
Chapter 4

Variance Reduction

Techniques

Introduction.

In this chapter we discuss techniques for improving on the speed and efficiency

of a simulation, usually called “variance reduction techniques”.

Much of the simulation literature concerns discrete event simulations (DES),

simulations of systems that are assumed to change instantaneously in response

to sudden or discrete events. These are the most common in operations research

and examples are simulations of processes such as networks or queues. Simula-

tion models in which the process is characterized by a state, with changes only

at discrete time points are DES. In modeling an inventory system, for example,

the arrival of a batch of raw materials can be considered as an event which pre-

cipitates a sudden change in the state of the system, followed by a demand some

discrete time later when the state of the system changes again. A system driven

by differential equations in continuous time is an example of a DES because

the changes occur continuously in time. One approach to DES is future event
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simulation which schedules one or more future events at a time, choosing the

event in the future event set which has minimum time, updating the state of

the system and the clock accordingly, and then repeating this whole procedure.

A stock price which moves by discrete amounts may be considered a DES. In

fact this approach is often used in valuing American options by Monte Carlo

methods with binomial or trinomial trees.

Often we identify one or more performance measures by which the system

is to be judged, and parameters which may be adjusted to improve the system

performance. Examples are the delay for an air traffic control system, customer

waiting times for a bank teller scheduling system, delays or throughput for

computer networks, response times for the location of fire stations or supply

depots, etc. Performance measures again are important in engineering examples

or in operations research, but less common in finance. They may be used to

calibrate a simulation model, however. For example our performance measure

might be the average distance between observed option prices on a given stock

and prices obtained by simulation from given model parameters. In all cases,

the performance measure is usually the expected value of a complicated function

of many variables, often expressible only by a computer program with some

simulated random variables as input. Whether these input random variables are

generated by inverse transform, or acceptance-rejection or some other method,

they are ultimately a function of uniform[0,1] random variables U1, U2, .... These

uniform random variables determine such quantities as the normally distributed

increments of the logarithm of the stock price. In summary, the simulation is

used simply to estimate a multidimensional integral of the form

E(g(U1, ..., Ud)) =

Z Z
..

Z
g(u1, u2, ...ud)du1du2 . . . dud (4.1)

over the unit cube in d dimensions where often d is large.

As an example in finance, suppose that we wish to price a European option

on a stock price under the following stochastic volatility model.
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Example 33 Suppose the daily asset returns under a risk-neutral distribution

is assumed to be a variance mixture of the Normal distribution, by which we

mean that the variance itself is random, independent of the normal variable and

follows a distribution with moment generating function s(s). More specifically

assume under the Q measure that the stock price at time n∆t is determined

from

S(n+1)∆t = Sn∆t
exp{r∆t+ σn+1Zn+1}

m(12)

where, under the risk-neutral distribution, the positive random variables σ2i

are assumed to have a distribution with moment generating function m(s) =

E{exp(sσi)}, Zi is standard normal independent of σ2i and both (Zi,σ
2
i ) are

independent of the process up to time n∆t. We wish to determine the price of a

European call option with maturity T , and strike price K.

It should be noted that the rather strange choice of m( 12) in the denominator

above is such that the discounted process is a martingale, since

E

�
exp{σn+1Zn+1}

m( 12)

¸
= E{E

�
exp{σn+1Zn+1}

m(12)
|σn+1

¸
}

= E{
exp{σ2n+1/2}

m( 12)
}

= 1.

There are many ways of simulating an option price in the above example, some

much more efficient than others. We might, for example, simulate all of the 2n

random variables {σi, Zi, i = 1, ..., n = T/∆t} and use these to determine the

simulated value of ST , finally averaging the discounted payoff from the option

in this simulation, i.e. e−rT (ST−K)+. The price of this option at time 0 is the

average of many such simulations (say we do this a total of N times) discounted

to present,

e−rT (ST −K)+

where x denotes the average of the x0s observed over all simulations. This is
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a description of a crude and inefficient method of conducting this simulation.

Roughly the time required for the simulation is proportional to 2Nn, the total

number of random variables generated. This chapter discusses some of the many

improvements possible in problems like this. Since each simulation requires at

least d = 2n independent uniform random variables to generate the values

{σi, Zi, i = 1, ..., n} then we are trying to estimate a rather complicated integral

of the form 4.1 of high dimension d. In this case, however, we can immediately

see some obvious improvements. Notice that we can rewrite ST in the form

ST = S0
exp{rT + σZ}

mn(12)
(4.2)

where the random variable σ2 =
Pn
i=1 σ

2
i has moment generating functionm

n(s)

and Z is independent standard normal. Obviously, if we can simulate σ directly,

we can avoid the computation involved in generating the individual σi. Further

savings are possible in the light of the Black-Scholes formula which provides the

price of a call option when a stock price is given by (4.2) and the volatility

parameter σ is non-random. Since the expected return from the call under the

risk-neutral distribution can be written, using the Black-Scholes formula,

E(e−rT (ST −K)+) = E{E[e−rT (ST −K)+|σ]}

= e−rTE{S0Φ(
log(S0/K) + (r +

σ2

2 )T

σ
√
T

)−Ke−rTΦ(
log(S0/K) + (r −

σ2

2 )T

σ
√
T

)}

which is now a one-dimensional integral over the distribution of σ. This can now

be evaluated either by a one-dimensional numerical integration or by repeatedly

simulating the value of σ and averaging the values of

e−rTS0Φ(
log(S0/K) + (r +

σ2

2 )T

σ
√
T

)−Ke−rTΦ(
log(S0/K) + (r −

σ2

2 )T

σ
√
T

)

obtained from these simulations. As a special case we might take the distribution

of σ2i to be Gamma(α∆t,β) with moment generating function

m(s) =
1

(1− βs)α∆t
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in which case the distribution of σ2 is Gamma(αT,β). This is the so-called

”variance-gamma” distribution investigated extensively by ....... and originally

suggested as a model for stock prices by ......Alternatively many other wider-

tailed alternatives to the normal returns model can be written as a variance

mixture of the normal distribution and option prices can be simulated in this

way. For example when the variance is generated having the distribution of the

reciprocal of a gamma random variable, the returns have a student’s t distribu-

tion. Similarly, the stable distributions and the Laplace distribution all have a

representation as a variance mixture of the normal.

The rest of this chapter discusses “variance reduction techniques” such as

the one employed above for evaluating integrals like (4.1), beginning with the

much simpler case of an integral in one dimension.

Variance reduction for one-dimensional Monte-

Carlo Integration.

We wish to evaluate a one-dimensional integral
R 1
0
f(u)du, which we will denote

by θ using by Monte-Carlo methods. We have seen before that whatever the

random variables that are input to our simulation program they are usually

generated using uniform[0,1] random variables U so without loss of generality

we can assume that the integral is with respect to the uniform[0,1] probability

density function, i.e. we wish to estimate

θ = E{f(U)} =

Z 1

0

f(u)du.

One simple approach, called crude Monte Carlo is to randomly sample Ui ∼

Uniform[0, 1] and then average the values of f(Ui) obtain

θ̂CR =
1

n

nX
i=1

f(Ui).
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It is easy to see that E(θ̂CR) = θ so that this average is an unbiased estimator

of the integral and the variance of the estimator is

var(θ̂CR) = var(f(U1))/n.

Example 34 A crude simulation of a call option price under the Black-Scholes

model:

For a simple example that we will use throughout, consider an integral used to

price a call option. We saw in Section 3.8 that if a European option has payoff

V (ST ) where ST is the value of the stock at maturity T , then the option can

be valued at present (t = 0) using the discounted future payoff from the option

under the risk neutral measure;

e−rTE[V (ST )] = e−rTE[V (S0eX)]

where, in the Black-Scholes model, the random variable X = ln(ST /S0) has a

normal distribution with mean rT − σ2T/2 and variance σ2T . A normally

distributed random variable X can be generated by inverse transform and so we

can assume that X = Φ−1(U ; rT − σ2

2 T,σ
2T ) is a function of a uniform[0, 1]

random variable U where Φ−1(U ; rT − σ2

2 T,σ
2T ) is the inverse of the normal

(rT − σ2T/2, σ2T ) cumulative distribution function. Then the value of the

option can be written as an expectation over the distribution of the uniform

random variable U,

E{f(U)} =

Z 1

0

f(u)du

where f(u) = e−rTV (S0 exp{Φ−1(U ; rT −
σ2

2
T,σ2T )})

This function is graphed in Figure 4.1 in the case of a simple call option with

strike price K, with payoff at maturity V (ST ) = (ST −K)+, the current stock

price S0 = $10, the exercise price K is $10, the annual interest rate r = 5%,

the maturity is three months or one quarter of year T = 0.25, and the annual

volatility σ = 0.20.
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Figure 4.1: The function f(u) whose integral provides the value of a call option

A simple crude Monte Carlo estimator corresponds to evaluating this func-

tion at a large number of randomly selected values of Ui ∼ U [0, 1] and then

averaging the results. For example the following function in Matlab accepts a

vector of inputs u = (U1, ..., Un) assumed to be Uniform[0,1], outputs the values

of f(U1), ...f(Un) which can be averaged to give θ̂CR = 1
n

Pn
i=1 f(Ui).

function v=fn(u)

% value of the integrand for a call option with exercise price ex, r=annual interest

rate,

%sigma=annual vol, S0=current stock price.

% u=vector of uniform (0,1) inputs to

%generate normal variates by inverse transform. T=maturity

S0=10 ;K=10;r=.05; sigma=.2 ;T=.25 ; % Values of parameters

ST=S0*exp(norminv(u,r*T-sigma^2*T/2,sigma*sqrt(T)));

% ST =S0 exp{Φ−1(U ; rT − σ2

2 T,σ
2T )} is stock price at time T

v=exp(-r*T)*max((ST-ex),0); % v is the discounted to present payoffs from the

call option

and the analogous function in R,

fn<-function(u,So,strike,r,sigma,T){
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# value of the integrand for a call option with exercise price=strike, r=annual

interest rate,

# sigma=annual volatility, So=current stock price, u=uniform (0,1) input to gen-

erate normal variates

# by inverse transform. T=time to maturity. For Black-Scholes price, integrate

over (0,1).

x<-So*exp(qnorm(u,mean=r*T-sigma^2*T/2,sd=sigma*sqrt(T)))

v<-exp(-r*T)*pmax((x-strike),0)

v}

In the case of initial stock price $10, exercise price=$10, annual vol=0.20, r =

5%, T = .25 (three months), this is run as

u=rand(1,500000); mean(fn(u)) and inR, mean(fn(runif(500000),So=10,strike=10,r=.05,sigma=.2,T=

and this provides an approximate value of the option of θ̂CR = 0.4620. The stan-

dard error of this estimator, computed using the formula (??) below, is around
√
8.7 × 10−7. We may confirm with the black-scholes formula, again in Matlab,

[CALL,PUT] = BLSPRICE(10,10,0.05,0.25,0.2,0).

The arguments are, in order (S0.K, r, T,σ, q) where the last argument (here

q = 0) is the annual dividend yield which we assume here to be zero. Provided

that no dividends are paid on the stock before the maturity of the option, this

is reasonable. This Matlab command provides the result CALL = 0.4615 and

PUT = 0.3373 indicating that our simulated call option price was reasonably

accurate- out by 1 percent or so. The put option is an option to sell the stock

at the specified price $10 at the maturity date and is also priced by this same

function.

One of the advantages of Monte Carlo methods over numerical techniques is

that, because we are using a sample mean, we have a simple estimator of accu-

racy. In general, when n simulations are conducted, the accuracy is measured
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by the standard error of the sample mean. Since

var(θ̂CR) =
var(f(U1))

n
,

the standard error of the sample mean is the standard deviation or

SE(θ̂CR) =
σf√
n
. (4.3)

where σ2f = var(f(U)). As usual we estimate σ
2
f using the sample standard de-

viation. Since fn(u) provides a whole vector of estimators (f(U1), f(U2), ..., f(Un))

then sqrt(var(fn(u))) is the sample estimator of σf so the standard error

SE(θ̂CR) is given by

Sf=sqrt(var(fn(u)));

Sf/sqrt(length(u))

giving an estimate 0.6603 of the standard deviation σf or standard error σf/
√
500000

or 0.0009. Of course parameters in statistical problems are usually estimated

using an interval estimate or a confidence interval, an interval constructed using

a method that guarantees capturing the true value of the parameter under sim-

ilar circumstances with high probability (the confidence coefficient, often taken

to be 95%). Formally,

Definition 35 A 95% confidence interval for a parameter θ is an interval [L,U ]

with random endpoints L,U such that the probability P [L · θ · U ] = 0.95.

If we were to repeat the experiment 100 times, say by running 100 more

similar independent simulations, and in each case use the results to construct

a 95% confidence interval, then this definition implies that roughly 95% of the

intervals constructed will contain the true value of the parameter (and of course

roughly 5% will not). For an approximately Normal(µX ,σ2X) random variable

X, we can use the approximation

P [µX − 2σX · X · µX + 2σX ] ≈ 0.95 (4.4)
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(i.e. approximately normal variables are within 2 standard deviations of their

mean with probability around 95%) to build a simple confidence interval. Strictly,

the value 2σX should be replaced by 1.96σX where 1.96 is taken from the Nor-

mal distribution tables. The value 2 is very close to correct for a t distribution

with 60 degrees of freedom. In any case these confidence intervals which as-

sume approximate normality are typically too short (i.e. contain the true value

of the parameter less frequently than stated) for most real data and so a value

marginally larger than 1.96 is warranted. Replacing σX above by the standard

deviation of a sample mean, (4.4) results in the approximately 95% confidence

interval

θ̂CR − 2
σf√
n
· θ · θ̂CR + 2

σf√
n

for the true value θ. With confidence 95%, the true price of the option is

within the interval 0.462 ± 2(0.0009). As it happens in this case this interval

does capture the true value 0.4615 of the option.

So far Monte Carlo has not told us anything we couldn’t obtain from the

Black-Scholes formula, but what is we used a distribution other than the normal

to generate the returns? This is an easy modification of the above. For example

suppose we replace the standard normal by a logistic distribution which, as

we have seen, has a density function very similar to the standard normal if

we choose b = 0.625. Of course the Black-Scholes formula does not apply to a

process with logistically distributed returns. We need only replace the standard

normal inverse cumulative distribution function by the corresponding inverse

for the logistic,

F−1(U) = b ln
µ

U

1− U

¶
and thus replace the Matlab code, “norminv(u,T*(r-sigma^2/2),sigma*sqrt(T))’’

by ‘‘T*(r-sigma^2/2)+sigma*sqrt(T)*.625*log(u./(1-u))’’. This results

in a slight increase in option value (to 0.504) and about a 50% considerable in-

crease in the variance of the estimator.
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We will look at the efficiency of various improvements to crude Monte Carlo,

and to that end, we record the value of the variance of the estimator based on

a single uniform variate in this case;

σ2crude = σ2f = var(f(U)) ≈ 0.436.

Then the crude Monte Carlo estimator using n function evaluations or n

uniform variates has variance approximately 0.436/n. If I were able to adjust

the method so that the variance σ2f based on a single evaluation of the func-

tion f in the numerator were halved, then I could achieve the same accuracy

from a simulation using half the number of function evaluations. For this rea-

son, when we compare two different methods for conducting a simulation, the

ratio of variances corresponding to a fixed number of function evaluations can

also be interpreted roughly as the ratio of computational effort required for a

given predetermined accuracy. We will often compare various new methods of

estimating the same function based on variance reduction schemes and quote

the efficiency gain over crude Monte-Carlo sampling.

Efficiency =
variance of Crude Monte Carlo Estimator

Variance of new estimator
(4.5)

where both numerator a denominator correspond to estimators with the same

number of function evaluations (since this is usually the more expensive part

of the computation). An efficiency of 100 would indicate that the crude Monte

Carlo estimator would require 100 times the number of function evaluations to

achieve the same variance or standard error of estimator.

Consider a crude estimator obtained from five U [0, 1] variates,

Ui = 0.1, 0.3, 0.5, 0.6, 0.8, i = 1, ..., 5.

The crude Monte Carlo estimator in the case n = 5 is displayed in Figure 3.1,

the estimator being the sum of the areas of the marked rectangles. Only three of
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Figure 4.2: Crude Monte Carlo Estimator based on 5 observations Ui =

0.1, 0.3, 0.5, 0.6, 0.8

the five points actually contribute to this area since for this particular function

f(u) = e−rT (S0 exp{Φ−1(u; rT −
σ2

2
T,σ2T )}−K)+ (4.6)

and the parameters chosen, f(0.1) = f(0.3) = 0. Since these two random num-

bers contributed 0 and the other three appear to be on average slightly too small,

the sum of the area of the rectangles appears to underestimate of the integral.

Of course another selection of five uniform random numbers may prove to be

even more badly distributed and may result in an under or an overestimate.

There are various ways of improving the efficiency of this estimator, many of

which partially emulate numerical integration techniques. First we should note

that most numerical integrals, like θ̂CR, are weighted averages of the values

of the function at certain points Ui. What if we evaluated the function at

non-random points, chosen to attempt reasonable balance between locations

where the function is large and small? Numerical integration techniques and

quadrature methods choose both points at which we evaluate the function and

weights that we attach to these points to provide accurate approximations for

polynomials of certain degree. For example, suppose we insist on evaluating the
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Figure 4.3: Graphical illustration of the trapezoidal rule (4.8)

function at equally spaced points, for example the points 0, 1/n, 2/n, ..., (n −

1)/n, 1. In some sense these points are now “more uniform” than we are likely

to obtain from n+1 randomly and independently chosen points Ui, i = 1, 2, ..., n.

The trapezoidal rule corresponds to using such equally spaced points and equal

weights (except at the boundary) so that the “estimator” of the integral is

θ̂TR =
1

2n
{f(0) + 2f(1/n) + . . .+ 2f(1−

1

n
) + f(1)} (4.7)

or the simpler and very similar alternative in our case, with n = 5,

θ̂TR =
1

5
{f(0.1) + f(0.3) + f(0.5) + f(0.7) + f(0.9)} (4.8)

A reasonable balance between large and small values of the function is almost

guaranteed by such a rule, as shown in Figure 4.8 with the observations equally

spaced.

Simpson’s rule is to generate equally spaced points and weights that( except

for endpoints) alternate 2/3n, 4/3n, 2/3n.... In the case when n is even, the

integral is estimated with

θ̂SR =
1

3n
{f(0) + 4f(1/n) + 2f(2/n) + . . .+ 4f(

n− 1

n
) + f(1)}. (4.9)
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The trapezoidal rule is exact for linear functions and Simpson’s rule is exact for

quadratic functions.

These one-dimensional numerical integration rules provide some insight into

how to achieve lower variance in Monte Carlo integration. It illustrates some

options for increasing accuracy over simple random sampling. We may either

vary the weights attached to the individual points or vary the points (the Ui)

themselves or both. Notice that as long as the Ui individually have distributions

that are Uniform[0, 1], we can introduce any degree of dependence among them

in order to come closer to the equal spacings characteristic of numerical integrals.

Even if the Ui are dependent U[0,1], an estimator of the form

1

n

nX
i=1

f(Ui)

will continue to be an unbiased estimator because each of the summands con-

tinue to satisfy E(f(Ui)) = θ. Ideally if we introduce dependence among the

various Ui and the expected value remains unchanged , we would wish that the

variance

var(
1

n

nX
i=1

f(Ui))

is reduced over independent uniform. The simplest case of this idea is the use

of antithetic random variables.

Antithetic Random Numbers.

Consider first the simple case of n = 2 function evaluations at possibly depen-

dent points. Then the estimator is

θ̂ =
1

2
{f(U1) + f(U2)}

with expected value θ =
R 1
0
f(u)du and variance given by

var(θ̂) =
1

2
{var(f(U1)) + cov[f(U1), f(U2)]}
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assuming both U1, U2 are uniform[0,1]. In the independent case the covariance

term disappears and we obtain the variance of the crude Monte-Carlo estimator

1

2
var(f(U1)).

Notice, however, that if we are able to introduce a negative covariance, the re-

sulting variance of θ̂ will be smaller than that of the corresponding crude Monte

Carlo estimator, so the question is how to generate this negative covariance.

Suppose for example that f is monotone (increasing or decreasing). Then

f(1−U1) decreases whenever f(U1) increases, so that substituting U2 = 1−U1

has the desired effect and produces a negative covariance(in fact we will show

later that we cannot do any better when the function f is monotone). Such

a choice of U2 = 1 − U1 which helps reduce the variability in f(U1), is termed

an antithetic variate. In our example, because the function to be integrated is

monotone, there is a negative correlation between f(U1) and f(1− U1) and

1

2
{var(f(U1)) + cov[f(U1), f(U2)]} <

1

2
var(f(U1)).

that is, the variance is decreased over simple random sampling. Of course in

practice our sample size is much greater than n = 2, but we still enjoy the

benefits of this argument if we generate the points in antithetic pairs. For

example, to determine the extent of the variance reduction using antithetic

random numbers, suppose we generate 500, 000 uniform variates U and use as

well the values of 1 − U as (for a total of 1, 000, 000 function evaluations as

before).

F=(fn(u)+fn(1-u))/2;

This results in mean(F)=0.46186 and var(F)=0.1121. The standard error

of the estimator is s
0.1121

length(F )
=
√
2.24 × 107.
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Since each of the 500,000 components of F obtains from two function evalua-

tions, the variance should be compared with a crude Monte Carlo estimator with

the same number 1000000 function evaluations, σ2crude/1000000 = 4.35× 10
−7.

The efficiency gain due to the use of antithetic random numbers is 4.35/2.24 or

about two, so roughly half as many function evaluations using antithetic random

numbers provide the same precision as a crude Monte Carlo estimator. There

is the additional advantage that only half as many uniform random variables

are required. The introduction of antithetic variates has had the same effect on

precision as increasing the sample size under crude Monte Carlo by a factor of

approximately 2.

We have noted that antithetic random numbers improved the efficiency

whenever the function being integrated is monotone in u. What if it is not.

For example suppose we use antithetic random numbers to integrate the func-

tion f(u) = u(1−u) on the interval 0 < u < 1? Rather than balance large values

with small values and so reduce the variance of the estimator, in this case notice

that f(U) and f(1−U) are strongly positively correlated, in fact are equal, and

so the argument supporting the use of antithetic random numbers for monotone

functions will show that in this case they increase the variance over a crude es-

timator with the same number of function evaluations. Of course this problem

can be remedied if we can identify intervals in which the function is monotone,

e.g. in this case use antithetic random numbers in the two intervals [0, 12 ] and

[12 , 1], so for example we might estimate
R 1
0
f(u)du by an average of terms like

1

4
{f(

U1
2
) + f(

1− U1
2

) + f(
1 + U2
2

) + f(
2− U2
2

)}

for independent U [0, 1] random variables U1, U2.

Stratified Sample.

One of the reasons for the inaccuracy of the crude Monte Carlo estimator in the

above example is the large interval, evident in Figure 4.1, in which the function
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is zero. Nevertheless, both crude and antithetic Monte Carlo methods sample

in that region, this portion of the sample contributing nothing to our integral.

Naturally, we would prefer to concentrate our sample in the region where the

function is positive, and where the function is more variable, use larger sample

sizes. One method designed to achieve this objective is the use of a stratified

sample. Once again for a simple example we choose n = 2 function evaluations,

and with V1 ∼ U [0, a] and V2 ∼ U [a, 1] define an estimator

θ̂st = af(V1) + (1− a)f(V2).

Note that this is a weighted average of the two function values with weights a

and 1 − a proportional to the length of the corresponding intervals. It is easy

to show once again that the estimator θ̂st is an unbiased estimator of θ, since

E(θ̂st) = aEf(V1) + (1− a)Ef(V2)

= a

Z a

0

f(x)
1

a
dx+ (1− a)

Z 1

a

f(x)
1

1− a
dx

=

Z 1

0

f(x)dx.

Moreover,

var(θ̂st) = a
2var[f(V 1)] + (1− a)

2var[f(V 2)] + 2a(1− a)cov[f(V 1), f(V 2)].

(4.10)

Even when V1, V2are independent, so we obtain var(θ̂st) = a2var[f(V1)] + (1−

a)2var[f(V2)], there may be a dramatic improvement in variance over crude

Monte Carlo provided that the variability of f in each of the intervals [0, a] and

[a, 1] is substantially less than in the whole interval [0, 1].

Let us return to the call option example above, with f defined by (4.6).

Suppose for simplicity we choose independent values of V1, V2. In this case

var(θ̂st) = a
2var[f(V1)] + (1− a)

2var[f(V2)]. (4.11)

For example for a = .7, this results in a variance of about 0.046 obtained

from the following
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F=a*fn(a*rand(1,500000))+(1-a)*fn(a+(1-a)*rand(1,500000));

var(F)

and the variance of the sample mean of the components of the vector F is

var(F)/length(F) or around 9.2 × 10−8. Since each component of the vector

above corresponds to two function evaluations we should compare this with a

crude Monte Carlo estimator with n = 1000000 having variance σ2f × 10
−6 =

4.36 × 10−7. This corresponds to an efficiency gain of .43.6/9.2 or around 5.

We can afford to use one fifth the sample size by simply stratifying the sample

into two strata. The improvement is somewhat limited by the fact that we are

still sampling in a region in which the function is 0 (although now slightly less

often).

A general stratified sample estimator is constructed as follows. We subdivide

the interval [0, 1] into convenient subintervals 0 = x0 < x1 < ...xk = 1, and

then select ni random variables uniform on the corresponding interval Vij ∼

U [xi−1, xi], j = 1, 2, ..., ni. Then the estimator of θ is

θ̂st =
kX
i=1

(xi − xi−1)
1

ni

niX
j=1

f(Vij). (4.12)

Once again the weights (xi − xi−1) on the average of the function in the i0th

interval are proportional to the lengths of these intervals and the estimator θ̂st

is unbiased;

E(θ̂st) =
kX
i=1

(xi − xi−1)E{
1

ni

niX
j=1

f(Vij)}

=
kX
i=1

(xi − xi−1)Ef(Vi1)

=
kX
i=1

(xi − xi−1)
Z xi

xi−1
f(x)

1

xi − xi−1
dx

=

Z 1

0

f(x)dx = θ.
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In the case that all of the Vij are independent, the variance is given by:

var(θ̂st) =
kX
i=1

(xi − xi−1)2
1

ni
var[f(Vi1)]. (4.13)

Once again, if we choose our intervals so that the variation within intervals

var[f(Vi1)] is small, this provides a substantial improvement over crude Monte

Carlo. Suppose we wish to choose the sample sizes so as to minimize this

variance. Obviously to avoid infinite sample sizes and to keep a ceiling on

costs, we need to impose a constraint on the total sample size, say

kX
i

ni = n. (4.14)

If we treat the parameters ni as continuous variables we can use the method of

Lagrange multipliers to solve

min
{ni}

kX
i=1

(xi − xi−1)2
1

ni
var[f(Vi1)]

subject to constraint (4.14).

It is easy to show that the optimal choice of sample sizes within intervals are

ni ∝ (xi − xi−1)
p
var[f(Vi1)]

or more precisely that

ni = n
(xi − xi−1)

p
var[f(Vi1)]Pk

j=1(xj − xj−1)
p
var[f(Vj1)]

. (4.15)

In practice,of course, this will not necessarily produce an integral value of ni

and so we are forced to round to the nearest integer. For this optimal choice of

sample size, the variance is now given by

var(θ̂st) =
1

n
{
kX
j=1

(xj − xj−1)
q
var[f(Vj1)]}

2

The term
Pk
j=1(xj − xj−1)

p
var[f(Vj1)] is a weighted average of the standard

deviation of the function f within the interval (xi−1, xi) and it is clear that,
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at least for a continuous function, these standard deviations can be made small

simply by choosing k large with |xi−xi−1| small. In other words if we ignore the

fact that the sample sizes must be integers, at least for a continuous function f ,

we can achieve arbitrarily small var(θ̂st) using a fixed sample size n simply by

stratifying into a very large number of (small) strata. The intervals should be

chosen so that the variances var[f(Vi1)] are small. ni ∝ (xi−xi−1)
p
var[f(Vi1)].

In summary, optimal sample sizes are proportional to the lengths of intervals

times the standard deviation of function evaluated at a uniform random variable

on the interval. For sufficiently small strata we can achieve arbitrarily small

variances. The following function was designed to accept the strata x1, x2, ..., xk

and the desired sample size n as input, and then determine optimal sample sizes

and the stratified sample estimator as follows:

1. Initially sample sizes of 1000 are chosen from each stratum and these are

used to estimate
p
var[f(Vi1)]

2. Approximately optimal sample sizes ni are then calculated from (4.15).

3. Samples of size ni are then taken and the stratified sample estimator

(4.12), its variance ( 4.13) and the sample sizes ni are output.

function [est,v,n]=stratified(x,nsample)

% function for optimal sample size stratified estimator on call option price example

%[est,v,n]=stratified([0 .6 .85 1],100000) uses three strata (0,.6),(.6 .85),(.85 1)

and total sample size 100000

est=0;

n=[];

m=length(x);

for i=1:m-1 % the preliminary sample of size 1000

v= var(callopt2(unifrnd(x(i),x(i+1),1,1000),10,10,.05,.2,.25));

n=[n (x(i+1)-x(i))*sqrt(v)];
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end

n=floor(nsample*n/sum(n)); %calculation of the optimal sample sizes, rounded

down

v=0;

for i=1:m-1

F=callopt2(unifrnd(x(i),x(i+1),1,n(i)),10,10,.05,.2,.25); %evaluate the function

f at n(i) uniform points in interval

est=est+(x(i+1)-x(i))*mean(F);

v=v+var(F)*(x(i+1)-x(i))^2/n(i);

end

A call to [est,v,n]=stratified([0 .6 .85 1],100000) for example generates a

stratified sample with three strata[0, 0.6], (0.6, 0.85], and (0.8, 1] and outputs

the estimate est = 0.4617, its variance v = 3.5 × 10−7 and the approximately

optimal choice of sample sizes n = 26855, 31358, 41785. To compare this with

a crude Monte Carlo estimator, note that a total of 99998 function evaluations

are used so the efficiency gain is σ2f/(99998× 3.5× 10
−7) = 12.8. Evidently this

stratified random sample can account for an improvement in efficiency of about

a factor of 13. Of course there is a little setup cost here (a preliminary sample

of size 3000) which we have not included in our calculation but the results of

that preliminary sample could have been combined with the main sample for a

very slight decrease in variance as well). For comparison, the function call

[est,v,n]=stratified([.47 .62 .75 .87 .96 1],1000000)

uses five strata [.47 .62],[.62 .75], [.75, .87], [.87, .96], [.96, 1] and gives a

variance of the estimator of 7.4× 10−9. Since a crude sample of the same size has

variance around 4.36 × 10−7 the efficiency is about 170. This stratified sample

is as good as a crude Monte Carlo estimator with 170 million simulations! By

introducing more strata, we can increase this efficiency as much as we wish.

Within a stratified random sample we may also introduce antithetic variates

designed to provide negative covariance. For example we may use antithetic
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pairs within an interval if we believe that the function is monotone in the inter-

val, or if we believe that the function is increasing across adjacent strata, we can

introduce antithetic pairs between two intervals. For example, we may generate

U ∼ Uniform[0, 1] and then sample the point Vij = xi−1+(xi− xi−1)U from

the interval (xi−1, xi) as well as the point V(i+1)j = xi+1 − (xi+1 − xi)U from

the interval (xi, xi+1) to obtain antithetic pairs between intervals. For a simple

example of this applied to the above call option valuation, consider the estima-

tor based on three strata [0,.47),[0.47 0.84),[0.84 1]. Here we have not bothered

to sample to the left of 0.47 since the function is 0 there, so the sample size here

is set to 0. Then using antithetic random numbers within each of the two strata

[0.47 0.84),[0.84 1], and U ∼ Uniform[0, 1] we obtain the estimator

θ̂str,ant =
0.37

2
[f(.47+ .37U)+f(.84− .37U)]+

0.16

2
[f(.84+ .16U)+f(1− .16U)]

To assess this estimator,

we evaluated, for U a vector of 1000000 uniform,

U=rand(1,1000000);

F=.37*.5*(fn(.47+.37*U)+fn(.84-.37*U))+.16*.5*(fn(.84+.16*U)+fn(1-.16*U));

mean(F) % gives 0.4615

var(F)/length(F) % gives 1.46× 10−9

This should be compared with the crude Monte-Carlo estimator having the same

number n = 4× 106 function evaluations as each of the components of the vector

F : σ2crude/(4× 10
6) = 1.117× 10−7. The gain in efficiency is therefore 1.117/.0146

or approximately 77. The above stratified-antithetic simulation with 1,000,000

input variates and 4,000,000 function evaluations is equivalent to a crude Monte

Carlo simulation with sample size 308 million! Variance reduction makes the

difference between a simulation that is feasible on a laptop and one that would
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require a very long time on a mainframe computer. However on a Pentium IV

2.2GHZ laptop it took approximately 58 seconds to run.

Control Variates.

There are two techniques that permit using knowledge about a function with

shape similar to that of f . First, we consider the use of a control variate, based

on the trivial identityZ
f(u)du =

Z
g(u)du+

Z
(f(u)− g(u))du. (4.16)

for an arbitrary function g(u). Assume that the integral of g is known, so we

can substitute its known value for the first term above. The second integral we

assume is more difficult and we estimate it by crude Monte Carlo, resulting in

estimator

θ̂cv =

Z
g(u)du+

1

n

nX
i=1

[f(Ui)− g(Ui)]. (4.17)

This estimator is clearly unbiased and has variance

var(θ̂cv) = var{
1

n

nX
i=1

[f(Ui)− g(Ui)]}

=
var[f(U)− g(U)]

n

so the variance is reduced over that of crude Monte Carlo estimator having the

same sample size n by a factor

var[f(U)]

var[f(U)− g(U)]
for U ∼ U [0, 1]. (4.18)

Let us return to the example of pricing a call option. By some experimen-

tation, which could involve a preliminary crude simulation or simply evaluating

the function at various points, we discovered that the function

g(u) = 6[(u− .47)+]2 + (u− .47)+

provided a reasonable approximation to the function f(u). The two functions

are compared in Figure 4.4. Moreover, the integral 2 × 0.532 + 1
20.53

3 of the

function g(.) is easy to obtain.
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Figure 4.4: Comparison of the function f(u) and the control variate g(u)

It is obvious from the figure that since f(u)−g(u) is generally much smaller

and less variable than is f(u), var[f(U) − g(U)] < var(f(U)). The variance of

the crude Monte Carlo estimator is determined by the variability in the func-

tion f(u) over its full range. The variance of the control variate estimator is

determined by the variance of the difference between the two functions, which

in this case is quite small. We used the following matlab functions, the first to

generate the function g(u) and the second to determine the efficiency gain of

the control variate estimator;

function g=GG(u) % this is the function g(u), a control variate for fn(u)

u=max(0,u-.47);

g=6*u.^2+u;

function [est,var1,var2]=control(f,g,intg,n)

% run using a statement like [est,var1,var2]=control(’fn’,’GG’,intg,n)

% runs a simulation on the function f using control variate g (both character
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strings) n times.

% intg is the integral of g % intg=
R 1
0
g(u)du

% outputs estimator est and variances var1,var2, variances with and without

control variate.

U=unifrnd(0,1,1,n);

FN=eval(strcat(f,’(U)’)); % evaluates f(u) for vector u

CN=eval(strcat(g,’(U)’)); % evaluates g(u)

est=intg+mean(FN-CN);

var1=var(FN);

var2=var(FN-CN);

Then the call [est,var1,var2]=control(’fn’,’GG’,2*(.53)^3+(.53)^2/2,1000000)

yields the estimate 0.4616 and variance=1.46 × 10−8 for an efficiency gain over

crude Monte Carlo of around 30.

This elementary form of control variate suggests using the estimatorZ
g(u)du+

1

n

nX
i=1

[f(Ui)− g(Ui)]

but it may well be that g(U) is not the best estimator we can imagine for f(U).

We can often find a linear function of g(U) which is better by using regression.

Since elementary regression yields

f(U)− E(f(U)) = β(g(U)− E(g(U))) + ² (4.19)

where

β =
cov(f(U), g(U))

var(g(U))
(4.20)

and the errors ² have expectation 0, it follows that E(f(U)) + ² = f(U) −

β[g(U) − E(g(U))] and sof(U) − β[g(U) − E(g(U))] is an unbiased estimator

of E(f(U)). For a sample of N uniform random numbers this becomes

θ̂cv = βE(g(U)) +
1

N

NX
i=1

[f(Ui)− βg(Ui)]. (4.21)
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Moreover this estimator having smallest variance among all linear combina-

tions of f(U)and g(U). Note that when β = 1 (4.21) reduces to the simpler

form of the control variate technique (4.17) discussed above. However, the lat-

ter is generally better in terms of maximizing efficiency. Of course in practice

it is necessary to estimate the covariance and the variances in the definition of

β from the simulations themselves by evaluating f and g at many different

uniform random variables Ui, i = 1, 2, ..., N and then estimating β using the

standard least squares estimator

bβ = N
PN
i=1 f(Ui)g(Ui)−

PN
i=1 f(Ui)

PN
i=1 g(Ui)

N
PN
i=1 g

2(Ui)− (
PN
i=1 g(Ui))

2
.

Although in theory the substitution of an estimator bβ for the true value β

results in a small bias in the estimator, for large numbers of simulations N our

estimator bβ is so close to the true value that this bias can be disregarded.

Importance Sampling.

A second technique that is similar is that of importance sampling. Again we

depend on having a reasonably simple function g that after muultiplication by

some constant, is similar to f. However, rather than attempt to minimize the

difference f(u) − g(u) between the two functions, we try and find g(u) such

that f(u)/g(u) is nearly a constant. We also require that g is non-negative

and can be integrated so that, after rescaling the function, it integrates to one,

i.e. it is a probability density function. Assume we can easily generate random

variables from the probability density function g(z). The distribution whose

probability density function is g(z), z ∈ [0, 1] is the importance distribution.

Note that if we generate a random variable Z having the probability density
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function g(z), z ∈ [0, 1] thenZ
f(u)du =

Z 1

0

f(z)

g(z)
g(z)dz

= E

�
f(Z)

g(Z)

¸
. (4.22)

This can therefore be estimated by generating independent random variables Zi

with probability density function g(z) and then setting

θ̂im =
1

n

nX
i=1

f(Zi)

g(Zi)
. (4.23)

Once again, according to (4.22), this is an unbiased estimator and the variance

is

var{θ̂im} =
1

n
var{

f(Z1)

g(Z1)
}. (4.24)

Returning to our example, we might consider using the same function as

before for g(u). However, it is not easy to generate variates from a density

proportional to this function g by inverse transform since this would require

solving a cubic equation. Instead, let us consider something much simpler, the

density function g(u) = 2(0.53)−2(u − .47)+ having cumulative distribution

function G(u) = (0.53)2 [(u− .47)+]2 and inverse cumulative distribution func-

tion G−1(u) = 0.47+ 0.53
√
u. In this case we generate Zi using Zi = G−1(Ui)

for Ui ∼ Uniform[0, 1]. The following function simulates an importance sample

estimator:

function [est,v]=importance(f,g,Ginv,u)

%runs a simulation on the function ’f” using importance density ”g”(both character

strings) and inverse c.d.f. ”Ginverse”

% outputs all estimators (should be averaged) and variance.

% IM is the inverse cf of the importance distribution c.d.f.

% run e.g.

% [est,v]=importance(’fn’,’2*(IM-.47)/(.53)^2;’,’.47+.53*sqrt(u);’,rand(1,1000));
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IM= eval(Ginv); %=.47+.53*sqrt(u);

%IMdens is the density of the importance sampling distribution at IM

IMdens=eval(g); %2*(IM-.47)/(.53)^2;

FN=eval(strcat(f,’(IM)’));

est=FN./IMdens; % mean(est) prrovides the estimator

v=var(FN./IMdens)/length(IM); % this is the variance of the estimator per sim-

ulation

The function was called with [est,v]=importance(’fn’,’2*(IM-.47)/(.53)^2;’,’.47+.53*sqrt(u);’,rand(1,

giving an estimate mean(est) = 0.4616 with variance 1 .28 × 10−8 for an

efficiency gain of around 35 over crude Monte Carlo.

Example 36 (Estimating Quantiles using importance sampling.) Suppose we

are able to generate random variables X from a probability density function of

the form

fθ(x)

and we wish to estimate a quantile such as VAR, i.e. estimate xp such that

Pθ0(X · xp) = p

for a certain value θ0 of the parameter.

As a very simple example suppose S is the sum of 10 independent random

variables having the exponential distribution with mean θ, and fθ(x1, ..., x10) is

the joint probability density function of these 10 observations. Assume θ0 = 1

and p = .999 so that we seek an extreme quantile of the sum, i.e. we want to

determine xpsuch that Pθ0(S · xp) = p. The equation that we wish to solve

for xp is

Eθ0{I(S · xp)} = p. (4.25)

The crudest estimator of this is obtained by generating a large number of

independent observations of S under the parameter value θ0 = 1 and finding
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the p’th quantile, i.e. by defining the empirical c.d.f.. We generate independent

random vectors Xi = (Xi1, ...,Xi10) from the probability density fθ0(x1, ..., x10)

and with Si =
P10
j=1Xij ,define

bF (x) = 1

n

nX
i=1

I(Si · x). (4.26)

Invert it (possibly with interpolation) to estimate the quantile

cxp = bF−1(p). (4.27)

If the true cumulative distribution function is differentiable, the variance of this

quantile estimator is asymptotically related to the variance of our estimator of

the cumulative distribution function,

var(cxp) ' var( bF (xp))
(F 0(xp))2

,

so any variance reduction in the estimator of the c.d.f. us reflected, at least

asymptotically, in a variance reduction in the estimator of the quantile. Using

importance sampling (4.25) is equivalent to the same technique but with

bFI(x) = 1

n

nX
i=1

WiI(Si · x) where (4.28)

Wi =
fθ0(Xi1, ..., Xi10)

fθ(Xi1, ...,Xi10)

Ideally we should choose the value of θ so that the variance of bxp or of
WiI(Si · xp)

is as small as possible. This requires a wise guess or experimentation with

various choices of θ. For a given θ we have another choice of empirical cumulative

distribution function

bFI2(x) = 1Pn
i=1Wi

nX
i=1

WiI(Si · x). (4.29)

Both of these provide fairly crude estimates of the sample quantiles when obser-

vations are weighted and, as one does with the sample median, one could easily

interpolate between adjacent values around the value of xp.
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The alternative (4.29) is motivated by the fact that the values Wi appear

as weights attached to the observations Si and it therefore seems reasonable to

divide by the sum of the weights. In fact the expected value of the denominator

is

Eθ{
nX
i=1

Wi} = n

so the two denominators are similar. In the example where the Xij are

independent exponential(1) let us examine the weight on Si determined by

Xi = (Xi1, ..., Xi10),

Wi =
fθ0(Xi1, ..., Xi10)

fθ(Xi1, ..., Xi10)
=

10Y
j=1

exp(−Xij)

θ−1 exp(−Xij/θ)
= θ10 exp{−Si(1− θ−1)}.

The renormalized alternative (4.29) might be necessary for estimating extreme

quantiles when the number of simulations is small but only the first provides

an completely unbiased estimating function. In our case, using (4.28) with

θ = 2.5 we obtained an estimator of F (x0.999) with efficiency about 180 times

that of a crude Monte Carlo simulation. There is some discussion of various

renormalizations of the importance sampling weights in Hesterberg(1995).

Importance Sampling, the Exponential Tilt and the Saddlepoint Ap-

proximation

When searching for a convenient importance distribution, particularly if we

wish to increase or decrease the frequency of observations in the tails, it is

quite common to embed a given density in an exponential family. For example

suppose we wish to estimate an integralZ
g(x)f(x)dx

where f(x) is a probability density function. Suppose K(s) denotes the cumu-

lant generating function (the logarithm of the moment generating function) of

the density f(x),i.e. if

exp{K(s)} =

Z
exsf(x)dx.
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The cumulant generating function is a useful summary of the moments of a

distribution since the mean can be determined as K0(0) and the variance as

K00(0). From this single probability density function, we can now produce a

whole (exponential) family of densities

fθ(x) = e
θx−K(θ)f(x) (4.30)

of which f(x) is a special case corresponding to θ = 0. The density (4.30) is often

referred to as an exponential tilt of the original density function and increases

the weight in the right tail for θ > 0, decreases it for θ < 0.

This family of densities is closely related to the saddlepoint approximation.

If we wish to estimate the value of a probability density function f(x) at a par-

ticular point x, then note that this could be obtained from (4.30) if we knew

the probability density function fθ(x). On the other hand a normal approxi-

mation to a density is often reasonable at or around its mode, particularly if

we are interested in the density of a sum or an average of independent random

variables. The cumulant generating function of the density fθ(x) is easily seen

to be K(θ + s) and the mean is therefore K0(θ). If we choose the parameter

θ = θ(x) so that

K0(θ) = x (4.31)

then the density fθ has mean x and variance K00(θ). How do we know for a given

value of x there exists a solution to (4.31)? From the properties of cumulant

generating functions, K(t) is convex, increasing and K(0) = 0.This implies

that as t increases, the slope of the cumulant generating function K0(t) is non-

decreasing. It therefore approaches a limit xmax(finite or infinite) as t→∞ and

as long as we restrict the value of x in (4.31) to the interval x < xmax we can

find a solution. The value of the N(x,K00(θ)) at the value x is

fθ(x) ≈

s
1

2πK00(θ)
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and therefore the approximation to the density f(x) is

f(x) ≈

s
1

2πK00(θ)
eK(θ)−θx. (4.32)

where θ = θ(x) satisfies K0(θ) = x.

This is the saddlepoint approximation, discovered by Daniels (1954, 1980), and

usually applied to the distribution of sums or averages of independent random

variables because then the normal approximation is better motivated. Indeed,

the saddlepoint approximation to the distribution of the sum of n independent

identically distributed random variables is accurate to order O(n−1) and if we

renormalize it to integrate to one, accuracy to order O(n−3/2) is possible, sub-

stantially better than the order O(n−1/2) of of the usual normal approximation.

Consider, for example, the saddlepoint approximation to the Gamma(α,1)

distribution. In this case the cumulant generating function is

K(t) = −α ln(1− t),

K0(θ) = x implies θ(x) = 1−
α

x
and

K00(θ) =
x2

α

Therefore the saddlepoint approximation to the probability density function is

f(x) '

r
α

2πx2
exp{α ln(x/α)− x(1−

α

x
)}

=

r
1

2π
α

1
2−αeαxα−1 exp(−x).

This is exactly the gamma density function with Stirling’s approximation replac-

ing Γ(α) and after renormalization this is exactly the Gamma density function.

In many cases the saddlepoint approximation is used to estimate a proba-

bility or a moment of a distribution and it is of interest to estimate the error

in this approximation. For example suppose that we wish, for some function

h, to estimate the error in the saddlepoint approximation to E(h(Sn)) where
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Sn =
Pn
i=1Xi and each random variable Xi has the non-central chi-squared

distribution with cumulant generating function

K(t) =
2λt

1− 2t
−
p

2
ln(1− 2t).

The parameter λ is the non-centrality parameter of the distribution and p is

the degrees of freedom. Notice that the cumulant generating function of the sum

takes the same form but with (λ, p) replaced by (nλ, np). If f(x) is the actual

probability density function of this sum and fs is the saddlepoint approximation

to the same density, then the error in the saddlepoint approximation isZ ∞
0

h(x)fs(x)dx−

Z ∞
0

h(x)f(x)dx =

Z ∞
0

h(x)(fs(x)− f(x))dx. (4.33)

The right hand side of (4.33) can be approximated with a relatively small Monte

Carlo sample since the differences appearing in it fs(x)−f(x) are typically small.

In this case, we might use importance sampling and since it is easy to generate

from the distribution of Sn, we could simply average simulated values of

h(Sn)(
fs(Sn)

f(Sn)
− 1).

Since it is often computationally expensive to generate random variables

whose distribution is a convolution of known densities, it is interesting to ask

whether (4.32) makes this any easier. In general, K(t) is convex with K(0) = 0

and λ(x) = θ(x) − K(θ(x))
x is an increasing function of x.This is because, upon

differentiation, we obtain

λ0(x) =
1

K00(θ(x))
− 1 +

K(θ(x))

x2
=

FINISH

Combining Monte Carlo Estimators.

We have now seen a number of different variance reduction techniques and there

are many more possible. With many of these methods such as importance and
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stratified sampling are associated parameters which may be chosen in different

ways. The variance formula may be used as a basis of choosing a “best” method

but these variances and efficiencies must also estimated from the simulation and

it is rarely clear a priori which sampling procedure and estimator is best. For

example if a function f is monotone on [0, 1] then an antithetic variate can be

introduced with an estimator of the form

θ̂a1 =
1

2
[f(U) + f(1− U)], U ∼ U [0, 1] (4.34)

but if the function is increasing to a maximum somewhere around 1
2 and then

decreasing thereafter we might prefer

θ̂a2 =
1

4
[f(U/2) + f((1− U)/2) + f((1 + U)/2) + f(1− U/2)]. (4.35)

Notice that any weighted average of these two unbiased estimators of θ would

also provide an unbiased estimator of θ. The large number of potential variance

reduction techniques is an embarrassment of riches. Which variance reduction

methods we should use and how will we know whether it is better than the

competitors? Fortunately, the answer is often to use “all of the methods” (within

reason of course); that choosing a single method is often neither necessary nor

desirable. Rather it is preferable to use a weighted average of the available

estimators with the optimal choice of the weights provided by regression.

Suppose in general that we have k estimators or statistics bθi, i = 1, ..k, all

unbiased estimators of the same parameter θ so that E(bθi) = θ for all i . In

vector notation, letting Θ0 = (bθ1, ..., bθk), we write E(Θ) = 1θ where 1 is the

k-dimensional column vector of ones so that 10 = (1, 1, ..., 1). Let us suppose for

the moment that we know the variance-covariance matrix V of the vector Θ,

defined by

Vij = cov(bθi, bθj).
Theorem 37 (best linear combinations of estimators)

The linear combination of the bθi which provides an unbiased estimator of θ and
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has minimum variance among all linear unbiased estimators is

bθblc =X
i

bibθi (4.36)

where the vector b = (b1, ..., bk)0 is given by

b = (1tV −11)−1V −11.

The variance of the resulting estimator is

var(bθblc) = btV b = 1/(1tV −11)
Proof. The proof is straightforward. It is easy to see that for any linear

combination (4.36) the variance of the estimator is

btV b

and we wish to minimize this quadratic form as a function of b subject to the

constraint that the coefficients add to one, or that

b01 =1.

Introducing the Lagrangian, we wish to set the derivatives with respect to

the components bi equal to zero

∂

∂b
{btV b+ λ(b

0
1−1)} = 0 or

2V b+ λ1= 0

b=constant × V −11

and upon requiring that the coefficients add to one, we discover the value of the

constant above is (1tV −11)−1.

This theorem indicates that the ideal linear combination of estimators has

coefficients proportional to the row sums of the inverse covariance matrix. No-

tably, the variance of a particular estimator bθi is an ingredient in that sum,
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but one of many. In practice, of course, we almost never know the variance-

covariance matrix V of a vector of estimators Θ. However, when we do simula-

tion evaluating these estimators using the same uniform input to each, we obtain

independent replicated values of Θ. This permits us to estimate the covariance

matrix V and since we typically conduct many simulations this estimate can be

very accurate. Let us suppose that we have n simulated values of the vectors Θ,

and call these Θ1, ...,Θn. As usual we estimate the covariance matrix V using

the sample covariance matrix

bV = 1

n− 1

nX
i=1

(Θi −Θ)(Θi −Θ)
0

where

Θ =
1

n

nX
i=1

Θi.

Let us return to the example and attempt to find the best combination of

the many estimators we have considered so far. To this end, let

bθ1 = 0.53

2
[f(.47 + .53u) + f(1− .53u)] an antithetic estimator,

bθ2 = 0.37

2
[f(.47 + .37u) + f(.84− .37u)] +

0.16

2
[f(.84 + .16u) + f(1− .16u)],

bθ3 = 0.37[f(.47 + .37u)] + 0.16[f(1− .16u)], (stratified-antithetic)
bθ4 = Z g(x)dx+ [f(u)− g(u)], (control variate)

bθ5 = θ̂im, the importance sampling estimator (4.23).

Then bθ2, and bθ3 are both stratified-antithetic estimators, bθ4 is a control

variate estimator and bθ5 the importance sampling estimator discussed earlier, all
obtained from a single input uniform random variate U. In order to determine

the optimal linear combination we need to generate simulated values of all 5

estimators using the same uniform random numbers as inputs. We determine

the best linear combination of these estimators using
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function [o,v,b,V]=optimal(U)

% generates optimal linear combination of five estimators and outputs

% average estimator, variance and weights

% input U a row vector of U[0,1] random numbers

T1=(.53/2)*(fn(.47+.53*U)+fn(1-.53*U));

T2=.37*.5*(fn(.47+.37*U)+fn(.84-.37*U))+.16*.5*(fn(.84+.16*U)+fn(1-.16*U));

T3=.37*fn(.47+.37*U)+.16*fn(1-.16*U);

intg=2*(.53)^3+.53^2/2;

T4=intg+fn(U)-GG(U);

T5=importance(’fn’,U);

X=[T1’ T2’ T3’ T4’ T5’]; % matrix whose columns are replications of the same

estimator, a row=5 estimators using same U

mean(X)

V=cov(X); % this estimates the covariance matrix V

on=ones(5,1);

V1=inv(V); % the inverse of the covariance matrix

b=V1*on/(on’*V1*on); % vector of coefficients of the optimal linear combination

o=mean(X*b); % vector of the optimal linear combinations

v=1/(on’*V1*on); % variance of the optimal linear combination based on

a single U

One run of this estimator, called with [o,v,b,V]= optimal(unifrnd(0,1,1,1000000))

yields

o = 0.4615

b0 = [−0.5499 1.4478 0.1011 0.0491 − 0.0481].

The estimate 0.4615 is accurate to at least four decimals which is not surprising

since the variance per uniform random number input is v = 1.13 × 10−5. In

other words, the variance of the mean based on 1,000,000 uniform input is
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1.13× 10−10, the standard error is around .00001 so we can expect accuracy to at

least 4 decimal places. Note that some of the weights are negative and others are

greater than one. Do these negative weights indicate estimators that are worse

than useless? The effect of some estimators may be, on subtraction, to render the

remaining function more linear and more easily estimated using another method

and negative coefficients are quite common in regression generally. The efficiency

gain over crude Monte Carlo is an extraordinary 40,000. However since there

are 10 function evaluations for each uniform variate input, the efficiency when

we adjust for the number of function evaluations is 4,000. This simulation

using 1,000,000 uniform random numbers and taking a 63 seconds on a Pentium

IV (2.4 GHz) (including the time required to generate all five estimators) is

equivalent to forty billion simulations by crude Monte Carlo, a major task on a

supercomputer!

If we intended to use this simulation method repeatedly, we might well wish

to see whether some of the estimators can be omitted without too much loss

of information. Since the variance of the optimal estimator is 1/(1tV −11), we

might use this to attempt to select one of the estimators for deletion. Notice that

it is not so much the covariance of the estimators V which enters into Theorem

35 but its inverse J = V −1 which we can consider a type of information matrix

by analogy to maximum likelihood theory. For example we could choose to delete

the i0th estimator, i.e. delete the i0th row and column of V where i is chosen

to have the smallest effect on 1/(1tV −11) or its reciprocal 1tJ1 =
P

i

P
j Jij .

In particular, if we let V(i) be the matrix V with the i0th row and column

deleted and J(i) = V−1(i) , then we can identify 1
tJ1 − 1tJ(i)1 as the loss of

information when the i0th estimator is deleted. Since not all estimators have

the same number of function evaluations, we should adjust this information

by FE(i) =number of function evaluations required by the i0th estimator. In

other words, if an estimator i is to be deleted, it should be the one corresponding
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to

min
i
{
1tJ1− 1tJ(i)1

FE(i)
}.

We should drop this i0th estimator if the minimum is less than the information

per function evaluation in the combined estimator, because this means we will

increase the information available in our simulation per function evaluation.

In the above example with all five estimators included, 1tJ1 = 88757 (with

10 function evaluations per uniform variate) so the information per function

evaluation is 8, 876.

i 1tJ1− 1tJ(i)1 FE(i)
1tJ1−1tJ(i)1

FE(i)

1 88,048 2 44024

2 87,989 4 21,997

3 28,017 2 14,008

4 55,725 1 55,725

5 32,323 1 32,323

In this case, if we were to eliminate one of the estimators, our choice would

likely be number 3 since it contributes the least information per function eval-

uation. However, since all contribute more than 8, 876 per function evaluation,

we should likely retain all five.

Common Random Numbers.

We now discuss another variance reduction technique, closely related to anti-

thetic variates called common random numbers, used for example whenever

we wish to estimate the difference in performance between two systems or any

other variable involving a difference such as a slope of a function.

Example 38 For a simple example suppose we have two estimators bθ1, bθ2 of
the “center” of a symmetric distribution. We would like to know which of these

estimators is better in the sense that it has smaller variance when applied to
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a sample from a specific distribution symmetric about its median. If both esti-

mators are unbiased estimators of the median, then the first estimator is better

if

var(bθ1) < var(bθ2)
and so we are interested in estimating a quantity like

Eh1(X)− Eh2(X)

where X is a vector representing a sample from the distribution and h1(X) =bθ21, h2(X) = bθ22. There are at least two ways of estimating these differences;
1. Generate samples and hence values of h1(Xi), i = 1, ..., n and Eh2(Xj), j =

1, 2, ...,m independently and use the estimator

1

n

nX
i=1

h1(Xi)−
1

m

mX
j=1

h2(Xj).

2. Generate samples and hence values of h1(Xi), h2(Xi), i = 1, ..., n inde-

pendently and use the estimator

1

n

nX
i=1

(h1(Xi)− h2(Xi)).

It seems intuitive that the second method is preferable since it removes

the variability due to the particular sample from the comparison. This is a

common type of problem in which we want to estimate the difference between

two expected values. For example we may be considering investing in a new

piece of equipment that will speed up processing at one node of a network and

we wish to estimate the expected improvement in performance between the new

system and the old. In general, suppose that we wish to estimate the difference

between two expectations, say

Eh1(X)− Eh2(Y ) (4.37)
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where the random variable or vector X has cumulative distribution function FX

and Y has cumulative distribution function FY . Notice that the variance of a

Monte Carlo estimator

var[h1(X)− h2(Y )] = var[h1(X)] + var[h2(Y )]− 2cov{h1(X), h2(Y )} (4.38)

is small if we can induce a high degree of positive correlation between the gen-

erated random variables X and Y . This is precisely the opposite problem that

led to antithetic random numbers, where we wished to induce a high degree

of negative correlation. The following lemma is due to Hoeffding (1940) and

provides a useful bound on the joint cumulative distribution function of two

random variables X and Y. Suppose X,Y have cumulative distribution func-

tions FX(x) and FY (y) respectively and joint cumulative distribution function

G(x, y) = P [X · x, Y · y].

Lemma 39 (a) The joint cumulative distribution function G of (X,Y ) always

satisfies

(FX(x) + FY (y)− 1)
+ · G(x, y) · min(FX(x), FY (y)) (4.39)

for all x, y .

(b) Assume that FX and FY are continuous functions. In the case that

X = F−1X (U) and Y = F−1Y (U) for U uniform on [0, 1], equality is achieved

on the right G(x, y) = min(FX(x), FY (y)). In the case that X = F−1X (U) and

Y = F−1Y (1− U) there is equality on the left; (FX(x) + FY (y)− 1)+ = G(x, y).

Proof. (a) Note that

P [X · x, Y · y] · P [X · x] and similarly

· P [Y · y].

This shows that

G(x, y) · min(FX(x), FY (y)),
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verifying the right side of (4.39). Similarly for the left side

P [X · x, Y · y] = P [X · x]− P [X · x, Y > y]

≥ P [X · x]− P [Y > y]

= FX(x)− (1− FY (y))

= (FX(x) + FY (y)− 1).

Since it is also non-negative the left side follows.

For (b) suppose X = F−1X (U) and Y = F−1Y (U), then

P [X · x, Y · y] = P [F−1X (U) · x, F−1Y (U) · y]

= P [U · FX(x), U · FY (y)]

since P [X = x] = 0 and P [Y = y] = 0.

But

P [U · FX(x), U · FY (y)] = min(FX(x), FY (y))

verifying the equality on the right of (4.39) for common random numbers. By

a similar argument,

P [F−1X (U) · x, F−1Y (1− U) · y] = P [U · FX(x), 1− U · FY (y)]

= P [U · FX(x), U ≥ 1− FY (y)]

= (FX(x)− (1− FY (y)))
+

verifying the equality on the left.

The following theorem supports the use of common random numbers to

maximize covariance and antithetic random numbers to minimize covariance.

Theorem 40 (maximum/minimum covariance)

Suppose h1 and h2 are both non-decreasing (or both non-increasing) functions.

Subject to the constraint that X,Y have cumulative distribution functions FX , FY

respectively, the covariance

cov[h1(X), h2(Y )]
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is maximized when Y = F−1Y (U) and X = F−1X (U) (i.e. for common uniform[0, 1]

random numbers) and is minimized when Y = F−1Y (U) and X = F−1X (1 − U)

(i.e. for antithetic random numbers).

Proof. We will sketch a proof of the theorem when the distributions are

all continuous and h1, h2 are differentiable. Define G(x, y) = P [X · x, Y · y].

The following representation of covariance is useful: define

H(x, y) = P (X > x, Y > y)− P (X > x)P (Y > y) (4.40)

= G(x, y)− FX(x)FY (y).

Notice that, using integration by parts,Z ∞
−∞

Z ∞
−∞

H(x, y)h01(x)h
0
2(y)dxdy

= −

Z ∞
−∞

Z ∞
−∞

∂

∂x
H(x, y)h1(x)h

0
2(y)dxdy

=

Z ∞
−∞

Z ∞
−∞

∂2

∂x∂y
H(x, y)h1(x)h2(y)dxdy

=

Z ∞
−∞

Z ∞
−∞

h1(x)h2(y)g(x, y)dxdy −

Z ∞
−∞

h1(x)fX(x)dx

Z ∞
−∞

h2(y)fY (y)dy

= cov(h1(X), h2(Y )) (4.41)

where g(x, y), fX(x), fY (y) denote the joint probability density function, the

probability density function of X and that of Y respectively. In fact this result

holds in general even without the assumption that the distributions are contin-

uous. The covariance between h1(X) and h2(Y ), for h1 and h2 differentiable

functions, is

cov(h1(X), h2(Y )) =

Z ∞
−∞

Z ∞
−∞

H(x, y)h01(x)h
0
2(y)dxdy.

The formula shows that to maximize the covariance, if h1, h2 are both increasing

or both decreasing functions, it is sufficient to maximize H(x, y) for each x, y

since h01(x), h02(y) are both non-negative. Since we are constraining the mar-

ginal cumulative distribution functions FX , FY , this is equivalent to maximizing
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G(x, y) subject to the constraints

lim
y→∞G(x, y) = FX(x)

lim
x→∞G(x, y) = FY (y).

Lemma 37 shows that the maximum is achieved when common random numbers

are used and the minimum achieved when we use antithetic random numbers.

We can argue intuitively for the use of common random numbers in the case

of a discrete distribution with probability on the points indicated in Figure 4.5.

This figure corresponds to a joint distribution with the following probabilities,

say

x 0 0.25 0.25 0.75 0.75 1

y 0 0.25 0.75 0.25 0.75 1

P [X = x, Y = y] .1 .2 .2 .1 .2 .2

Suppose we wish to maximize P [X > x, Y > y] subject to the constraint that

the probabilities P [X > x] and P [Y > y] are fixed. We have indicated

arbitrary fixed values of (x, y) in the figure. Note that if there is any weight

attached to the point in the lower right quadrant (labelled “P2”), some or all

of this weight can be reassigned to the point P3 in the lower left quadrant

provided there is an equal movement of weight from the upper left P4 to the

upper right P1. Such a movement of weight will increase the value of G(x, y)

without affecting P [X · x] or P [Y · y]. The weight that we are able to transfer

in this example is 0.1, the minimum of the weights on P4 and P2 . In general,

this continues until there is no weight in one of the off-diagonal quadrants for

every choice of (x, y). The resulting distribution in this example is given by

x 0 0.25 0.25 0.75 0.75 1

y 0 0.25 0.75 0.25 0.75 1

P [X = x, Y = y] .1 .3 0 .1 .3 .2
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Figure 4.5: Changing weights on points to maximize covariance

and it is easy to see that such a joint distribution can be generated from common

random numbers X = F−1X (U), Y = F−1Y (U).

Conditioning

We now consider a simple but powerful generalization of control variates. Sup-

pose that we can decompose a random variable T into two components T1, ε

T = T1 + ε (4.42)

so that T1, ε are uncorrelated

cov(T1, ε) = 0.

Assume as well that E(ε) = 0. Regression is one method for determining such

a decomposition and the error term ε in regression satisfies these conditions.

Then T1 has the same mean as T and it is easy to see that

var(T ) = var(T1) + var(ε)

so T1 as smaller variance than T (unless ε = 0 with probability 1). This means

that if we wish to estimate the common mean of T or T1, the estimator T1 is

preferable, since it has the same mean with smaller variance.
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One special case is variance reduction by conditioning. For the standard

definition and properties of conditional expectation see the appendix. One com-

mon definition of E[X |Y ] is the unique (with probability one) function g(y)

of Y which minimizes E{X − g(Y )}2. This definition only applies to random

variables X which have finite variance and so this definition requires some mod-

ification when E(X2) =∞, but we will assume here that all random variables,

say X,Y,Z have finite variances. We can define conditional covariance using

conditional expectation as

cov(X,Y |Z) = E[XY |Z]− E[X |Z]E[Y |Z]

and conditional variance:

var(X |Z) = E(X2|Z)− (E[X |Z])2.

The variance reduction through conditioning is justified by the following well-

known result:

Theorem 41 (a)E(X) = E{E[X |Y ]}

(b) cov(X,Y ) = E{cov(X,Y |Z)}+ cov{E[X |Z], E[Y |Z]}

(c) var(X) = E{var(X |Z)}+ var{E[X |Z]}

This Theorem is used as follows. Suppose we are considering a candidate

estimator θ̂, an unbiased estimator of θ. We also have an arbitrary random

variable Z which is somehow related to θ̂. Suppose that we have chosen Z

carefully so that we are able to calculate the conditional expectation T1 =

E[θ̂|Z]. Then by part (a) of the above Theorem, T1 is also an unbiased estimator

of θ. Define

ε = θ̂ − T1.

By part (c),

var(θ̂) = var(T1) + var(ε)
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and var(T1) = var(θ̂) − var(ε) < var(θ̂). In other words, for any variable Z,

E[θ̂|Z] has the same expectation as does θ̂ but smaller variance and the decrease

in variance is largest if Z and θ̂ are nearly independent, because in this case

E[θ̂|Z] is close to a constant and its variance close to zero. In general the

search for an appropriate Z so as to reducing the variance of an estimator by

conditioning requires searching for a random variable Z such that:

1. the conditional expectation E[θ̂|Z] with the original estimator is com-

putable

2. var(E[θ̂|Z]) is substantially smaller than var(θ̂).

Example 42 (hit or miss)

Suppose we wish to estimate the area under a certain graph f(x) by the hit

and miss method. A crude method would involve determining a multiple c of a

probability density function g(x) which dominates f(x) so that cg(x) ≥ f(x) for

all x.We can generate points (X,Y ) at random and uniformly distributed under

the graph of cg(x) by generating X by inverse transform X = G−1(U1) where

G(x) is the cumulative distribution function corresponding to density g and

then generating Y from the Uniform[0, cg(X)] distribution, say Y = cg(X)U2.

An example, with g(x) = 2x, 0 < x < 1 and c = 1/4 is given in Figure 4.6.

The hit and miss estimator of the area under the graph of f obtains by

generating such random points (X,Y ) and counting the proportion that fall

under the graph of g, i.e. for which Y · f(X). This proportion estimates the

probability

P [Y · f(X)] =
area under f(x)
area under cg(x)

=
area under f(x)

c
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Figure 4.6: Example of the Hit and Miss Method

since g(x) is a probability density function. Notice that if we define

W =

⎧⎨⎩ c if Y · f(X)

0 if Y > f(X)

then

E(W ) = c ×
area under f(x)
area under cg(x)

= area under f(x)

so W is an unbiased estimator of the parameter that we wish to estimate. We

might therefore estimate the area under f(x) using a Monte Carlo estimator

θ̂HM = 1
n

Pn
i=1Wi based on independent values of Wi.This is the “hit-or-miss”

estimator. However, in this case it is easy to find a random variable Z such

that the conditional expectation E(Z|W ) can be determined in closed form. In

fact we can choose Z = X, we obtain

E[W |X] =
f(X)

g(X)
.
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This is therefore an unbiased estimator of the same parameter and it has smaller

variance than does W. For a sample of size n we should replace the crude esti-

mator θ̂cr by the estimator

θ̂Cond =
1

n

nX
i=1

f(Xi)

g(Xi)

=
1

n

nX
i=1

f(Xi)

2Xi

with Xi generated from X = G−1(Ui) =
√
Ui, i = 1, 2, ..., n and Ui ∼ Uni-

form[0,1]. In this case, the conditional expectation results in a familiar form for

the estimator θ̂Cond. This is simply an importance sampling estimator with g(x)

the importance distribution. However, this derivation shows that the estimator

θ̂Cond has smaller variance than θ̂HM .

Problems

1. Use both crude and antithetic random numbers to integrate the functionZ 1

0

eu − 1

e− 1
du.

What is the efficiency gain attributed to the use of antithetic random

numbers?

2. How large a sample size would I need, using antithetic and crude Monte

Carlo, in order to estimate the above integral, correct to four decimal

places, with probability at least 95%?

3. Under what conditions on f does the use of antithetic random numbers

completely correct for the variability of the Monte-Carlo estimator? i.e.

When is var(f(U) + f(1− U)) = 0?

4. Show that if we use antithetic random numbers to generate two normal

random variables X1, X2, having mean rT − σ2T/2 and variance σ2T ,
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this is equivalent to setting X2 = 2(rT −σ2T/2)−X1. In other words, it

is not necessary to use the inverse transform method to generate normal

random variables in order to permit the use of antithetic random numbers.

5. Show that the variance of a weighted average

var(αX + (1− α)W )

is minimized over α when

α =
var(W )− cov(X,W )

var(W ) + var(X)− 2cov(X,W )

Determine the resulting minimum variance. What if the random variables

X,W are independent?

6. Use a stratified random sample to integrate the functionZ 1

0

eu − 1

e− 1
du.

What do you recommend for intervals (two or three) and sample sizes?

What is the efficiency gain?

7. Use a combination of stratified random sampling and an antithetic random

number in the form
1

2
[f(U/2) + f(1− U/2)]

to integrate the function Z 1

0

eu − 1

e− 1
du.

What is the efficiency gain?

8. In the case f(x) = ex−1
e−1 , use g(x) = x as a control variate to integrate over

[0,1]. Show that the variance is reduced by a factor of approximately 60.

Is there much additional improvement if we use a more general quadratic

function of x?
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9. In the case f(x) = ex−1
e−1 , consider using g(x) = x as a control variate

to integrate over [0,1]. Note that regression of f(U) on g(U) yields

f(U)−E(f(U)) = β[g(U)−Eg(U)]+ε where the error term ε has mean

0 and is uncorrelated with g(U) and β = cov(f(U), g(U))/var(g(U).

Therefore, taking expectations on both sides and reorganising the terms,

E(f(U)) = f(U)− β[g(U)− E(g(U))]. The Monte-Carlo estimator

1

n

nX
i=1

{f(Ui)− β[g(Ui)− E(g(Ui))]}

is an improved control variate estimator, equivalent to the one discussed

above in the case β = 1. Determine how much better this estimator

is than the basic control variate case β = 1 by performing simulations.

Show that the variance is reduced by a factor of approximately 60. Is

there much additional improvement if we use a more general quadratic

function of x?

10. A call option pays an amount V (S) = 1/(1 + exp(S(T )− k)) at time T

for some predetermined price k. Discuss what you would use for a control

variate and conduct a simulation to determine how it performs, assuming

geometric Brownian motion for the stock price, interest rate 5%, annual

volatility 20% and various initial stock prices, values of k and T.

11. It has been suggested that stocks are not log-normally distributed but the

distribution can be well approximated by replacing the normal distribu-

tion by a student t distribution. Suppose that the daily returns Xi are

independent with probability density function f(x) = c(1+(x/b)2)−2 (the

re-scaled student distribution with 3 degrees of freedom). We wish to esti-

mate a weekly V ar.95, a value ev such that P [
P5
i=1Xi < v] = 0.95. If we

wish to do this by simulation, suggest an appropriate method involving

importance sampling. Implement and estimate the variance reduction.

12. Suppose, for example, I have three different simulation estimators Y1, Y2, Y3
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whose means depend on two unknown parameters θ1, θ2. In particular,

suppose Y1, Y2, Y3, are unbiased estimators of θ1, θ1 + θ2, θ2 respectively.

Let us assume for the moment that var(Yi) = 1, cov(Yi, Yj) = −1/2.

I want to estimate the parameter θ1. Should I use only the estimator

Y1which is the unbiased estimator of θ1, or some linear combination of

Y1, Y2, Y3? Compare the number of simulations necessary for a certain

degree of accuracy.

13. Consider the systematic sample estimator based on the trapezoidal rule:

θ̂ =
1

n

n−1X
i=0

f(V + i/n), V ∼ U [0,
1

n
]

Discuss the bias and variance of this estimator. In the case f(x) = x2,

how does it compare with other estimators such as crude Monte Carlo

and antithetic random numbers requiring n function evaluations. Are

there any disadvantages to its use?

14. In the case f(x) = ex−1
e−1 , use g(x) = x as a control variate to integrate

over [0,1]. Find the optimal linear combination using estimators (4.34) and

(4.35), an importance sampling estimator and the control variate estimator

above. What is the efficiency gain over crude Monte-Carlo?

15. The rho of an option is the derivative of the option price with respect

to the interest rate parameter r. What is the value of ρ for a call option

with S0 = 10, strike=10, r = 0.05, T = .25 and σ = .2? Use a simulation

to estimate this slope and determine the variance of your estimator. Try

using (i) independent simulations at two points and (ii) common random

numbers. What can you say about the variances of your estimators?

16. For any random variables X,Y, prove that P (X · x, Y · y) − P (X ·

x)P (Y · y) = P (X > x, Y > y)− P (X > x)P (Y > y) for all x, y.
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17. Show that the Jacobian of the transformation used in the proof of Theorem

23; (x,m)→ (x, y) where y = exp(−(2m−x)2/2) is given by 1

2y
√
−2 ln(y) .
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