
Chapter 3

Random Variables and
Measurable Functions.

3.1 Measurability
Definition 42 (Measurable function) Let f be a function from a measurable
space (Ω,F) into the real numbers. We say that the function is measurable if
for each Borel set B ∈ B , the set {ω; f(ω) ∈ B} ∈ F .
Definition 43 ( random variable) A random variable X is a measurable func-
tion from a probability space (Ω,F ,P) into the real numbers <.
Definition 44 (Indicator random variables) For an arbitrary set A ∈ F define
IA(ω) = 1 if ω ∈ A and 0 otherwise. This is called an indicator random
variable.

Definition 45 (Simple Random variables) Consider events Ai ∈ F , i = 1, 2, 3, ..., n
such that ∪ni=1 Ai = Ω. Define X(ω) =

Pn
i=1 ciIAi(ω) where ci ∈ <. Then

X is measurable and is consequently a random variable. We normally assume
that the sets Ai are disjoint. Because this is a random variable which can
take only finitely many different values, then it is called simple and any random
variable taking only finitely many possible values can be written in this form.

Example 46 (binomial tree) A stock, presently worth $20, can increase each
day by $1 or decrease by $1. We observe the process for a total of 5 days. Define
X to be the value of the stock at the end of five days. Describe (Ω,F) and
the function X(ω) . Define another random variable Y to be the value of the
stock after 4 days.

Define X−1(B) = {ω;X(ω) ∈ B}. We will also sometimes denote this event
[X ∈ B] . In the above example, define the events X−1(B) and Y −1(B) where
B = [20,∞).
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Then we have the following properties.
For any Borel sets Bn ⊂ <, and any random variable X,

1. X−1(∪nBn) = ∪nX−1(Bn)
2. X−1(∩nBn) = ∩nX−1(Bn)
3. [X−1(B)]c = X−1(Bc)

These three properties together imply that for any class of sets C, X−1(σ(C)) =
σ(X−1(C)). So X is measurable if, for all x, {ω;X(ω) ≤ x} ∈ F (see Theorem
16 and Problem 3.16).
BEWARE: The fact that we use notation X−1 does not imply that the

function X has an inverse in the usual sense. For example, if X(ω) = sin(ω)
for ω ∈ <, then what is X−1([.5, 1])?
Theorem 47 (combining random variables) Suppose Xi, i = 1, 2, . . . are all
(measurable) random variables. Then so are

1. X1 +X2 +X3 + . . .Xn

2. X2
1

3. cX1 for any c ∈ R
4. X1X2

5. inf {Xn;n ≥ 1}
6. lim inf Xn

7. sup{Xn;n ≥ 1}
8. lim supn→∞Xn

Proof. For 1. notice that [X1 +X2 > x] if and only if there is a rational
number q in the interval X1 > q > x−X2 so that [X1 > q] and [X2 > x− q].
In other words

[X1+X2 > x] = ∪q[X1 > q]∩[X2 > x−q]where the union is over all rational numbers q.
For 2, note that for x ≥ 0,

[X2
1 ≤ x] = [X1 ≥ 0] ∩ [X1 ≤

√
x] ∪ [X1 < 0] ∩ [X1 ≥ −

√
x].

For 3, in the case c > 0, notice that

[cX1 ≤ x] = [X1 ≤ x
c
].

Finally 4 follows from properties 1, 2 and 3 since

X1X2 =
1

2
{(X1 +X2)2 −X2

1 −X2
2}
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For 5. note that [infXn ≥ x] = ∩∞n=1[Xn ≥ x].
For 6. note that [lim inf Xn ≥ x] = [Xn > x − 1/m a.b.f.o.] for all

m = 1, 2, ... so

[lim infXn ≥ x] = ∩∞m=1 lim inf[Xn > x− 1/m].

The remaining two properties follow by replacing Xn by −Xn.

Definition 48 (sigma-algebra generated by random variables) For X a random
variable, define σ(X) = {X−1(B);B ∈ B}.

σ(X) is the smallest sigma algebra F such that X is a measurable function
into <. The fact that it is a sigma-algebra follows from Theorem 16. Similarly,
for a set of random variables X1,X2, . . .Xn , the sigma algebra σ(X1, . . .Xn)
generated by these is the smallest sigma algebra such that all Xi are measurable.

Theorem 49 σ(X) is a sigma-algebra and is the same as σ{[X ≤ x], x ∈ <}.

Definition 50 A Borel measurable function f from <→ < is a function such
that f−1(B) ∈ B for all B ∈ B.

For example if a function f(x) is a continuous function from a subset of <
into a subset of < then it is Borel measurable.

Theorem 51 Suppose fi, i = 1, 2, . . . are all Borel measurable functions.
Then so are

1. f1 + f2 + f3 + . . . fn

2. f21

3. cf1 for any real number c.

4. f1f2

5. inf{fn;n ≥ 1}
6. lim inf fn

7. sup{fn;n ≥ 1}
8. limn→∞ fn

Theorem 52 If X and Y are both random variables, then Y can be written as
a Borel measurable function of X, i.e. Y = f(X) for some Borel measurable f
if and only if

σ(Y ) ⊂ σ(X)
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Proof. Suppose Y = f(X). Then for an arbitrary Borel set B, [Y ∈ B] =
[f(X) ∈ B] = [X ∈ f−1(B)] = [X ∈ B2] for Borel set B2 ∈ B. This shows that
σ(Y ) ⊂ σ(X).
For the converse, we assume that σ(Y ) ⊂ σ(X) and we wish to find a

Borel measurable function f such that Y = f(X). For fixed n consider the set
Am,n = {ω;m2−n ≤ Y (ω) < (m + 1)2−n} for m = 0,±1, .... Since this set is
in σ(Y ) it is also in σ(X) and therefore can be written as {ω;X(ω) ∈ Bm,n}
for some Borel subset Bm,n of the real line. Consider the function fn(x) =P
mm2

−nI(x ∈ Bm,n). Clearly this function is defined so that fn(X) is close
to Y, and indeed is within 1

2n units of Y. The function we seek is obtained by
taking the limit

f(x) = lim
n→∞ fn(x).

We require two results, first that the limit exists and second that the limit
satisfies the property f(X) = Y. Convergence of the sequence follows from the
fact that for each x, the sequence fn(x) is monotonically increasing (this is
Problem 22). The fact that Y = f(X) follows easily since for each n, fn(X) ≤
Y ≤ fn(X) + 1

2n . Taking limits as n→∞ gives f(X) ≤ Y ≤ f(X).

Example 53 Consider Ω = [0, 1] with Lebesgue measure and define a ran-
dom variable X(ω) = a1, a2, a3 (any three distinct real numbers) for ω ∈
[0, 1/4], (1/4, 1/2], (1/2, 1] respectively. Find σ(X). Now consider a random
variable Y such that Y (ω) = 0 or 1 as ω ∈ [0, 1/2], (1/2, 1] respectively. Verify
that σ(Y ) ⊂ σ(X) and that we can write Y = f(X) for some Borel measurable
function f(.).

3.2 Cumulative Distribution Functions

Definition 54 The cumulative distribution function (c.d.f.) of a random vari-
able X is defined to be the function F (x) = P [X ≤ x], for x ∈ <. Similarly, if
µ is a measure on <, then the cumulative distribution function is defined to be
F (x) = µ(−∞, x] . Note in the latter case, the function may take the value ∞.

Theorem 55 ( Properties of the Cumulative Distribution Function)

1. A c.d.f. F (x) is non-decreasing. i.e. F (y) ≥ F (x) whenever y ≥ x.
2. F (x)→ 0, as x→ −∞.
3. When F (x) is the c.d.f. of a random variable, F (x)→ 1, as x→∞.
4. F (x) is right continuous. i.e. F (x) = limF (x+ h) as h decreases to 0.

Proof.

1. If x ≤ y then X ≤ x implies X ≤ y or in set theoretic terms [X ≤ x] ⊂
[X ≤ y]. Therefore P (X ≤ x) ≤ P (X ≤ y).
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2. If X is a real-valued random variable then [X = −∞] = ϕ the empty set.
Therefore for any sequence xn decreasing to −∞,

limF (xn) = limP (X ≤ xn)
= P (∩∞n=1[X ≤ xn]) (since the sequence is nested)
= P (ϕ) = 0

3. Again if X is a real-valued random variable then [X < ∞] = Ω and for
any sequence xn increasing to ∞,

limF (xn) = limP (X ≤ xn)
= P (∪∞n=1[X ≤ xn]) (since the sequence is nested)
= P (Ω) = 1.

4. For any sequence hn decreasing to 0,

limF (x+ hn) = limP (X ≤ x+ hn)
= P (∩∞n=1[X ≤ x+ hn]) (since the sequence is nested)
= P (X ≤ x) = F (x)

Theorem 56 (existence of limits) Any bounded non-decreasing function has at
most countably many discontinuities and possesses limits from both the right
and the left. In particular this holds for cumulative distribution functions.

Suppose we denote the limit of F (x) from the left by F (x−) = limhF (x−h)
as h decreases to 0. Then P [X < x] = F (x−) and P [X = x] = F (x)−F (x−),
the jump in the c.d.f. at the point x.

Definition 57 Let xi be any sequence of real numbers and pi a sequence of
non-negative numbers such that

P
i pi = 1. Define

F (x) =
X

{i;xi≤x}
pi. (3.1)

This is the c.d.f. of a distribution which takes each value xi with probability
pi. A discrete distribution is one with for which there is a countable set S with
P [X ∈ S] = 1. Any discrete distribution has cumulative distribution function
of the form (3.1).

Theorem 58 If F (x) satisfies properties 1-4 of Theorem 19, then there exists a
probability space (Ω,F , P ) and a random variable X defined on this probability
space such that F is the c.d.f. of X.
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Proof. We define the probability space to be Ω = (0, 1) with F the
Borel sigma algebra of subsets of the unit interval and P the Borel measure.
Define X(ω) = sup{z;F (z) < ω}. Notice that for any c , X(ω) > c implies
ω > F (c) . On the other hand if ω > F (c) then since F is right continuous,
for some ² > 0, ω > F (c+ ²) and this in turn implies that X(ω) ≥ c+ ² > c.
It follows that X(ω) > c if and only if ω > F (c) . Therefore P [X(ω) > c] =
P [ω > F (c)] = 1 − F (c) and so F is the cumulative distribution function of
X.

3.3 Problems
1. If Ω = [0, 1] and P is Lebesgue measure, find X−1(C) where C = [0, 12)
and X(ω) = ω2.

2. Define Ω = {1, 2, 3, 4} and the sigma algebra F = {φ,Ω, {1}, {2, 3, 4}}.
Describe all random variables that are measurable on the probability space
(Ω,F).

3. Let Ω = {−2,−1, 0, 1, 2} and consider a random variable defined by
X(ω) = ω2. Find σ(X),the sigma algebra generated by X.Repeat if
X(ω) = |ω| or if X(ω) = ω + 1.

4. Find two different random variables defined on the space Ω = [0, 1] with
Lebesgue measure which have exactly the same distribution. Can you
arrange that these two random variables are independent of one another?

5. If Xi; i = 1, 2, ... are random variables, prove that maxi≤nXi is a
random variables and that limsup 1n

P
iXi is a random variable.

6. If Xi; i = 1, 2, ... are random variables, prove that X1X2...Xn is a
random variable.

7. Let Ω denote the set of all outcomes when tossing an unbiased coin three
times. Describe the probability space and the random variable X =
the number of heads observed. Find the cumulative distribution function
P [X ≤ x].

8. A number x is called a point of increase of a distribution function F if
F (x + ²) − F (x − ²) > 0 for all ² > 0 . Construct a discrete distribu-
tion function such that every real number is a point of increase. (Hint:
Can you define a discrete distribution supported on the set of all rational
numbers?).

9. Consider a stock price process which goes up or down by a constant factor
(e.g. St+1 = Stu or Std (where u > 1 and d < 1) with probabilities p
and 1−p respectively (based on the outcome of the toss of a biased coin).
Suppose we are interested in the path of the stock price from time t = 0
to time t = 5. What is a suitable probability space? What is σ(S3)?
What are the advantages of requiring that d = 1/u?
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10. Using a Uniform random variable on the interval [0, 1], find a random
variable X with distribution F (x) = 1 − pbxc,x > 0, where bxc denotes
the floor or integer part of. Repeat with F (x) = 1− e−λx, x > 0,λ > 0.

11. Suppose a coin with probability p of heads is tossed repeatedly. Let
Ak be the event that a sequence of k or more consecutive heads occurs
amongst tosses numbered 2k, 2k+1, . . . , 2k+1−1. Prove that P [Ak i.o.] =
1 if p ≥ 1/2 and otherwise it is 0.
(Hint: Let Ei be the event that there are k consecutive heads beginning
at toss numbered 2k + (i− 1)k and use the inclusion-exclusion formula.)

12. The Hypergeometric Distribution Suppose we have a collection (the popu-
lation) of N objects which can be classified into two groups S or F
where there are r of the former and N−r of the latter. Suppose we take
a random sample of n items without replacement from the population.
Show the probability that we obtain exactly x S’s is

f(x) = P [X = x] =

¡
r
x

¢¡
N−r
n−x

¢¡
N
n

¢ , x = 0, 1, . . .

Show in addition that as N →∞ in such a way that r/N → p for some
parameter 0 < p < 1 , this probability function approaches that of the
Binomial Distribution

f(x) = P [X = x] =

µ
n

x

¶
px(1− p)n−x, x = 0, 1, . . . n

13. The Negative Binomial distribution

The binomial distribution is generated by assuming that we repeated trials
a fixed number n of times and then counted the total number of successes
X in those n trials. Suppose we decide in advance that we wish a fixed
number ( k ) of successes instead, and sample repeatedly until we obtain
exactly this number. Then the number of trials X is random. Show that
the probability function is:

f(x) = P [X = x] =

µ
x− 1
k − 1

¶
pk(1− p)x−k, x = k, k + 1, . . .

14. Let g(u) be a cumulative distribution function on [0, 1] and F (x) be the
cumulative distribution function of a random variable X. Show that we
can define a deformed cumulative distribution function such that G(x) =
g(F (x)) at at all continuity points of g(F (x)). Describe the effect of this
transformation when

g(u) = Φ
¡
Φ−1(u)− α

¢
for Φ the standard normal cumulative distribution function. Take a spe-
cial case in which F corresponds to the N(2, 1) cumulative distribution
function.
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15. Show that if X has a continuous c.d.f. F (x) then the random variable
F (X) has a uniform distribution on the interval [0, 1].

16. Show that if C is a class of sets which generates the Borel sigma algebra
in R and X is a random variable then σ(X) is generated by the class of
sets

{X−1(A);A ∈ C}.
17. Suppose that X1,X2, ....are independent Normal(0,1) random variables

and Sn = X1 +X2 + ... +Xn. Use the Borel Cantelli Lemma to prove
the strong law of large numbers for normal random variables. i.e. prove
that for and ε > 0,

P [Sn > nε i.o.] = 0.

Note: you may use the fact that if Φ(x) and φ(x) denote the standard
normal cumulative distribution function and probability density function
respectively, 1 − Φ(x) ≤ Cxφ(x) for some constant C. Is it true that
P [Sn >

√
nε i.o.] = 0?

18. Show that the following are equivalent:

(a) P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) for all x, y
(b) P (X ∈ A,Y ∈ B) = P (X ∈ A)P (X ∈ B) for all Borel subsets of

the real numbers A,B.

19. Let X and Y be independent random variables. Show that for any Borel
measurable functions f, g on R, the random variables f(X) and g(Y )
are independent.

20. Show that if A is an uncountable set of non-negative real numbers, then
there is a sequence of elements of A, a1, a2, ... such that

P∞
i=1 ai =∞.

21. Mrs Jones made a rhubarb crumble pie. While she is away doing heart
bypass surgery on the King of Tonga, her son William (graduate student
in Stat-Finance) comes home and eats a random fraction X of the pie.
Subsequently her daughter Wilhelmina (PhD student in Stat-Bio) returns
and eats a random fraction Y of the remainder. When she comes home,
she notices that more than half of the pie is gone. If one person eats
more than a half of a rhubard-crumble pie, the results are a digestive
catastrophe. What is the probability of such a catastrophe if X and Y
are independent uniform on [0, 1]?

22. Suppose for random variables Y and X, σ(Y ) ⊂ σ(X). Define sets by

Am,n = {ω;m2−n ≤ Y (ω) < (m+ 1)2−n for m = 0,±1, ...
and define a function fn by

fn(x) =
X
m

m2−nI(x ∈ Bm,n)
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where
[X ∈ Bm,n] = Am,n.

Prove that the sequence of functions fn is non-decreasing in n.

23. Let (Ω, F, P ) be the unit interval [0, 1] together with the Borel subsets
and Borel measure. Give an example of a function from [0, 1] into R which
is NOT a random variable.

24. Let (Ω, F, P ) be the unit interval [0, 1] together with the Borel subsets
and Borel measure. Let 0 ≤ a < c < c < d ≤ 1 be arbitrary real numbers.
Give and example of a sequence of events An, n = 1, 2, ... such that the
following all hold:

P (lim inf An) = a

lim inf P (An) = b

lim supP (An) = c

P (lim supAn) = d

25. Let An, n = 1, 2, ... be a sequence of events such that Ai and Aj are
independent whenever

|i− j| ≥ 2
and

P
n P (An) =∞. Prove that

P (lim supAn) = 1

26. For each of the functions below find the smallest sigma-algebra for which
the function is a random variable. Ω = {−2,−2, 0, 1, 2} and

(a) X(ω) = ω2

(b) X(ω) = ω + 1

(c) X(ω) = |ω|

27. Let Ω = [0, 1] with the sigma-algebra F of Borel subsets B contained in
this unit interval which have the property that B = 1−B.

(a) Is X(ω) = ω a random variable with respect to this sigma-algebra?

(b) Is X(ω) = |ω − 1
2 | a random variable with respect to this sigma-

algebra?

28. Suppose Ω is the unit square in two dimensions together with Lebesgue
measure and for each ω ∈ Ω, we define a random variable X(ω) = mini-
mum distance to an edge of the square. Find the cumulative distribution
function of X and its derivative.
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29. Suppose that X and Y are two random variables on the same probability
space with joint distribution

P (X = m,Y = n) =

½
1

2m+1 if m ≥ n
0 if m < n

.

Find the marginal cumulative distribution functions of X and Y.


