum variance. What if the random variablesX,W
are independent?
If we regress I on X we obtain

c = −
cov(X, I)

var(X)

If X is U[0,1], thenE(IX) = a, a<1 and cov(I,X) = E(IX)−E(I)E(X) =
a2/2− a/2 = −a(1− a)/2. var(X) = 1/12 so c = (a(1− a)/2)/(1/12) =
6a(1− a). The control variate estimator is

I + 6a(1− a)(X −
1

2
).

How much variance reduction results? For a crude estimator, var(I) = a(1−a).
For the control variate estimator, var(I + 6a(1 − a)(X − 1

2)) = 1 − R2 =
a(1−a)[1−3a(1−a)] whereR2 = (cov(X, I))2/(var(X)var(I)). Therefore
the maximum possible gain in efficiency occurs when a(1−a) is maximized, i.e.
a = 1/2, and in this case the ratio of the two variances is given by [1− 3a(1−
a)]−1 = 4. (b) ifX is exponential, thenE(IX) =

R a
0
xe−xdx = 1−(1+a)e−a

and cov(I,X) = E(IX)−E(I)E(X) = 1−(1+a)e−a−(1−e−a) = −ae−a,
var(X) = 1 so c = ae−a. The control variate estimator is

I + ae−a(X − 1).
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How much variance reduction results? For a crude estimator, var(I) = e−a(1−
e−a). For the control variate estimator, var(I+ae−a(X−1)) = e−a(1−e−a)−
a2e−2a. The ratio of the two variances is given by e−a(1 − e−a)/(e−a(1 −
e−a)− a2e−2a). (c) We know that I and X are negatively correlated because
I is a non-increasing function ofX (it jumps DOWN asX increases past a).

108. Ross 8.17 Suppose we arrange five elements initially in a random order e.g.
(5,3,4,1,2). At each stage one of the elements is randomly selected and put at the
front of the list so that element i is chosen with probability pi where pi = i/15,
for i = 1, 2, 3, 4, 5. For example if the element 2 is chosen and we started with
the configuration above,

109. Ross 8.18

110. Ross 8.19(=8.20 in third edition) The strategy is to generate points (X,Y )
independent in the rectangle with base 1 and height b and then record I = 1 if
Y < g(X) and 0 otherwise. The expected value of I is

θ = E(I) =
area under g

area of rectangle
=

R
g(x)dx

b
.

and var(I) = θ(1− θ) since I is a 0-1 random variable. Note that

var(bI) = E(var(bI |X)) + var(E(bI |X))

≥ var(E(bI |X))

= b2var(g(X)/b)

= var(g(X)), X is U [0, 1]

111. Ross 8.20

112. Ross 8.22 We would generate independent normalX and Y and average the
values of eXY . If we were to use the Box-Muller generator forX = 1+Z1 and
Y = 1 + Z2, then Z1Z2 = (−2 ln(U1)) cos(2πU2) sin(2πU2). One might try
as a control variate g(X,Y ) = eX or alternatively eY . This can be used since
E(eX) = e3/2. Alternatively since ex = 1+x+x2/2+...we might try as control
variate a quadratic function of XY like g(XY ) = β0+ β1(XY ) + β2(XY )

2.
(d) If we wish to balance large values of XY with small ones, then using
antithetic random numbers simultaneously for both X and Y is equivalent to
using the estimator

1

2
(eXY + e(2−X)(2−Y )).

Does this decrease the variance over using pairs of independent observations?
Note that var(eXY ) is REALLY LARGE e.g. 8 × 108 while var(12(e

XY +

e(2−X)(2−Y )) seems a bit smaller indicating a a small improvement due to anti-
thetic random numbers. (e) It is possible to improve on the estimator since the
random variable XY given X = x has a conditional normal distribution with
mean x and variance x2.
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Therefore E(eXY |X) = eX+X
2/2 and this is an unbiased estimator with

smaller variance than eXY. This helps us indentify the true value.Z ∞
−∞

ex+x
2/2 1
√
2π
e−(x−1)

2/2dx =
1
√
2π

Z ∞
−∞

e2x−1/2dx

and since e2x →∞ as x→∞, this is an integral that does not even converge
(i.e. it is infinite). No wonder we were having trouble with variance reduc-
tion. We are chasing infinity. In fact the larger your sample, the larger will the
apparent value of the monte carlo integral be. (g) In general, we might hope
to improve on the estimator eX + X2/2 by using a control variate that is a
quadratic function of X, say β0+β1X+β2X2. This will have known expected
value β0 + β1 +2β2. The coefficients βi may be estimated by a preliminary re-
gression. However, there is no hope if the integral we are trying to approximate
is infinite.

113. Ross 8.26

114. Ross 8.27

115. Ross 8.28

116. Ross 8.32

117. Ross 8.33 A system experiences shocks with a Poisson rate of 1 per hour. The
initial damage associated with each shock is a random variable with probability
density function f(x) = xe−x , x > 0 and after a period of time s following
the shock the residual damage is xe−αs. The system fails when the total damage
at a given time exceeds C. We wish to estimate the probability p that the system
fails by time t. Explain how to use importance sampling to efficiently estimate p
in the case that p is small.

118. Ross 8.35

(a) This result can be shown counting the repetitions of each name.
(b) Use that E{Y|N(x)} = P{Y = 1|N(x)}= 1/N(x).
(c) Use the equalities E{Y} = E{E{Y|N(x)}} and E{1/N(i)} = E{1/N(j)}.
(d) W is a mirror image of Y, so that the argument holds as in (b).
(e) W and Y are negatively correlated which reduces the variance of n(W +

Y)/2.

119. Suggest three different Monte Carlo methods for approximating the integral
E(Z3eZ) where Z is Normal(0, 1). Find the optimal linear combination of
these estimators and determine the efficiency of this optimal linear combination
compared with a crude Monte Carlo estimator. Notice that the function eZ is

50



close to 1 when Z is close to 0 so we might use as a control variate the func-
tion g(Z) = Z3 where E(g(Z) = 0. The control variate estimator is then an
average of values of the form

Z3eZ + cZ3

where c = −cov(Z3, Z3eZ)/var(Z3). Since the function Z3eZ is monotone
we may also use antithetic random numbers and average the values of

1

2
(Z3eZ − Z3e−Z)

Also since it appears that large values of Z are more important than small
ones to the integral one might use importance sampling, generating X from a
N(µ, 1) distribution (call the corresponding density function gµ(x) ) and then
averaging

X3eX
g0(X)

gµ(X)
.

We could then choose µ so that the variance of this estimator is, as nearly as
possible, minimized. Note that

X3eX
g0(X)

gµ(X)
= X3eX(1−µ)e−µ

2/2.

120. Suppose f(X) and g(Y ) are two increasing functions of X and Y respec-
tively, where X and Y are both exponentially distributed random variables
with rate parameters 2 and 3 respectively. How would you (as efficiently as
possible) uses a simulation method to estimate

E[f(X)]− E[g(Y )]

where we assume that you have a U [0, 1] random number generator with output
U1, U2, . . . Taking into account that Xi = −(1/2) ln(Ui) is an exponential
with rate 2 and Yi = −(1/3) ln(Ui) is an exponential with rate 3, we can use
the same random numbers to generate both expectations. This approach will
reduce the variance because

Var{f(X)-g(X)}=Var{f(X)}+Var{g(X)}-2Cov(f(X),g(X))

where the covariance will be positive.

121. Define
f(x) = x10e−x

and suppose we wish to estimate the integral

θ =

Z 1

0

f(x)dx

using Monte Carlo integration. Give three methods of using simulation to deter-
mine θ as efficiently as possible.
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(a) Implement all three of these methods, giving the estimator of θ using at
most 1000 evaluations of the function f(x). Which of your estimators is
closest to the true value 0.036?

(b) Determine the optimal linear combination of these three estimators and its
efficiency compared with a crude Monte Carlo estimator.

122. Shocks to a system arrive at times according to a Poisson process with parameter
1 (per hour) . Whenever there are five or more shocks within one hour the system
fails. Explain how to simulate the probability p that the system fails within 10
hours using

(a) A crude monte Carlo simulation
(b) Importance sampling designed to reduce the variance of the estimator. For

importance sampling we wish more failures for a more efficient estimator
and this can be achieved by increasing the intensity of the Poisson process.
i.e. run the simulation with intensity of shocks λ > 1. Let I be the indi-
cator of the event that the system fails. Then compute the average of the
values

I
f1(N)

fλ(N)

withN = the number of shocks in the interval [0, 10] This is the only thing
that varies when we change the intensity since given the value of N the
shocks themselves are uniformly distributed on the interval [0,10]) and

fλ(x) =
(10λ)xe−10λ

x!
, x = 0, 1, ....

Note that this becomes
I
exp(10(λ− 1))

λN

Alternatively we could multiply by the ratio of the joint probability den-
sity function of N and the N spacings Z1, Z2, ...ZN between the shocks
under the Poisson process with parameter λ. Note that since the Zi are
exponential(λ) random variables, this corresonds to averaging the values

I

QN
i=1 exp(−Zi)QN

i=1{λ exp(−λZi)}
= I{λ−N

NY
i=1

exp((λ− 1)Zi)}

= I{λ−N exp((λ− 1)
NX
i=1

Zi)}

and this is almost the same thing as above.

123. If U1 and U2 are independent uniform [0, 1] variates, compare the the expected
values and variances for the following estimators. Explain.
(a) T1 = 1

2 [e
U1 + eU2 ] This is a crude estimator with sample size 2
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(b) T2 = 1
2 [e

U1 + e1−U1 ] This is an antithetic estimator. Variance better than
crude since ex is monotone so var(T2) < var(T1)
(c) T3 = 1

2(e
U1/2 + e(1+U2)/2) This is a stratified sample with one observation

on [0,.5] and another on [.5, 1]. Because the stratified sample estiamtor has
variance that is smaller than the within strata variances and since the function
is monotone, these are less than the variance over the whole interval, var(T3) <
var(T1).

124. Define
f(x) = x−1/3e−x

and suppose we wish to estimate the integral

θ =

Z 2

0

f(x)dx

using Monte Carlo integration. Give estimators based on (i) a control variate
(ii) a stratified sample (iii) importance sampling to determine θ as efficiently
as possible.

(a) Determine the efficiency of each of these methods compared with crude
Monte Carlo. (i) Notice that the term x−1/3 varies between∞ and 2−1/2
over the range of this integral but the term e−xis relatively more stable.
Therefore we might try as a contral variate the function g(x) = x−1/3

where
R 2
0
x−1/3dx = 3

22
2/3. Now θ = 2E(f(2U)) So average values of

bθCV = 2

n

nX
i=1

(f(2Ui)− g(2Ui)) +
3

2
22/3

with efficiency given by

var(f(2Ui))/var(f(2Ui)− g(2Ui))

(ii) Suppose we stratified the sample with n/2 = m drawn from each of
the intervals [0, 1] and [1, 2] (note that this is not an optimal allocation,
however). Then

bθst = 1

m

mX
i=1

f(Ui) +
1

m

nX
i=m+1

f(1 + Ui)

having efficiency

2var(f(2Ui))

var(f(Ui)) + var(f(1 + Ui))

(iii) Suppose we generate X from probability density function g(x) =
cx−1/3, 0 < x < 2 where c = 21/33−1. X has cumulative distribution
function G(x) = 2−2/3x2/3, 0 < x < 2. Then G−1(U) = 2U3/2 and

c−1E(e−X) = c−1
Z 2

0

e−xg(x)dx =
Z 2

0

e−xx−1/3dx = θ
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so the importance sample estimator is

bθIM =
1

cn

nX
i=1

e−Xi , whereXi = 2U
3/2
i

having efficiency
2c2var(f(2Ui))

var(e−Xi)

(b) Find the optimal linear combination of these three estimators and determine
its efficiency. For the Monte Carlo integration we make the substitution
y = x/2 to obtain function h(y) = 2 (2y)−1/3e−2y which should be inte-
grated over the interval [0, 1] and the usual Monte Carlo approach can be
applied.(i) For the control variate method we can use g(x) = e−x. (ii) It
turns out that the efficient intervals for the stratified sampling are (0, 1.1)
and (1.2, 2). (iii) In the case of importance sampling one can use the prob-
ability density function g(x ) =cx−1/3,where c is approximately .420. (a)
The most efficient method in this case is the control variate approach. (b)
As the last method is less efficient than crude Monte Carlo method, the best
linear combination should be determined using the formula in the notes.

125. Suppose you are given independent U [0, 1] random variables U1, U2, . . .. Give
a formula or algorithm for generating a single random variable X where X
has the

(a) probability density function f(x) = 3x2

2 + x, 0 < x < 1. Use composi-
tion

(b) probability (mass) function f(x) = (1−p)x−1p, x = 1, 2, ...., 0 < p < 1.
This is a geometric distribution-consult notes.

(c) probability density function f(x) = 1.2976
x2+x+3 , 0 < x < ∞, otherwise

f(x) = 0. You may use acceptance rejection. f(x) · 1.2976
(x+1/2)2 = cg(x)

where g(x) = 1
2(x + 1/2)

−2 and c = 2.59. Generate from g(x) using
inverse transform.

(d) probability (mass) function

P [X = i] =

µ
10

i

¶
(1/3)i(2/3)10−i, i = 0, 1, ..., 10

This is a binomial-see notes and text. You may either add 10 Bernoulli
variables e.g.

P10
i=1 I(Ui · 1/3) or one of the other methods.

126. Suppose Ui,i = 1, 2, 3, ...n are independent uniform [0, 1] random variables
variates and f(X) and g(Y ) are two increasing functions of X and Y
respectively, where X and Y are both exponentially distributed random vari-
ables with rate parameters 2 and 3 respectively. How would you (as efficiently
as possible) uses a simulation method to estimate
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Figure 6:

(a) E[f(X)] − E[g(Y )] Use common random numbers to generate X and
Y i.e. X = F−1X (U) and Y = F−1Y (U) or alternatively X = − 1

2 ln(U)
and Y = − 1

3 ln(U).

(b) E[f(X)] Since f is monotone there is a known benefit from use of
anithetic random numbers. e.g. X1 = − 1

2 ln(U) and X2 = − 1
2 ln(1− U)

(c) E[f(X)] + E[g(Y )] May generate X and Y using antithetic random
numbers. e.g. X = − 1

2 ln(U) and Y = − 1
3 ln(1− U).

For each Explain how to measure the efficiency with respect to a crude
Monte Carlo simulation.

127. Consider the following network of four components ( components are repre-
sented by directed arcs).The network operates as long as there is flow permitted
from the input (source) to the output (sink). The arrows indicate the direction
of flow possible. Suppose that the lifetimes of the component i is given by the
random variables Ti, i = 1, 2, ..., 4.

(a) Write an expression involving the random variables Ti, i = 1, 2, ..., 4. for
the lifetime of the system.

(b) Explain how to simulate the expected lifetime of the system if the com-
ponents have independent lifetimes with an exponential distribution with
expected value 2. Provide one such simulation using the uniform random
numbers below

U .92 .51 .24 .43 .35
−ln(U) .08 .67 1.43 .84 1.05

(c) The first 10 simulations were placed in a vector T of length 10. We then
ran the following in MATLAB,
mean(T)
ans = 1.17
var(T)
ans =0.41
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Determine how large a simulation would be required to provide the average
system lifetime within .01 with confidence 95%( i.e. the length of a 95%
confidence interval is 0.02).

128. The following data was obtained on the times of individuals in a queueing system
which has a Poisson arrivals process.
0, 4, 2, 0, 5, 3, 4, 7, 0, 2, 4, 3, 6, 1, 0, 2, 4, 7, 6, 3, 8, 0. We wish to plan a simula-
tion study in order to estimate the average time spent by a customer in the system
when the system is in steady state.

(a) Give an estimator of this average based on this data.
(b) Construct a 95% confidence interval for the average time spent by a cus-

tomer in the system.

129. Ross 9.1

130. Ross 9.2 To determine whether a die was fair 1000 rolls of the die were recorded
with the result that the number of times the die landed i, i=1,...,6 was given by
158, 172, 164, 181, 160, 165 respectively. Using the chi-squared test determine
whether the die was fair and compare the results using (a) the chi-squared distri-
bution approximation and (b) a simulated p− value. (a) For the chi–squared
approximation use the last formula on p. 190 in the text.

T =
kX
i=1

(Ni − npi)2

npi

and the observed value is T = 2.18. Since n = 6, compare with a chisquared
with 5 degrees of freedom. Since

P [χ25 > 2.18] = .8236 > 0.05

there is no evidence to reject the hypothesis that the model fits. This should be
simulated as well. The following code can be used. This gives an approximate
p − value of around 0.82 quite consistent with the chi-squared approximation
and allo leading to accepting the hypothesis that the die is fair.

chs=[];
for i=1:50000; u=rand(1,1000);
N=[sum(U<=1/6) sum((U>1/6)&(U<=2/6)) sum((U>2/6)&(U<=3/6)) sum((U>3/6)&(U<=4/6))

sum((U>4/6)&(U<=5/6)) sum(U>5/6)];
chs=[chs sum((N-1000/6).^2./(1000/6))];
end
p=mean(chs>=2.18);
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131. Ross 9.3 Approximate the p−value for the hypothesis that the following 10 val-
ues are uniform[0,1] random numbers. [.12, .18, .06, .33, .72, .83, .36, .27, .77, .74]
Here using the Kolmogorov Smirnov test

D = max{
j

10
− U(j), U(j) −

j − 1

10
} = 0.24

To obtain the signifance probability determine

P [D > 0.24]

when data is generated from the assumed model.

132. Ross 9.4 Again using the K-S test,

D =
9

67

133. Ross 9.5 Use Kolmogorov-Smirnov test.

D = .392254

134. Ross 9.6. Approximate the p value of the test that the following data come
from a binomial distribution with parameters (8, p) where p is unknown. X =
[6, 7, 3, 4, 7, 2, 6, 3, 7, 8, 2, 1, 3, 5, 8, 7].

(the estimated value for p is .6172 and the corresponding binomial probabilities
for x = 0, 1, 2, ..., 8 are 0.0005 0.0059 0.0336 0.1082 0.2181 0.2813 0.2268
0.1045 0.0211). The expected numbers in the 9 cells are 16 ∗ probabilities
and since the first few of these are very small (i.e. cells corresponding to 0,1,2,3)
they might be pooled as should the last two cells 7&8. So the expected numbers
after pooling are

· 3 4 5 6 7&8
Observed Number 6 1 1 2 6
Expected Number 2.37 3.49 4.5 3.62 2.01

and

χ2 =
(6− 2.37)2

2.37
+ ...+

(6− 2.01)2

2.01
= 18.7

We con estimate the p value by repeating these steps: (1) Generate 16 val-
ues Xi from Bin(16, .6172). (2) Estimate from the sample the value of p∗ =
1
128

P16
i=1Xi. (3) Compute the χ2 statistic as before but using the bin(8, p)

probabilities (4) Determine whether this statistic is >18.7. (5) Repeat steps 1-4
m times to obtain the observed fraction of times the χ2 > 18.7. This is the
approximate p− value of the test if m is large.

135. Ross 9.7 For the K-S test,
D = .5717

136. Ross 9.8
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(a) i. Generate n+ 1 uniform random variables
ii. Generate n+ 1 exponential random variables

iii. The sum of the exponentials is the n+10st arrival (event) of a Poisson
process.

iv. Given that the n+1’st event of a Poisson process occurs at time τ , the
first n event times are uniformly distributed on the ordered values of
n uniform [0, τ ]. i.e. the event times ot the Poisson process Yj are
related to exponential random variablesXi according to:

Y0 = 0

Y1 = Y0 + cX1....

Yn+1 = Yn + cXn+1

where c =
1Pn+1

i=1 Xi

137. Ross 9.9 Again we may use the K-S test.

138. Show that if Qij is a transition matrix of a Markov chain satisfying Qij = Qji
for all i, j, and if we define a new Markov chain transition matrix by

Pij = Qij min(
b(j)

b(i)
, 1), j 6= i

Pii = 1−
X
j 6=i

Pij

for some non-negative numbers b(i), then the probabilities πi = b(i)/
P
j b(j)

forms a stationary distribution for the Markov chain P.

139. Simulate a Markov Chain on the values {1,2,3,...,20} such that the chain only
moves to neighbouring states (e.g. from 4 to 3 or 5) and the stationary distribu-
tion of the chain is πi = i/210, i = 1, 2, ...20. For simplicity we assume that
the states 1. and 20 are neighbours. Define b(i) = i for i = 1, 2, ..., 20. In this
case we can use a chain with transition probability matrix

Pij =
1

2
min(

b(j)

b(i)
, 1), j = i− 1 or i+ 1, and i = 2, ..., 19

P1,20 = P20,1 =
1

2

Pii = 1−
X
j 6=i

Pij

Such a chain will have stationary distribution proportional to b(i).

140. Little’s formula is a formula relating the arrival rates into a general queuing sys-
tem, the average number in the system and the average waiting time of individ-
uals in the system. If λ = Poisson arrival rate, L = expected number of
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customers in the system and W = average waiting time of a customer, then
Little’s formula is

L = λW.

Verify Little’s formula by simulation for a M/G/1/∞/∞ queue with arrival
rate λ = 2 and with service time distribution Gamma(2,1/6); i.e. probability
density function

f(x) = 36xe−6x, x > 0.

141. Consider an M/M/1/10/∞ queue. This corresponds to the usual one-server
queue with Poisson arrivals and exponential service times but with a finite capac-
ity of 10. Whenever there are 10 customers in the system, any arrival “balks”,
or leaves without joining the system. Find the equilibrium distribution of the
number in the sytem in steady state and compare this with the number obtained
by simulating the queue when λ = 3 and µ = 4.

142. For a generalM/G/1/∞/∞ there is no simple formula giving the steady-state
distribution of the number of customers in the system (except in the special case
that the service distribution is exponential). However there is a very useful result
allowing us to calculate the average numbe of customers in the queue in steady
state. This is called the Pollaczek-Khintchine formula.

Lq =
λ2σ2 + ρ2

2(1− ρ)

where ρ = (expected service time)/(expected interarrival time)=λ× (expected
service time), σ2 = variance of service time. What is the expected number
in the queue if the service times are (a) a constant value c. (b) Exponential
with mean c. (c) uniform[0,2c]. Check the above formula by simulation in case
λ = 1, c = .9. Which of the above service times leads to the queue of smallest
average length? For (a) σ2 = 0 and ρ = λc so Lq = ρ2

2(1−ρ) . For

(b), σ2 = c2 and Lq = λ2c2+ρ2

2(1−ρ) . For c),the variance of a uniform is c2/3 and

Lq =
λ2c2/3+ρ2

2(1−ρ) . The shortest queue length corresponds to the constant service
time (in all cases the expected service time remains the same). In general, for
fixed expected service time, the smaller the variance of service time, the shorter
the queue on average.

143. Consider an M/G/1/∞/∞ queue with the following type of service distrib-
ution. Customers require one of two types of service in proportions p, 1 − p
and the resulting service times are exponentially distributed with parameters
µ1, µ2 respectively. LetX be the service time of a random customer. Show that
E(X) = p/µ1+(1− p)/µ2 and var(X) = 2p/µ21+2(1− p)/µ22− (E(X))2.
Simulate this queue for values of the parameters λ = 1, p = .5, and (µ1, µ2) =
(1, 23), (

1
2 , 2). Use these simulations to check the above Pollaczek-Khintchine

formula. Which values of the parameters seems to result in the shortest queue?
Explain.
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144. Arrivals to a self-serve gasoline pump occur according to a Poisson process with
arrival rate λ = 1/2 per minute. There are 4 pumps and the service times (in
minutes) appear to have probability density function f(x) = 3

4x
2(2 − x) , 0 <

x < 2. Experience shows that only one car will wait for the next available
pump. i.e. if there are more than 5 cars in the system, the next arrival will leave
immediately. If each customer that is served produces an average profit of
$1.00 ,conduct a simulation designed to show whether another pump should be
added. Assume that the lease of an additional pump will cost the gas station
owner a total of 100 dollars per day, that the station remains open for a total of
16 hours during the day.

145. An analyst has developed a queueing model for a parking lot. The lot has space
for N cars, and during the daytime shift, cars arrive at the parking lot following
a Poisson process with rate or intensity function 10− ct cars per hour at time t
where 0 < t < 8, c some constant. The length of time that a car spends in the
lot is assumed to be exponential with mean 1 hour.
(a) Find the equilibrium distribution of the number of cars in the lot in the case
c = 0.
(b) Assuming that a lot with N spaces costs $9 per hour to maintain, (ignore
initial costs of building the lot) and the cars pay $1 per hour to park, what is the
expected net profit from operating the lot when N is very large?
(c) Simulate this system in the case c = 1 using the uniform(0,1) random num-
bers
0.20 0.60 0.21 0.75 0.93 0.42 0.53 0.67 0.02 0.38
0.25 0.27 0.02 0.45 0.48 0.85 0.29 0.84 0.68 0.83
until there have been at least two departures. Give a table like the following

Clock Time System State Future Event List

146. Suppose below that you are able to generate independent U [0, 1] random vari-
ables U1, U2, . . . Un..Give a formula or algorithm for generating a single ran-
dom variable X having the probability density function f(x) = 4x3

2 +
3
2x

2, 0 <
x < 1. In this case the c.d.f. is

F (x) =
1

2
F1(x) +

1

2
F2(x)

where

F1(x) = x4, 0 < x < 1

F2(x) = x3, 0 < x < 1

wo we can use the composition method. Generate U1, U2 independent U [0, 1]
and put

X = U
1/4
2 if U1 < 1/2

= U
1/3
2 if U1 ≥ 1/2
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147. If U is a uniform random variate on [0, 1] , find a function of U which has
probability density function f(x) = 1/x2, x ≥ 1 , and elsewhere f(x) = 0.
This is simple inverse transform F−1(U) = 1/(1− U) or alternatively 1/U.

148. Give an algorithm for generating events according to a nonhomogeneous Poisson

process with intensity function λ (t) =
½
.5 for 0 < t < 1
1 for 1 < t < 2

and generate points

using the uniform random numbers and their logarithms below

(a)

U − ln(U)
0.35 1.05
0.74 0.30
0.35 1.05
0.12 2.12
0.62 0.44
i. t=0
ii. t = t− ln(U1) where U1 is U [0, 1]

iii. generate U2 with U [0, 1] distribution and go to (ii) if U2 > λ(t)
(note this can only happen if t < 1).

iv. else, register an event at t and go to (ii)
v. if T > T, stop

149. If U1 and U2 are independent uniform [0, 1] variates, which of the following
statistics has smaller variance? Explain.

(a) i. T1 = − 1
2 [logU1 + logU2]

ii. T2 = − 1
2 [log(U1) + log(1− U1)]

For part i, this is the average of two INDEPENDENT exponential
random variables each with parameters 1. For (ii) we have a simi-
lar average only the exponential random variables are obtained using
antithetic random numbers. Therefore both have the same mean but
the second average using antithetic random numbers has smaller vari-
ance.

150. Give a formula or algorithm for generating a single random variable with proba-
bility density function f(x) = k

x2+3x+1 , 0 < x <∞ , k = 1.16168, otherwise
f(x) = 0.

In this case it is clear that

f(x) ·
k

x2 + 2x+ 1
=

k

(x+ 1)2
= kg(x), say

Here we can easily generate from the density function g(x) = 1/(1 + x)2 by
inverse transform. G(x) = 1− 1/(1 + x) and

G−1(U) =
1

1− U
− 1.
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Therefore we generate from f(x) by acceptance-rejection:

Let X = 1
1−U1 − 1

If U2 ·
X2+2X+1
X2+3X+1 then accept X, otherwise return to step 1.

151. In estimating the expected value E(g(X)) of a complicated function of an
exponential random variable. X and Y were generated using antithetic random
variables and two U of W co-op students disagreed over which estimator was
better

(i) g(
X + Y

2
) or (ii)

g(X) + g(Y )

2
.

Which estimator do you prefer? Explain with reference to the mean and variance.
This question is a deliberate trap for the unwary. The second estimator is an
average of the values of the function and satisfies

E[
g(X) + g(Y )

2
] = E[g(X)]

since X and Y have the same distribution. However the first estimator does
not have the correct expected value, except in the rare case that the function g is
linear. In other words

E(g(
X + Y

2
) ) 6= E(g(X))

If we don’t even have the right expected value there is no point in discussing its
variance!

152. Explain what the following MATLAB code is designed to do:

(a) mu=r*T-sigma^2*T/2;
z=norminv(rand(1,100000),mu,sigma*sqrt(T));
ST1=S0*exp(z); ST2=S0*exp(2*mu-z);
v=exp(-r*T)*0.5*(max(ST1-K,0)+max(ST2-K,0));
mean(v)

You are supposed to note first that Z is a vector of N(rT − σ2T
2 ,σ

2T )
and so ST1 = S0 exp(Z) has the distribution of the stock price at time
T when the intial stock price is S0. The random variable 2µ − Z has
the same distribution as Z but is obtained from Z using antithetic random
numbers. So the quantity

v =
1

2
(e−rT [(ST1−K)+ + (ST2−K)+]

is the discounted to present return from two call options, one antithetic to
the other. This is therefore an estimator of the current price of a call option
with exercise priceK using antithetic random numbers.
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153. Suppose we wish to estimate E(X) forX ∼ EXP (1) using an estimator of the
form bθ = X+Y

2 where X and Y have the same EXP (1) distribution but may
be dependent.

(a) Show that
var(bθ) · var(X).

(b) Determine var(bθ) in the case of

i. X,Y independent
ii. X,Y antithetic

iii. X,Y use common random numbers. (Hint:
R 1
0
ln(u) ln(1 − u)du =

0.355 and
R 1
0
(ln(u))2du = 2).

iv. What is the efficiency of the antithetic and common random numbers
methods compared with crude Monte Carlo.
Part (a) is a simple calculation since

var(bθ) =
1

4
(var(X) + var(Y ) + 2cov(X,Y ))

=
1

2
(var(X) + cov(X,Y ))

·
1

2
(var(X) +

p
var(X)

p
var(Y ))

· var(X) since var(X) = var(Y ).

cov(X,Y ) ·
p
var(X)

p
var(Y ) since a correlation coefficient is

always less than or equal to one. When X,Y are independent we
have

var(bθ) =
1

4
(var(X) + var(Y ) + 2cov(X,Y ))

=
1

2
(var(X) + cov(X,Y ))

=
1

2
(var(X)) = 1/2

When they are antithetic, cov(X,Y ) = E((− ln(U))(− ln(1−U))−
1 = .355− 1 = −.645

var(bθ) =
1

4
(var(X) + var(Y ) + 2cov(X,Y ))

=
1

2
(var(X) + cov(X,Y ))

=
1

2
(1− .645)

= 0.1775
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Using common random numbers, cov(X,Y ) = var(X) = 1.

var(bθ) =
1

4
(var(X) + var(Y ) + 2cov(X,Y ))

=
1

2
(var(X) + cov(X,Y ))

= 1

The relative efficiency using antithetic random numbers is (1/2)/0.1775
and using common random numbers is 1/2.

154. A given random variable represents the stresses applied to a bridge in a given
day. We wish to estimate by simulation a (very small) probability of the form

θ = P (T > a)

where a represents a critical level of stress resulting in damage to the structure.
The stress T is a function of several variables including X = windspeed. It is
assumed thatX has a Gamma(2, 5) distribution with mean 10,

(a) Find the control variate estimator of the form

I(T > a)− β(X − EX)

(b) using the following MATLAB output obtained from simulated values of
X and T both stored in vectors;
I=(T>a) % generates vector of indicator function
of failures
mean(X)= 9.5, mean(I)=.01

cov([X’ I’]) % sample covariance matrix of X and
I

50 .6
.6 .0099

(c) What is the efficiency of this control variate estimator compared with crude
Monte Carlo?

(d) Give an importance sampling estimator designed to estimate θ more effi-
ciently.
The contol variate estimator requires that we estimate the coefficient β us-
ing bβ = cov(I(T > a), X)

var(X)
=
0.6

50
= .012

Therefore the estimator is the average of the terms

I(T > a)− 0.003(X − 10)

and this average is

0.01− 0.012(9.5− 10) = 0.016
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The efficiency is the ratio of the variances and

var(I(T > a)− bβ(X − EX)) = var(I(T > a))− bβ2var(X)
= 0.0099− (.012)2(50) = .0027

The variance of the crude is .0099 and so the efficiency is (.0099)/(.0027)=3.67.
An importance sampling estimator that will improve efficiency is to gener-
ateX using a Gamma(2,b) distribution with b > 5. We then average the
values of

I(T (X) > a)
f5(X)

fb(X)

where
fb(x) =

1

b2
xe−x/b

155. A system fails either if

(a) Component 1 or 2 fail and
Component 4 or 5 fail and
Component 2 or 3 or 4 fail and
Components 1 or 3 or 5 fail.

Suppose that the lifetimes of the component i is given by the random
variables Ti, i = 1, 2, ..., 5.

(b) Write an expression involving the random variables Ti, i = 1, 2, ..., 5. for
the lifetime of the system.

(c) Explain how to simulate the expected lifetime of the system if the com-
ponents have independent lifetimes with an exponential distribution with
expected value 2. Provide one such simulation using the uniform random
numbers below

U .92 .51 .24 .43 .35
−ln(U) .08 .67 1.43 .84 1.05

(d) The first 100 simulations were placed in a vector T of length 100.We then
ran the following in MATLAB,
mean(T)= 1.17
var(T) =0.41
Determine how large a simulation would be required to provide the average
system lifetime within .01 with confidence 95%( i.e. the length of a 95%
confidence interval is 0.02).
The lifetime of the system is the random variable

max(min(T1, T2),min(T4, T5),min(T4, T3, T2),min(T1, T3, T5))

Based on the uniform random numbers provided we wouldl simulate the
values of Ti as, resepctively Ti = .16, 1.34, 2.86, 1.68, 2.10 and the simu-
lated lifteime of the system as

max(.16, 1.68, 1.34, .16) = 1.68
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If we want the average lifetime within .01 we want the width of a 95%
confidence interval

2σ/
√
n · 0.01

and solving this we obtain

n ≥ 16, 400

Corrections to be made:

Question 47 code is for one day but picture is for one month.

69 There is a better choice of c and p available-see Cheng’s algorithm.
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