Low Discrepancy Sequences

* | wish to approximate an integral [,'f(u)du

using a total of n evaluations of the function f

Suppose that the function is smooth and |
use points u=(21-1)/(2n),1=1,2,3,...,n.

Note: [,Y"f(u)du~ n-f(u,)
For a point in the interval u,



How good 15 this apprommation” Usimng a Taylor senes expansion around the potnt /s ),

) = fa) ) x 1) |

L:md itegrating both sides over the mterval [0, 1/2] we obtat
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If the function f has a bounded first dervative this means that the mtesral over each submterval

jﬁ” fwdu = L)
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with an error that 15 less than

constant x i
?22

Therefore the error i the sum over # such mtervals 15 less than a constant x 1z, How does this compare to a crude Monte Carlo mtegral?

We have seen that ff we randomly select # unform[0,1] ponts 22, and use the crude estimator
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then the estimator has vanance

Y where

o2 = var(AU;))

and standard error
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For large values of # notice that

constant ¥ 1 < ?. ‘
£

1.e. the error m the numenical integral 15 less than that i the monte Carlo mtegral For large values of #, and for smooth functions /7 i one-dimensiorn,
munerical integration 18 better than Monte Catlo miegration
The story in 2 dimensions changes a little. Suppose we now watt to find an mtegral of the form

Hﬂﬁ 147 Jdu di

where the mtegral 13 over the unit square. Agatn we wish to use » evaluations of the function. Suppose we use equally spaced points on a lattice in the
two-ditmensional undt square and suppose # = m°.  Fwe define

then there are exactly # = m” points of the form (12;,16;) at which we can evaluate the function. The distance between adjacent pomnts of this form 15
U and so f we approxirate the integral ” ey, ugddudus by an average
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the error i this approzmation is less than or equal

1 1

constant ¥ — = constant X —
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Note that this 15 now the same order of magntude as the standard ervor of a Monte Catlo miegral For dimensions higher than 2, for example for
evaluating an tegral e
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the Monte Catlo tntepral a5 measured by the order of the error berm than 15 a rmmercal teral based on placement of potnts on a lathce

Equally spaced potnts o the ine, o n space have the advantage that they H holes efficiently (tey aet reasonably close to all pomts 1 the space).
Ote disadvantage 15 that [ need to know tn advanice how many potnts (v) are to be selected to that [ can space them Ly apart
I3t posaible to construct & sequence so that at least penodically the sequence constets of equally spaced pomnts!



Low Discrepancy Sequences

low-discrepancy: successive numbers are added
In a position as far as possible from the other
numbers

l.e. avoiding clustering

the numbers generated sequentially fill in the
larger "gaps" between the previous numbers of
the sequence.

In dimension 1, the van der Corput (1935)
sequence in base 2, starts from zero, and Is
confined in the interval [O, 1)



Van der corput seguence

See: http://www.puc-rio.br/marco.ind/main.html#contents for
applets shown here.

with the first 16 Van der Corput numbers (n from 0 to 15) given by:

van der Corput Sequence Base 2 The first 16 numbers (from n=0 to 15)

Sequence starts with zero
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van der Corput Sequence Base 2: distributed over the interval [0, 1)
The first 16 numbers of the sequence (from n=0 to 15)
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Van der Corput, base b

For base 3, has 3 in denominator :
0, 1/3, 2/3, 1/9, 4/9, 7/9, 2/9, 5/9, 8/9, 1/27, 10/27, 19/27,

The n’th term of the van der Corput sequence, for base

b, Is generated as follows:

— The decimal-base number n is expanded in the base b. For
example,n=4inbase2is100(4=1x4+0x2+0x1);

The number in base b is reflected. In the example, 100

becomes 001,

Map into interval [0,1). 001 becomes 0.001 (binary
decimal) corresponds to the decimal number 1/8, that is
1/8 (=0x(1/2) + 0 x (1/4) + 1 x (1/8)).



General Van der Corput

I
In general, for base b if n = Z a;(n) b’
j=0

van der Corput base b (n) = @y(n) = > am b~
j=0



Halton Sequence of dimension 3: each component is a
different Van der Corput sequence (different prime base b)

| repres base 2 | first comp | repres base 3 | second comp | repres base 5 | third comp
1 |1 172 1 175 1 145

2 | 10 1/4 2 2f3 2 215

2 |11 214 10 179 E Clis]

4 1 100 174 11 419 4 415
51101 5f8 1z 79 10 1525

& | 110 5f8 20 219 11 625
7111 Bt 21 5f9 1z 11725

S 11000 1/16 2z B9 15 1625

10 1001 916 100 172 14 2125




Halton Sequence
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Halton sequences have problems
IN high dimensions

e Halton sequence exhibits structure in high
dimensions, becomes unsatisfactory after ~
dimenSion 14_ Multidimensional Halton Sequences: Dimensions 14 x 15
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Faure Sequences

The Faure sequence is like the Halton sequence, but it uses only
one base for all dimensions and it uses a permutation of the vector
elements for each dimension.

The base of a Faure sequence is the smallest prime that is larger
than or equal to the number of dimensions ( or 2 for one dimensional
problem).

If d=50, the last Halton sequence (in dimension 50) uses the 50th
prime number that is 229, whereas the Faure sequence uses the
first prime number after 50, that is a base 53, which is much smaller
than 229, so, the "filling in the gaps" in high-dimensions is faster with
Faure sequence than Halton.

By reordering the sequence within each dimension, Faure
sequences prevents some problems of correlation for sequential
high-dimensions that occurred with the Halton sequence. Makes a
link between the low discrepancy sequences theory and the
combinatorial theory for the vector reordering.



Faure

« The algorithm same equation as before but with a
combinatorial rearrangment of the aj. This is performed
using a recursive equation, from dimension (d -1) to the
new dimension d:

o Start the first dimension using the van der Corput
sequence with the specific Faure's base b, reorder the
numbers with the equation below for d = 2, and so on:

d S L =
a,(m) = — A,
; ilG—i)

m) mod b



Sobol Sequences

The Sobol sequence has the same base for all dimensions and reorders of
the vector elements within each dimension.

Sobol sequence uses base 2 for all dimensions.
Reordering more complex.

Sobol reorderlng IS based on a set of "direction numbers”, {v;} given by
v=m/2! "where the m, are odd positive integers less than 2' and v, are
chosen so that they satlsfy a recurrence relation using the coefflc:lents of a
primitive polynomial in the Galois field G(2)" (Gentle, J.E. (1998): "Random
Number Generation and Monte Carlo Methods"

Springer- Verlag, New York, Inc., (1998) p.161).

l.e. Sobol sequence use the coefficients of irreducible primitive polynomials
of modulo 2 to reorder.

C code for Sobol algorithm in Press, W.H. & S.A. Teukolsky & W.H.
Vetterling & B.P. Flannery (2002): "Numerical Recipes in C++ — The Art of
Scientific Computation”

Cambridge University Press, Second Edition, 2002, 1002 pp.



Last two coordinates of Faure,
d=15 |
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Sguared error In option price, crude

MC, Van der.Corput.and Sobol
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