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Statistical inference with non-probability survey samples 

Changbao Wu1 

Abstract 

We provide a critical review and some extended discussions on theoretical and practical issues with analysis 

of non-probability survey samples. We attempt to present rigorous inferential frameworks and valid statistical 

procedures under commonly used assumptions, and address issues on the justification and verification of 

assumptions in practical applications. Some current methodological developments are showcased, and 

problems which require further investigation are mentioned. While the focus of the paper is on non-

probability samples, the essential role of probability survey samples with rich and relevant information on 

auxiliary variables is highlighted. 
 

Key Words: Auxiliary information; Bootstrap variance estimator; Calibration method; Doubly robust estimator; 
Estimating equations; Inverse probability weighting; Model-based prediction; Poststratification; Pseudo 

likelihood; Propensity score; Quota survey; Sensitivity analysis; Variance estimation. 

 

 

1. Introduction 
 

The field of survey sampling distinguishes itself from other areas of statistics with a number of unique 

features. The target population consists of finite number of well defined units, and the population 

parameters can be determined without error, at least conceptually, by conducting a census. Operational 

constraints and administrative convenience for data collection often make it necessary to consider 

stratification, clustering and unequal probability selection. Since the seminal paper of Neyman (1934), 

probability sampling methods have become one of the primary data collection tools for official statistics 

and researchers in health sciences, social and economic studies, business and marketing, agricultural and 

natural resource inventories, and other areas. Probability survey samples have also been used for analytic 

studies involving models and model parameters; see, for instance, Binder (1983), Godambe and 

Thompson (1986), Thompson (1997), Rao and Molina (2015), among others. Probability survey samples 

and design-based inference have been a successful story as part of statistical sciences in the past 80 years. 

In recent years, however, “there has been a wind of change and other data sources are being 

increasingly explored” (Beaumont, 2020). The success of probability survey samples led to more 

ambitious study designs, long and complicated questionnaires and increased burden on respondents. The 

response rates have been declining and the cost of data collection has been soaring over the years. With 

the advances of new technology and the explosion of information over the Internet, there is also a strong 

desire to access real-time statistics. Statistics Canada has launched the so-called modernization initiatives, 

“moving beyond a survey-first approach with new methods and integrating data from a variety of existing 

sources”. 

Non-probability survey samples are one of those data sources which have gained increased popularity 

in recent years. Non-probability samples are not something new to the field of survey sampling. They 

have been used since the early days of conducting surveys. Quota surveys, for instance, lead to 
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non-probability samples, and the method is widely used and can be successful under certain conditions; 

see Section 5 for further discussions. Non-probability survey samples had not gained true momentum in 

the past in survey practice due to the lack of a mature theoretical framework for analyzing the data. 

Nevertheless, they are an available data source that is cheaper and quicker to obtain and have become 

prevalent for online research. Commercial survey firms create and maintain a long list of individuals, 

called the opt-in panels, who agreed to be contacted to participate in surveys either as volunteers or with 

incentives. The precise mechanisms for individuals being included in the panel are typically unknown, 

resulting in panel-based non-probability survey samples. 

The main issue with non-probability survey samples is that they are biased samples and do not 

represent the target population. One might argue that, other than iid samples, most samples are biased, and 

even probability survey samples are biased. The reason that we do not worry about the biased nature of 

probability survey samples is the known inclusion probabilities from the survey design, which lead to 

valid estimation methods through suitable weighting procedures. The real main issue with non-probability 

survey samples thus is the unknown sample inclusion or participation mechanisms. It will become clear 

from discussions in Section 4 that the biased nature of non-probability samples cannot be corrected by 

using the sample itself. It requires additional auxiliary information on the target population. 

This paper provides a critical review and some extended discussions on theoretical and practical issues 

with analysis of non-probability survey samples. Section 2 describes the general setting, commonly used 

assumptions, and inferential frameworks for statistical procedures discussed in the paper. Section 3 

presents model-based prediction approach to non-probability survey samples. Section 4 discusses 

estimation of propensity scores and constructions of propensity score based estimators. Section 5 shows 

the connections between inverse probability weighted estimators and quota surveys with extensions to 

poststratification. Section 6 focuses on techniques as well as issues with variance estimation. In Section 7, 

we address the important question on how to check and verify the required assumptions in practice. Some 

concluding remarks are given in Section 8. 

 
2. Assumptions and inferential frameworks 
 

Suppose that the target population  = 1, 2, ,U N  consists of N  labelled units. Associated with unit 

i  are values ix  and iy  for the auxiliary variables x  and the study variable .y  The discussions focus on a 

single y  but the dataset most likely contains multiple study variables. Let 
1

1

N

y ii
N y −

=
=   be the 

population mean which is the parameter of interest. Let  ( , ),i i Ay i Sx  be the dataset for the non-

probability survey sample AS  with An  participating units. For most practical scenarios, the simple sample 

mean 1=
A

A A ii S
y n y−

  is a biased estimator of y  and hence is invalid. 

 

2.1 Assumptions 
 

Let = ( )i AR I i S  be the indicator variable for unit i  being included in the non-probability sample 

.AS  Note that the variable iR  is defined for all i  in the target population. Let  
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 ( ) ( )= , = =1 , , =1, 2, , .A

i A i i i i iP i S y P R y i N  x x   

We call the A

i  the propensity scores, a term borrowed from the missing data literature (Rosenbaum and 

Rubin, 1983). Some authors use the term participation probabilities; see, for instance, Beaumont (2020) 

and Rao (2021), among others. The propensity scores A

i  characterize the sample inclusion and 

participation mechanisms. They are unknown and require suitable model assumptions for the development 

of valid estimation methods. The following three basic assumptions were used by Chen, Li, and Wu 

(2020), which were adapted from the missing data literature. 

A1 The sample inclusion and participation indicator iR  and the study variable iy  are independent 

given the set of covariates ,ix  i.e., ( ) .i i iR y⊥ x  

A2 All the units in the target population have non-zero propensity scores, i.e., 0,A

i   

=1, 2, , .i N  

A3 The indicator variables 1 2, , , NR R R  are independent given the set of auxiliary variables 

( )1 2, , , .Nx x x  

 

Assumption A1 is similar to the missing at random (MAR) assumption for missing data analysis. 

Under A1, we have ( ) ( ) ( )= =1 , = =1 = .A

i i i i i i iP R y P R x x x  Assumption A2 can be problematic in 

practice; see Section 7 for further discussions. Assumption A3 typical holds when participants are 

approached one at a time but can be questionable when clustered selections are used. It is shown in 

Section 4 that estimation of ( )=A

i i  x  under assumption A1 requires auxiliary information from the 

target population. The ideal scenario is that the complete auxiliary information ( )2, , ,
N1x x x  is 

available. The more practical scenario is that auxiliary information can be obtained from an existing 

probability survey. 

A4 There exists a probability survey sample BS  of size Bn  with information on the auxiliary 

variables x  (but not on )y  available in the dataset  ( , ), ,B

i i Bd i Sx  where B

id  are the design 

weights for the probability sample .BS  

 

The BS  is called the reference probability survey sample. The most crucial part of assumption A4 is 

that the set of auxiliary variables x  is observed in both the non-probability sample AS  and the probability 

sample .BS  A reference probability survey sample is often available in practice but the common set of 

auxiliary variables may not contain all the components to satisfy assumption A1. 

 
2.2 Inferential frameworks 
 

There are three possible sources of variation under the general setting of two samples AS  and :BS  (i) 

The model q  for the propensity scores on the sample inclusion and participation in the non-probability 

survey sample ;AS  (ii) The model   for the outcome regression ( )y x  or imputation; and (iii) The 

probability sampling design p  for the reference probability survey sample .BS  For the three approaches 



286 Wu: Statistical inference with non-probability survey samples 
 

 
Statistics Canada, Catalogue No. 12-001-X 

to inference to be discussed in Sections 3 and 4, the reference probability sample BS  is always involved. 

Each of the three approaches requires a joint randomization framework involving p  and one of ( ), .q   

(a) Model-based prediction approach: The p  framework under the joint randomization of the 

outcome regression model   and the probability sampling design .p  

(b) Inverse probability weighting using estimated propensity scores: The qp  framework under the 

joint randomization of the propensity score model q  and the probability sampling design .p  

(c) Doubly robust inference: The qp  framework or the p  framework, with no specification of 

which one. 

 

The inferential framework is the foundation for theoretical development. Consistency of point 

estimators needs to be established under the suitable joint randomization. Theoretical variances typically 

involve two components, one from each source of variation, and correct derivations of the two 

components are the key to the construction of consistent variance estimators under the designated 

inferential framework.  

 
3. Model-based prediction approach  
 

Model-based prediction methods for finite population parameters require two critical ingredients: the 

amount of auxiliary information that is available at the estimation stage and the reliability of the assumed 

model for inference. In the absence of any auxiliary information, the common mean model ( ) 0= ,iE y   

( ) 2= ,iV y  =1, ,i N  may be viewed as reasonable but the model-based prediction estimator 
1ˆ = = ,

A
y A A ii S

y n y −

  although unbiased under the model since ( ) = 0,A yE y −  is generally not an 

acceptable estimator of .y  The variance 2  for the common mean model is typically large and it renders 

the estimator ˆ =
Ay y  with a prediction variance that is too large to be practically useful.  

 

3.1 Semiparametric outcome regression models 
 

Without loss of generality, we assume that x  contains 1 as its first component corresponding to the 

intercept of a regression model. Under the setting described in Section 2, we consider the following 

semiparametric model for the finite population, denoted as :  

 ( ) ( ) ( ) ( ) 2= , , and = , =1, 2, , ,i i i i i iE y m V y v i N  x x β x x  (3.1) 

where the mean function ( , )m    and the variance function ( )v   have known forms, and the ’siy  are also 

assumed to be conditionally independent given the ’s.ix  Let 0β  and 2

0  be the true values of the model 

parameters β  and 2  under the assumed model. The first major implication of assumption A1 is that 

( ) ( ), =1 =i i i i iE y R E y x x  and ( ) ( ), =1 = .i i i i iV y R V y x x  The model (3.1) which is assumed for 

the finite population also holds for the units in the non-probability survey sample .AS  The quasi maximum 
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likelihood estimator β̂  of 0β  is obtained using the dataset  ( , ),i i Ay i Sx  from the non-probability 

survey sample as the solution to the quasi score equations (McCullagh and Nelder, 1989) given by  

 ( )
( )

   
1,

S = ( ) ( , ) = .
A

i

i i i

i S

m
v y m

−




−




x β
β x x β 0

β
 (3.2) 

The semiparametric model (3.1) can be extended to replace ( )iv x  by a general variance function ( )iv   

where = ( , ).i im x β  The quasi maximum likelihood estimation theory covers linear or nonlinear 

regression models with the weighted least square estimators, the logistic regression model and other 

generalized linear models. Let 0= ( , )i im m x β  and ˆˆ = ( , ),i im m x β =1, 2, , .i N  

 
3.2 Two general forms of prediction estimators 
 

There are two commonly used model-based prediction estimators for y  in the presence of complete 

auxiliary information  1, , ;Nx x  see Chapter 5 of Wu and Thompson (2020). Note that 
1

1
( ) = .

N

y ii
E N m  −

=  The two prediction estimators are constructed as  

 
1 2

1 1

1 1
ˆ ˆ ˆ ˆ ˆ= and = .

A A

N N

y i y i i i

i i S i S i

m y m m
N N

 
=   =

  
− + 

  
     (3.3) 

The estimator 
2

ˆ
y  is built based on  1

A A
y i ii S i S

N y y −

 
= +   and uses ˆ =

A
ii S

m
  

1
ˆ ˆ

A

N

i ii i S
m m

= 
−   to predict the unobserved term .

A
ii S

y
  Under a linear regression model where 

( ), ,m =x β x β  the two estimators given in (3.3) reduce to  

 ( )1 2

ˆ ˆ ˆˆ ˆ= and = ,A
y y A A

n
y

N
     − +x xβ x β β  (3.4) 

where 1

1
=

N

ii
N −

=x x  is the vector of the population means of the x  variables and 1

A
A A ii S

n−


= x x  is 

the vector of the simple sample means of x  from the non-probability sample .AS  If the linear regression 

model contains an intercept and β̂  is the ordinary least square estimator, we have 
2 1

ˆˆ ˆ= =y y  xβ  since 

ˆ = 0A Ay − x β  due to the zero sum of fitted residuals. The prediction estimators in (3.4) under a linear 

model only require the population means x  in addition to the non-probability sample .AS  Under the 

setting described in Section 2 with auxiliary information on x  provided through a reference probability 

sample ,BS  we simply replace 
1

ˆ
N

ii
m

=  by ˆ
B

B

i ii S
d m

  for the estimators in (3.3) and substitute x  by 
1ˆˆ =

B

B

B i ii S
N d −

x x  for the estimators in (3.4), where ˆ = .
B

B

B ii S
N d

  The population size N  appearing 

in (3.3) or (3.4) should also be replaced by ˆ
BN  even if it is known. 

 
3.3 Mass imputation 
 

Model-based prediction estimators of y  using a non-probability survey sample on ( , )y x  and a 

reference probability survey sample on x  have traditionally been presented as the mass imputation 

estimator. The study variable y  is not observed for any units in the reference survey sample BS  and hence 
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can be viewed as missing for all .Bi S  Let *

iy  be an imputed value for ,iy .Bi S  The mass imputation 

estimator of y  is then constructed as  

 *

MI

1
ˆ = ,

ˆ
B

B

y i i

i SB

d y
N




  (3.5) 

where ˆ
BN  is defined as before and the subscript “MI” indicates “Mass Imputation” (not “Multiple 

Imputation”). Under the deterministic regression imputation where * ˆ= ,i iy x β  the estimator MI
ˆ

y  reduces 

to the model-based prediction estimator ˆ̂ xβ  as discussed in Section 3.2. 

The mass imputation approach to analyzing non-probability survey samples has the same spirit as 

model-based prediction methods but it opens the door for using more flexible models and imputation 

techniques that have been developed in the existing literature on missing data problems. The approach was 

first examined by Rivers (2007) through the so-called sample matching method. For each ,Bi S  the 

“missing” iy  is imputed as *

i jy y=  for some ,Aj S  where j  is a matching donor from AS  selected 

through the nearest neighbor method as measured by the distance between ix  and .jx  The underlying 

model   for the nearest neighbor imputation method is nonparametric, i.e., ( ) ( )i i iE y m =x x  for some 

unknown function ( ).m   The matching value jy  can be viewed as the predicted value of the missing iy  

under the model. Theoretical properties of estimators based on nearest neighbor imputation were 

discussed by Chen and Shao (2000, 2001) for missing survey data problems. 

The semiparametric model (3.1) can be used for deterministic regression mass imputation. Under 

assumption A1, a consistent estimator β̂  of β  is first obtained from the non-probability sample dataset 

 ( , ), ,i i Ay i Sx  and the estimator β̂  is then used to compute the imputed values ( )* ˆ,i iy m= x β  for 

.Bi S  In other words, the assumption A1 implies the so-called model transportability by Kim, Park, 

Chen and Wu (2021): the model which is built for the non-probability sample can be used for prediction 

with the reference probability sample. The resulting mass imputation estimator MI
ˆ

y  is identical to one of 

the model-based prediction estimators presented in Section 3.2. Asymptotic properties and variance 

estimation for the estimator MI
ˆ

y  using the semiparametric model (3.1) were discussed by Kim et al. 

(2021). 

Under the mass imputation approach, the only role played by the observed iy  for Ai S  is to estimate 

the model parameters .β  The estimator MI
ˆ

y  is constructed using the fitted model and auxiliary 

information from the reference probability sample .BS  It seems that we did not fully use the information 

on the observed iy  given that y  is the main parameter of interest. This led to the research question 

described in Chapter 17 of Wu and Thompson (2020) on “reverse sample matching”. The proposed 

estimator is constructed as * 1 *

A
ˆˆ ( )

A
y i ii S

N d y −


=   using all the observed iy  in the non-probability 

sample, where * *ˆ = .
A

ii S
N d

  The *

id  is a matched survey weight from BS  such that * B

i jd d=  with Bj S  

being the nearest neighbor of Ai S  as measured by .i j−x x  Theoretical properties of the reverse 

matched estimator ˆ
yA  using the nearest neighbor Bj S  to match *

id  with B

jd  have not been formally 

investigated in the existing literature. 



Survey Methodology, December 2022 289 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Wang, Graubard, Katki and Li (2020) proposed a kernel weighting approach to reverse sample 

matching using * ,
B

i ij jj S
d K d


  where ijK  is a kernel distance between ˆ

ip  and ˆ ;jp  see the adjusted 

logistic propensity (ALP) weighting method discussed at the end of Section 4.1.1 on the calculation of ˆ .ip  

They showed that the estimator A
ˆ

y  is consistent under certain regularity conditions. In a recent working 

paper posted on arXiv by Liu and Valliant (2021), the authors discussed issues with the bias and the 

variance of the reverse matched estimator under different randomization frameworks involving one, two 

or all three of the sources ( ), , .p q   The authors also proposed a calibration step over the matched 

weights, which seems to be a promising idea. Further research on this topic is needed. 

The mass imputation approach to analyzing non-probability survey samples leads to an interesting 

research question that is currently under investigation by a doctoral student at University of Waterloo: Is it 

theoretically feasible and practically useful to create a mass-imputed dataset  *( , , ),B

i i i By d i Sx  based 

on the reference probability survey sample that can be used for general statistical inferences? The answer 

clearly depends on the types of inferential problems to be conducted over the imputed dataset. A minimum 

requirement is that the conditional distribution of the study variable y  given the covariates x  is preserved 

for the mass-imputed dataset. The nearest neighbor imputation method and the random regression 

imputation method can be useful for this purpose. Fractional imputation is another possibility, especially 

for binary or ordinal study variables. Multiple imputation is also potentially useful in this direction to 

create multiple mass-imputed datasets. The subscript “MI” in this case might need to be changed to “MI2”, 

meaning “Mass Imputation with Multiple Imputation”. 

 
4. Propensity scores based approach  
 

The propensity scores ( )=1 ,A

i i i iP R y = x  for the non-probability survey sample AS  are 

theoretically defined for all the units in the target population. Estimation of the propensity scores for units 

in ,AS  which plays the most crucial role for propensity scores based methods, requires an assumed model 

on the propensity scores and auxiliary information at the population level. In this section, we first discuss 

estimation procedures for the propensity scores under the setting and assumptions described in Section 2, 

and then provide an overview of estimation methods proposed in the recent literature on the finite 

population mean y  involving the estimated propensity scores. 

 
4.1 Estimation of propensity scores 
 

Under assumption A1, the propensity scores ( ) ( )= =1A

i i i iP R =x x  are a function of the auxiliary 

variables ix  but the functional form can be complicated and is completely unknown. Three popular 

parametric forms ( ),A

i i = x α  in dealing with a binary response can be considered: (i) the inverse logit 

function  
1

1 1 exp( ) ;A

i i
−

= − + x α  (ii) the inverse probit function = ( ),A

i i  x α  where ( )   is the 

cumulative distribution function of (0,1);N  and (iii) the inverse complementary log-log function 
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 =1 exp exp( ) .A

i i − − x α  Nonparametric techniques without assuming an explicit functional form for 

( ) x  are attractive alternatives for the estimation of propensity scores. 

 
4.1.1 The pseudo maximum likelihood method 
 

Let ( , )A

i i = x α  be a specified parametric form with unknown model parameters .α  Under the ideal 

situation where the complete auxiliary information  1 2, , ,
N

x x x  is available and with the independence 

assumption A3, the full log-likelihood function on α  can be written as (Chen et al., 2020)  

 ( ) ( ) ( ) ( )
1

1=1

log 1 = log log 1 .
1

i i

A

AN N
R R

A A Ai
i i iA

i S ii i


  



−

 =

  
= − + −   

−   
 α  (4.1) 

The maximum likelihood estimator of α  is the maximizer of ( ).α  Under the current setting where the 

population auxiliary information is supplied by the reference probability sample ,BS  we replace ( )α  by 

the pseudo log-likelihood function (Chen et al., 2020)  

 ( ) ( )* log log 1 .
1

A B

A
B Ai
i iA

i S i Si

d



 

 
= + − 

− 
 α  (4.2) 

The maximum pseudo-likelihood estimator α̂  is the maximizer of ( )*
α  and can be obtained as the 

solution to the pseudo score equations given by *( ) ( ) .=   =U α α α 0  If the inverse logit function is 

assumed for ,A

i  the pseudo score functions are given by  

 ( ) ( ), .
A B

B

i i i i

i S i S

d 
 

= − U α x x α x  (4.3) 

In general, the pseudo score functions ( )U α  at the true values of the model parameters 0α  are unbiased 

under the joint qp  randomization in the sense that  0( ) ,qpE =U α 0  which implies that the estimator α̂  is 

qp -consistent for 0α  (Tsiatis, 2006). 

Valliant and Dever (2011) made an earlier attempt to estimate the propensity scores by pooling the 

non-probability sample AS  with the reference probability sample .BS  Let AB A BS S S=   be the pooled 

sample without removing any potential duplicated units. Let * 1iR =  if Ai S  and * 0iR =  if .Bi S  

Valliant and Dever (2011) proposed to fit a survey weighted logistic regression model to the pooled 

dataset  *( , , ), ,i i i ABR d i Sx  where the weights are defined as 1id =  if Ai S  and ( )ˆ1B

i i A Bd d n N= −  if 

.Bi S  The key motivation behind the creation of the weights id  is that the total weight 

ˆ
AB B

B

i i Bi S i S
d d N

 
= =   for the pooled sample matches the estimated population size, and the hope is 

that the survey weighted logistic regression model would lead to valid estimates for the propensity scores. 

It was shown by Chen et al. (2020) that the pooled sample approach of Valliant and Dever (2011) does not 

lead to consistent estimators for the parameters of the propensity scores model unless the non-probability 

sample AS  is a simple random sample from the target population. 
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The method of Valliant and Dever (2011) reveals a fundamental difficulty with approaches based on 

the pooled sample .ABS  If the units in the non-probability sample AS  are treated as exchangeable in the 

pooled sample ,ABS  which was reflected by the equal weights = 1id  used in the method of Valliant and 

Dever (2011), the resulting estimates for the propensity scores will be invalid unless AS  is a simple 

random sample. This observation has implications to the validity of nonparametric methods or regression 

tree-based methods to be discussed in Section 4.1.3. 

In a recent paper, Wang, Valliant and Li (2021) proposed an adjusted logistic propensity (ALP) 

weighting method. The method involves two steps for computing the estimated propensity scores. The 

initial estimates, denoted as ˆ
ip  for ,Ai S  are obtained by fitting the survey weighted logistic regression 

model to the pooled sample ABS  similar to Valliant and Dever (2011), with the weights defined as = 1id  

if Ai S  and B

i id d=  if .Bi S  The final estimated propensity scores are computed as ( )ˆ ˆ ˆ1 .A

i i ip p = −  

The key theoretical argument is the equation ( )1A

i i ip p = −  where ( ),A

i AP i S U =   

( )* * ,i A Ap P i S S U=    and *

AS  is a copy of AS  but is viewed as a different set. However, there are 

conceptual issues with the arguments since the probabilities ( )A

i AP i S U =   are defined under the 

assumed propensity scores model with the given finite population ,U  and the assumed model does not 

lead to a meaningful interpretation of the probabilities ( )* * .i A Ap P i S S U=    The latter require a 

different probability space and are conditional on the given .AS  As a matter of fact, one can easily argue 

that under the assumed propensity scores model and conditional on the given ,AS  we have = 1ip  if 

Ai S  and 0ip =  otherwise. 

 
4.1.2 Estimating equations based methods 
 

The pseudo score equations ( ) =U α 0  derived from the pseudo likelihood function *( )α  may be 

replaced by a system of general estimating equations. Let ( , )h x α  be a user-specified vector of functions 

with the same dimension of .α  Let  

 ( ) ( ) ( ) ( ), , , .
A B

B

i i i i

i S i S

d 
 

= − G α h x α x α h x α  (4.4) 

It follows that  0( ) =qpE G α 0  for any chosen ( , ).h x α  In principle, an estimator α̂  of α  can be obtained 

by solving ( ) =G α 0  with the chosen parametric form ( , )A

i i = x α  and the chosen functions ( , ),h x α  

and the estimator α̂  is consistent. 

The estimator α̂  using arbitrary user-specified functions ( , )h x α  is typically less efficient than the one 

based on the pseudo score functions, due to the optimality of the maximum likelihood estimator 

(Godambe, 1960). Some limited empirical results also show that the solution to ( ) =G α 0  can be unstable 

for certain choices of ( , ).h x α  Nevertheless, the estimating equations based methods provide a useful tool 

for the estimation of the propensity scores under more restricted scenarios. For instance, if we let 

( , ) ( , ),=h x α x x α  the estimating functions given in (4.4) reduce to  



292 Wu: Statistical inference with non-probability survey samples 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 ( )
( )

.
,

A B

Bi
i i

i S i Si

d
 

= − 
x

G α x
x α

 (4.5) 

The form of ( )G α  in (4.5) looks like a “distorted” version of the pseudo score functions given in (4.3) 

under a logistic regression model for the propensity scores. The most practically important difference 

between the two versions, however, is the fact that the ( )G α  given in (4.5) only requires the estimated 

population totals for the auxiliary variables .x  There are scenarios where the population totals of the 

auxiliary variables x  can be accessed or estimated from an existing source but values of x  at the unit 

level for the entire population or even a probability sample are not available. The use of estimating 

functions ( )G α  given (4.5) makes it possible to obtain valid estimates of the propensity scores for units 

in the non-probability sample. Section 6.3 describes an example where the estimating equations based 

approach leads to a valid variance estimator for the doubly robust estimator of the population mean. 

 
4.1.3 Nonparametric methods and regression-tree based methods 
 

The propensity scores ( )1A

i i iP R = = x  are the mean function ( ) ( )q i i iE R =x x  for the binary 

response .iR  Nonparametric methods for estimating ( ) x  can be an attractive alternative. The major 

challenge is to develop estimation procedures which provide valid estimates of the propensity scores. As 

noted in Section 4.1.1, estimation methods based on the pooled sample AB A BS S S=   may lead to invalid 

estimates. Strategies similar to the one used by Chen et al. (2020) can be theoretically justified under the 

joint qp  framework, where the estimation procedures are first derived using data from the entire finite 

population and unknown population quantities are then replaced by estimates obtained from the reference 

probability sample. 

We consider the kernel regression estimator of ( ).A

i i = x  Suppose that the dataset 

 ( , ), 1, 2, ,i iR i N=x  is available for the finite population. Let ( ) ( )hK t K t h=  be a chosen kernel with 

a bandwidth .h  The Nadaraya-Watson kernel regression estimator (Nadaraya, 1964; Watson, 1964) of 

( ) x  is given by  

 ( )
( )

( )
=1

1

.

N

h j jj

N

h jj

K R

K


=

−
=

−





x x
x

x x
 (4.6) 

A kernel estimator in the form of ( ) x  given in (4.6) usually has no practical values since we do not have 

complete auxiliary information for the finite population. It turns out that for the estimation of propensity 

scores the numerator in (4.6) only requires observations from the non-probability sample due to the binary 

variable ,jR  and the denominator is a population total and can be estimated by using the reference 

probability sample. The nonparametric kernel regression estimator of the propensity scores is given by 

(Yuan, Li and Wu, 2022)  

 ( )
( )

( )
ˆ ˆ , .A

B

h i jj SA

i i AB

j h i jj S

K
i S

d K
 





−
= = 

−





x x
x

x x
 (4.7) 
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The estimator ˆ A

i  given in (4.7) is consistent under the joint qp  framework and the q -model for the 

propensity scores is very flexible due to the nonparametric assumption on ( ). x  The estimated propensity 

scores are easy to compute when the dimension of x  is not too high. Issues with high dimensional x  and 

the choices of the kernel ( )hK   and the bandwidth h  remain as in general applications of kernel-based 

estimation methods. Simulation results reported by Yuan et al. (2022) show that the kernel estimation 

method provides robust results for the propensity scores using the normal kernel and popular choices for 

the bandwidth. 

Chu and Beaumont (2019) considered regression-tree based methods for estimating the propensity 

scores. Their proposed TrIPW method is a variant of the CART algorithm (Breiman, Friedman, Olshen 

and Stone, 1984) and uses data from the combined sample of the non-probability sample and the reference 

probability sample. The method aims to construct a classification tree with the terminal nodes of the final 

tree treated as homogeneous groups in terms of the propensity scores. The estimator of y  is constructed 

based on the final tree and post-stratification. Section 5 contains further details on poststratified 

estimators. 

Statistical learning techniques such as classification and regression trees and random forests have been 

developed primarily for the purpose of prediction. Their use for estimating the propensity scores of non-

probability samples requires further research. It is not a desirable approach to naively apply the methods 

over the pooled sample ABS  without theoretical justifications on the consistency of the final estimators. 

Further research towards this direction should be encouraged. 

 
4.2 Inverse probability weighting 
 

Let ˆ A

i  be an estimate of ( )A

i A iP i S =  x  under a chosen method for the estimation of the 

propensity scores. Two versions of the inverse probability weighted (IPW) estimator of y  are constructed 

as  

 
IPW1 IPW 2

1 1
ˆ ˆ= and = ,

ˆˆ ˆ
A A

i i

A AA
i S i Si i

y y

N N
 

  

   (4.8) 

where N  is the population size and 1ˆ ˆ( )
A

A A

ii S
N  −


=  is the estimated population size. The estimator 

IPW1
̂  is a version of the Horvitz-Thompson estimator and 

IPW 2
̂  corresponds to the Hájek estimator as 

discussed in design-based estimation theory. There are ample evidences from both theoretical 

justifications and practical observations that the Hájek estimator 
IPW 2

̂  performs better than the Horvitz-

Thompson estimator and should be used in practice even if the population size N  is known. 

The validity of the IPW estimators 
IPW1

̂  and 
IPW 2

̂  depends on the validity of the estimated propensity 

scores. Under the assumptions A1 and A2 and the parametric model 
0( , ),A

i i = x α  the consistency of 

IPW1
̂  follows a standard two-step argument. Let 

IPW

1 ,
A

A

i ii S
N y −


=   which is not a computable 

estimator but an analytic tool useful for asymptotic purposes. It follows that ( )IPWq yE  =  and the order 

( ) ( )IPW

1

q AV O n −=  holds under the condition that A

A in N  is bounded away from zero. As a consequence, 
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we have 
IPW y →  in probability as .An →  Under the correctly specified model ( )0,A

i i = x α  for the 

propensity scores, the typical root- n  order ( )1 2

0
ˆ

p AO n−− =α α  holds for commonly encountered scenarios. 

We can show by treating 
IPW1

̂  as a function of α̂  and using a Taylor series expansion that 

( )
IPW1 IPW

1 2ˆ
p AO n  −= +  under some mild finite moment conditions. The consistency of 

IPW2
̂  can be 

established using standard arguments for a ratio estimator (Section 5.3, Wu and Thompson, 2020) where 

( )
1

1 =1 (1).
A

A

i pi S
N o

−
−


+  

 
4.3 Doubly robust estimation 
 

The dependence of the IPW estimator on the validity of the assumed propensity score model is viewed 

as a weakness of the method. The issue is not unique to the IPW estimators and is faced by many other 

approaches involving an assumed statistical model. Robust estimation procedures which provide certain 

degrees of protection against model misspecifications have been pursued by researchers, and the so-called 

doubly robust estimators have been a successful story since the work of Robins, Rotnitzky, and Zhao 

(1994). 

The doubly robust (DR) estimator of y  is constructed using both the propensity score model q  and 

the outcome regression model .  The DR estimator with the given propensity scores ,A

i Ai S  and the 

mean responses ( ),i i im E y= x 1, 2, ,i N=  has the following general form,  

 
DR

1

1 1
= .

A

N
i i

iA
i S ii

y m
m

N N


 =

−
+   (4.9) 

The second term on the right hand side of (4.9) is the model-based prediction of .y  The first term is a 

propensity score based adjustment using the errors i i iy m = −  from the outcome regression model. The 

magnitude of the adjustment term is negatively correlated to the “goodness-of-fit” of the outcome 

regression model. It can be shown that 
DR

  is an exactly unbiased estimator of y  if one of the two 

models q  and   is correctly specified and hence it is doubly robust. The estimator 
DR

  has an identical 

structure to the generalized difference estimator of Wu and Sitter (2001). It is important to note that the 

double robustness property of 
DR

  does not require the knowledge of which of the two models being 

correctly specified. It is also apparent that the estimator 
DR

  given in (4.9) is not computable in practical 

applications. 

Let ˆ A

i  and ˆ
im  be respectively the estimators of A

i  and im  under the assumed models q  and .  

Under the two-sample setting described in Section 2, the two DR estimators of y  proposed by Chen et al. 

(2020) are given by  

 
DR1

ˆ1 1
ˆ ˆ=

ˆ
A B

Bi i
i iA

i S i Si

y m
d m

N N


 

−
+   (4.10) 

and  
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DR 2

ˆ1 1
ˆ ˆ= ,

ˆ ˆˆ
A B

Bi i
i iAA B

i S i Si

y m
d m

N N


 

−
+   (4.11) 

where B

id  are the design weights for the probability sample ,
B

S ( )
1

ˆ ˆ=
A

A A

ii S
N 

−

  and ˆ = .
B

B B

ii S
N d

  

The estimator 
DR 2

̂  using the estimated population size has better performance in terms of bias and mean 

squared error and should be used in practice. 

The probability survey design p  is an integral part of the theoretical framework for assessing the two 

estimators 
DR 1

̂  and 
DR 2

ˆ .  It is assumed that AS  and BS  are selected independently, which implies that 

( ) 1
ˆ ˆ= .

B

NB

p i i ii S i
E d m m

 =   Consistency of the estimators 
DR 1

̂  and 
DR 2

̂  can be established under either 

the qp  or the p  framework. It should be noted that even if the non-probability sample AS  is a simple 

random sample with ,A

i An N =  the doubly robust estimator in the form of (4.9) does not reduce to the 

model-based prediction estimator 
2

ˆ
y  given in (3.3). 

 

4.4 The pseudo empirical likelihood approach 
 

The pseudo empirical likelihood (PEL) methods for probability survey samples have been under 

development over the past two decades. Two early papers on the topic are Chen and Sitter (1999) on point 

estimation incorporating auxiliary information and Wu and Rao (2006) on PEL ratio confidence intervals. 

The PEL approaches are further used for multiple frame surveys (Rao and Wu, 2010a) and Bayesian 

inferences with survey data (Rao and Wu, 2010b; Zhao, Ghosh, Rao and Wu, 2020b). Using the PEL 

methods for general inferential problems with complex surveys has been studied in two recent papers 

(Zhao and Wu, 2019; Zhao, Rao and Wu, 2020a). 

Chen, Li, Rao and Wu (2022) showed that the PEL provides an attractive alternative approach to 

inference with non-probability survey samples. Let ˆ ,A

i Ai S  be the estimated propensity scores under an 

assumed parametric or non-parametric model, .q  The PEL function for the non-probability survey sample 

AS  is defined as  

 ( )PEL
( ) log ,

A

A

A i i

i S

n d p


= p  (4.12) 

where 1= ( , , )
Anp pp  is a discrete probability measure over the An  selected units in ,AS  

1 ˆˆ= ( )A A A

i id N −  and 1ˆ ˆ= ( )
A

A A

jj S
N  −

  which is defined earlier in Section 4. Without using any 

additional information, maximizing ( )PEL
p  under the normalization constraint  

 = 1
A

i

i S

p


  (4.13) 

leads to ˆ = ,A

i ip d .Ai S  The maximum PEL estimator of y  is given by 
PEL

ˆ ˆ= ,
A

i ii S
p y

  which is 

identical to the IPW estimator 
IPW 2

̂  given in (4.8). 

The PEL approach to non-probability survey samples provides flexibilities in combining information 

through additional constraints and constructing confidence intervals and conducting hypothesis tests using 

the PEL ratio statistic. The maximum PEL estimator 
PEL

ˆ ˆ=
A

i ii S
p y

  is doubly robust if ( )1
ˆ ˆ, ,

Anp p  is 
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the maximizer of ( )PEL
p  under both the normalization constraint and the model-calibration constraint 

given by  

 ˆ ,B

A

i i

i S

p m m


=  (4.14) 

where ( )
1

ˆ ˆ
B

B B B

i ii S
m N d m

−


=   is computed using the fitted values ˆ ,im Bi S  from an assumed outcome 

regression model, .  The equation (4.14) is a modified version of the original model-calibration constraint 

of Wu and Sitter (2001) using the probability sample BS . Chen et al. (2022) contain further details on the 

asymptotic distributions of the PEL ratio statistic and simulation studies on the performances of PEL ratio 

confidence intervals on a finite population proportion. 

 
5. Quota surveys and poststratification 
 

Quota surveys are one of the oldest non-probability survey sampling methods which are still used in 

practice in present days. For a pre-specified overall sample size ,An  quotas of sample sizes are set for 

subpopulations which are defined by demographic variables and social-economic status indicators or other 

characteristic variables suitable for units of the target population. Data collection processes continue until 

quotas for each of the subpopulations are filled. Units from the population are typically approached using 

whatever convenient ways available and there are little or no controls on how units are selected for the 

final sample other than the pre-specified quotas. 

The theory of the IPW estimators for non-probability survey samples provides an opportunity to 

examine scenarios where quota surveys may succeed or fail. For the convenience of notation without loss 

of generality, let AS  be the quota survey sample and x  be the set of categorical variables used for defining 

the subpopulations and setting the quotas. The overall sample can be partitioned into 1=A A AKS S S   

corresponding to the cross-classification of sampled units using the combinations of levels of the x  

variables. For instance, if ( )1 2= ,x x x  with 1x  having two levels and 2x  having three levels, we have a 

total of = 2 3 = 6K   subpopulations defined by .x  Let kn  be the pre-specified size of AkS  and kN  be the 

size of the corresponding subpopulation. Under the assumption A1, the propensity scores ( )A

i i = x  

become a constant for units in the same subpopulation and are given by A

i k kn N =  for the thk  

subpopulation. The IPW estimator 
IPW 2

̂  given in (4.8) reduces to  

 
IPW 2

1 1

1 ˆˆ = = ,
ˆ ˆ

Ak

K K
i

k kAA
k i S ki

y
W y

N


=  =

    (5.1) 

where 1 ,
Ak

k k ii S
y n y−


=  ˆ ˆ ˆ ,A

k kW N N= ˆ
kN  is the size of the thk  subpopulation obtained or estimated from 

external sources, and 
1

ˆ ˆ .
KA

kk
N N

=
=  Under the current setting with the availability of a reference 

probability sample ,
B

S  we form the same partition as cross-classified by levels of x  and obtain 

1 .B B BKS S S=    We can then use ˆ = .
Bk

B

k ii S
N d

  
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The estimator given in (5.1) is the standard poststratified estimator of .y  It requires the information 

on the “stratum weights” ˆ ,kW 1, , ,k K=  which is not available from the sample data itself. Quota 

surveys, combined with the use of the poststratified estimator, can be successful in producing valid 

population estimates for the study variable y  if the following conditions hold: 

(i) The categorical variables x  used in defining the subpopulations and setting the quotas provide 

characterizations of the participation behavior of the units for voluntary surveys.  

(ii) The inclusion of units in the survey is relatively random within each subpopulation and no 

specific groups are intentionally excluded from the survey.  

(iii) The information on the stratum weights corresponding to the cross-classifications in setting the 

quotas can be reliably obtained from external sources.  

(iv) The hardcore nonrespondents in the population who never take any voluntary surveys possess 

similar features to respondents in terms of the study variable .y  

 

The IPW estimators 
IPW1

̂  and 
IPW 2

̂  given in (4.8) may be sensitive to small values of estimated 

propensity scores. The poststratified estimator in the form of (5.1) serves as a robust alternative under 

general scenarios where the dimension of x  is not low and/or some components of x  are continuous. The 

K  strata are formed based on homogeneous groups in terms of the propensity scores. Suppose that 

ˆˆ ( , ),A

i i = x α Ai S  are computed based on a parametric model, .q  Suppose also that A An m K=  with 

the chosen K  where Am  is an integer. Let (1) ( )
ˆ ˆ

A

A A

n    be the estimated propensity scores in 

ascending order. Let 1AS  be the set of the first Am  units in the sequence, 2AS  be the second Am  units in 

the sequence, and so on. The poststratified estimator of y  is computed as 
PST 1

ˆˆ ,
K

k kk
W y

=
=  which has 

the same form of the estimator given in (5.1). The estimates of the stratum weights, ˆ ,kW 1, 2, ,k K=  can 

be obtained by using the reference probability sample BS  as follows. Let  ˆmax : ,A

k i Akb i S= 

1, 2, , 1.k K= −  Let 0 0b =  and 1.Kb =  

(a) Compute ˆˆ ( , ),i i = x α .Bi S  

(b) Define  1
ˆ, ,Bk B k i kS i i S b b−=    1, 2, , .k K=  

(c) Calculate ˆ ,
Bk

B

k ii S
N d


= 1, 2, , .k K=  

 

It is apparent that 1B B BKS S S=    and 
1

ˆ ˆ .
B

K B B

k ik i S
N N d

= 
= =   The estimated stratum weights are 

given by ˆ ˆ ˆ .B

k kW N N=  

The choice of K  needs to reflect the balance between homogeneity of the units within each post-

stratum (in terms of the propensity scores) and the stability of the poststratified estimator (in terms of the 

stratum sample sizes). When the sample size An  is small or moderate, a small number such as 5K =  

should be used. For scenarios where An  is large, a larger K  should be used such that units within the 

same poststratified sample AkS  have similar estimated propensity scores. A practical guidance for the 

choice of K  is to ensure that 30Am   for the poststratified samples. For those who are old enough, do 

you remember the good old days when “the sample size is large” means “ 30”?n   
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6. Variance estimation 
 

Variance estimation under the two sample AS  and BS  setup involves at least two different sources of 

variation. The probability sampling design for the reference sample BS  remains one of the sources 

regardless of the approaches used for non-probability survey samples. Estimation of the variance 

component due to the use of BS  requires either suitable variance approximation formulas or replication 

weights as part of the dataset from the reference probability sample. Our discussion in this section 

assumes that a design-based variance estimator for the survey weighted point estimator based on BS  is 

available. 

 
6.1 Variance estimation for mass imputation estimators 
 

Variance estimation for the model-based prediction estimator ˆ
y  involves first deriving the asymptotic 

variance formula for ( )ˆVar y y −  under the assumed outcome regression model or the imputation 

model   and the probability sampling design ,p  and then using plug-in estimators for various unknown 

population quantities. 

The mass imputation estimator 1 *

MI
ˆˆ

B

B

y B i ii S
N d y −


=   given in (3.5) is a special type of model-based 

prediction estimator, where the model   refers to the one used for imputation and is not necessarily the 

same as the outcome regression model. The imputation method plays a key role in deriving the asymptotic 

variance formula, and the variance estimator needs to be constructed accordingly. Noting that MI
ˆ

y  is a 

Hájek type estimator due to the use of the estimated population size ˆ ,
B

N  derivations of the asymptotic 

variance formula start with putting the true value N  in first and then dealing with MI
ˆ

y  as a ratio 

estimator. Kim et al. (2021) considered variance estimation for 1 *ˆ ,
B

B

y i ii S
N d y −


=   where ( )* ˆ,i iy m= x β  

is the imputed value for iy  based on the semiparametric model (3.1). The asymptotic variance formula is 

developed in two steps. First, a linearized version of ˆ
y  is obtained by using a Taylor series expansion at 

*,β  where *
β  is the probability limit of β̂  such that ( )* 1 2ˆ .p AO n−= +β β  Second, two variance components 

are derived for ( )ˆVar y y −  based on the linearized version using the semiparametric model (3.1) and 

the sampling design for .BS  The process is tedious, which is the case for most model-based variance 

estimation methods. A bootstrap variance estimator turns out to be more attractive for practical 

applications. See Kim et al. (2021) for further details. 

 
6.2 Variance estimation for IPW estimators 
 

The commonly used IPW estimator 
IPW 2

̂  given in (4.8) is valid under the assumed model q  for the 

propensity scores. An explicit asymptotic variance formula for 
IPW 2

̂  can be derived under the joint qp -

framework when the propensity scores are estimated using the pseudo maximum likelihood method or an 

estimating equation based method as discussed in Section 4.1. The theoretical tool is the sandwich-type 

variance formula for point estimators defined as the solution to a combined system of estimating equations 

for both y  and 0 .α  
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Consider the parametric form ( ),A

i i = x α  for the propensity scores, where the model parameters α  

are estimated through the estimating equations (4.4) with user-specified functions ( , ).h x α  The first major 

step in deriving the asymptotic variance formula for 
IPW 2

̂  is to write down the system of joint estimating 

equations for both y  and 0 .α  Let ( ), =η α  be the vector of the combined parameters. The estimator 

( )IPW 2
ˆ ˆ , =η α  is the solution to the system of joint estimating equations ( ) ,n =Φ η 0  where  

 ( )
( )

( ) ( )

1

=1

1 1

1

= .
, ,

B

N A

i i ii

n N B A

i i i i ii i S

N R y

N R N d

 



−

− −

= 

 −
 
 −
 



 
Φ η

h x α h x α
 (6.1) 

The factor 1N −  is redundant but useful in facilitating asymptotic orders. The estimating functions defined 

by (6.1) are unbiased under the joint qp -framework, i.e.,  0( ) ,qpE =Φ η 0  where ( )0 0, .y
=η α  There 

are two major consequences from the unbiasedness of the estimating equations system. First, consistency 

of the estimator η̂  can be argued using the theory of general estimating functions similar to those 

presented in Section 3.2 of Tsiatis (2006). Second, the asymptotic variance-covariance matrix of ˆ ,η  

denoted as ( )ˆAV ,η  has the standard sandwich form and is given by 

 ( )      
1

1

0 0 0
ˆAV ( ) Var ( ) ( ) ,n n nE E

−
−  =      

η η Φ η η    

where ( ) ( ) ,n n=  η Φ η η  which depends on the forms of ( , )A

i i = x α  and ( , ).ih x α  The term 

 0Var ( )nΦ η  consists of two components, one due to the propensity score model q  and the other from 

the probability sampling design for .
B

S  More specifically, we have  0 1 2Var ( ) = ( ) ( ),n q pV V+Φ η A A  

where ( )qV   denotes the variance under the propensity score model q  and ( )pV   represents the design-

based variance under the probability sampling design ,p  and  

 1 2

1

0( )1 1
, = .

( , )( , )
B

AN
Bi i

i i A
i i S i ii

y
R d

N N

 

= 

 −  
=    

  
 A A

h x αh x α
  

The analytic expression for 1( )qV A  follows immediately from ( ) (1 )A A

q i i iV R  = −  and the independence 

among 1, , .
N

R R  The design-based variance component 2( )pV A  requires additional information on the 

survey design for BS  or a suitable variance approximation formula with the given design. 

The asymptotic variance formula for the IPW estimator 
IPW 2

̂  is the first diagonal element of the matrix 

ˆAV( ).η  The final variance estimator for 
IPW 2

̂  can then be obtained by replacing various population 

quantities with sample-based moment estimators. Chen et al. (2020) presented the variance estimator with 

explicit expressions when ( , )A

i i = x α  are modelled by the logistic regression and the α̂  is obtained by 

the pseudo maximum likelihood method. 

 
6.3 Variance estimation for doubly robust estimators 
 

It turns out that variance estimation for the doubly robust estimator is a challenging problem. While 

double robustness is a desirable property for point estimation, it creates a dilemma for variance estimation. 
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The estimator 
DR 2

̂  given in (4.11) is consistent if either the propensity score model q  or the outcome 

regression model   is correctly specified. There is no need to know which model is correctly specified, 

which is the most crucial part behind double robustness. This ambiguous feature, however, becomes a 

problem for variance estimation. The asymptotic variance formula under the model q  is usually different 

from the one under the model ,  and consequently, it is difficult to construct a consistent variance 

estimator with unknown scenarios on model specifications. 

There have been several strategies proposed in the literature on variance estimation for the doubly 

robust estimators. A naive approach is to use the variance estimator derived under the assumed propensity 

score model q  and take the risk that such a variance estimator might have non-negligible biases under the 

outcome regression model. One good news is that, under the propensity score model, the estimation of the 

parameters β  for the outcome regression model has no impact asymptotically on the variance of doubly 

robust estimators. This can be seen by using 
DR 1

̂  of (4.10) as an example. Let ( )ˆˆ , ,i im m= x β  where β̂  is 

obtained based on the working model (3.1) which is not necessarily correct. Let *
β  be the probability limit 

of β̂  such that ( )* 1 2ˆ
p AO n−= +β β  regardless of the true outcome regression model (White, 1982). Let 

( )* *,i im m= x β  and ( , ) ( , ) .m=  a x β x β β  It can be seen that  

 ( )  ( ) ( )
*

* * * 1 2ˆ1 1 1 1 ˆˆ ,
ˆ ˆ

B A B A

B Bi i
i i i i p AA A

i S i S i S i Si i

m m
d m d m o n

N N N N 

−

   


− = − + − +    B β β β   

where  

 ( ) ( )
( )*

* *
,1 1

, .
ˆ

B A

iB

i i A
i S i S i

d
N N  

= − 
a x β

B β a x β  (6.2) 

Since the two terms on the right hand side of (6.2) are both consistent estimators of ( )1 *

=1
, ,

N

ii
N −  a x β  

we conclude that ( )* = (1)poB β  and  

 ( )
*

* 1 2ˆ1 1 1 1
ˆ = .

ˆ ˆ
B A B A

B Bi i
i i i i p AA A

i S i S i S i Si i

m m
d m d m o n

N N N N 

−

   

− − +      

It follows that  

 ( )DR1

*
* 1 21 1

ˆ .
ˆ

A B

Bi i
i i p AA

i S i Si

y m
d m o n

N N




−

 

−
= + +    

The same arguments apply to 
DR 2

ˆ .  We can treat β̂  as if it is fixed in deriving the asymptotic variance for 

DR1
̂  and 

DR 2
̂  under the assumed propensity score model. The techniques described in Section 6.2 can be 

directly used where the first estimating function in (6.1) is replaced by the one for defining 
DR1

̂  or 
DR 2

ˆ .  

See Theorem 2 of Chen et al. (2020) for further details. The variance estimator derived under the 

propensity score model, however, is generally biased under the outcome regression model. 
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Chen et al. (2020) also described a technique using the original idea presented in Kim and Haziza 

(2014) for the construction of the so-called doubly robust variance estimator. The technique is a delicate 

one with some theoretical attractiveness but has various issues for practical applications. We use 
DR1

̂  as 

an example to illustrate the steps for the construction of the doubly robust variance estimator. Let  

 ( )
( )

( )
( )

=1

,1 1
ˆ , , .

,
B

N
i i B

i i i

i i Si

y m
R d m

N N


 

−
= + 

x β
α β x β

x α
  

It follows that 
DR1

ˆˆˆ ˆ= ( , )  α β  if α̂  and β̂  are from the original estimation methods. The first step is to 

modify the estimation of α  and β  such that α̂  and β̂  are obtained as solutions to  

 
( ) ( )ˆ ˆ, ,

= and .
  

=
 

α β α β
0 0

α β
 (6.3) 

Under the logistic regression model q  where  logit ( , )i i =x α x α  and the linear regression model   

where ( ), ,i im =x β x β  the equation system (6.3) becomes  

 
( )

( )
=1

1 1
1 ,

,

N

i i i i

i i

R y
N 

  
− − = 

  
 x β x 0

x α
 (6.4) 

 
( )=1

1 1
.

,
B

N
Bi i
i i

i i Si

R
d

N N 

− = 
x

x 0
x α

 (6.5) 

The estimating equations in (6.5) are unbiased under the joint qp -framework. They are identical to (4.5) 

discussed in Section 4.1.2. The estimating equations in (6.4) are also unbiased under the outcome 

regression model, but they are different from the quasi score equations given in (3.2). The estimators α̂  

and β̂  obtained as solutions to (6.4) and (6.5) are less stable than those from standard methods. In 

addition, the equations system (6.4) and (6.5) will not have a solution if α  and β  are not of the same 

dimension, since the number of equations in (6.4) is decided by the dimension of α  and the number of 

equations in (6.5) is the same as the dimension of .β  The final estimator ( )
DR

ˆˆˆ ˆ , = α β  also suffers from 

efficiency losses when α  and β  are estimated by solving (6.4) and (6.5). 

The reason behind the use of the equations system (6.3) is purely technical. It can be shown through a 

first order Taylor series expansion that the estimators α̂  and β̂  obtained from (6.3) have no impact 

asymptotically on the variance of ( )
DR

ˆˆˆ ˆ , . = α β  This technical maneuver enables that simple explicit 

expressions for the variance ( )DR
ˆ

qpV   under the qp  framework and for the prediction variance 

( )DR
ˆ

p yV  −  under the p  framework can easily be obtained. Construction of the doubly robust 

variance estimator for 
DR

̂  starts with the plug-in estimator for ( )DR
ˆ

qpV   under the propensity scores 

model .q  A bias-correction term is then added to obtain a valid estimator for ( )DR
ˆ

p yV  −  under the 

outcome regression model .  The happy ending of the story is that the bias-correction term has the 

analytic form ( )2 2

=1
1

N A

i i ii
N R  − −  where ( )2 ,i i iE y = x  which is negligible under the propensity 
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score model .q  The bias-corrected variance estimator is valid under either the propensity score model or 

the outcome regression model. 

A doubly robust variance estimator for the commonly used 
DR 2

̂  is not available in the literature. A 

practical solution is to use bootstrap methods. Chen et al. (2022) demonstrated that standard with-

replacement bootstrap procedures applied separately to AS  and BS  provide doubly robust confidence 

intervals using the pseudo empirical likelihood approach to non-probability survey samples when the 

reference sample is selected by single stage unequal probability sampling designs. Complications will 

arise when the probability sample BS  uses stratified multi-stage sampling methods, a known challenge for 

variance estimation with complex surveys. Construction of doubly robust variance estimators for the 

doubly robust estimator 
DR 2

̂  under general settings deserves efforts in future research. 

 
7. Assumptions revisited 
 

Our discussions on estimation procedures for non-probability survey samples are under the 

assumptions A1-A4 and the focuses are on the validity and efficiency of estimators for the finite 

population mean under three inferential frameworks. The theoretical results on model-based prediction, 

inverse probability weighting and doubly robust estimation have been rigorously established under those 

assumptions. It seems that researchers are triumphant in dealing with the emerging area of non-probability 

data sources. However, as pointed out by the 2021 ASA President Robert Santos in his opinion article 

entitled “Using Our Superpowers to Contribute to the Public Good” (Amstat News, May 2021), “Our 

superpowers are only as good as their underlying assumptions, assumptions that are all too often 

embraced with aplomb, yet cannot be proven.” How to check assumptions A1-A4 in practical applications 

of the methods is a question that can never be fully answered, and yet there are steps to follow to boost the 

confidence in using the theoretical results. It is also important to understand the potential consequences 

when certain assumptions become seriously questionable. 

 
7.1 Assumption A1 
 

Assumption A1 states that ( ) ( )=1 , 1 .A

i i i i i iP R y P R = = =x x  It is the most crucial assumption for 

the validity of the pseudo maximum likelihood estimator of Chen et al. (2020) and the nonparametric 

kernel smoothing estimator presented in Section 4.1.3 for the propensity scores, although all other 

assumptions are also involved. It is equivalent to the missing at random (MAR) assumption in the missing 

data literature. It is well understood that the MAR assumption cannot be tested using the sample data 

itself. The same statement holds for assumption A1 with non-probability survey samples. 

In a nutshell, assumption A1 indicates that the auxiliary variables x  included in the non-probability 

sample fully characterize the participation behaviour or the sample inclusion mechanism for units in the 

population. Sufficient attention should be given at the study design stage before data collection, if such a 

stage exists, to investigate potential factors and features of units which might be related to participation 
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and sample inclusion. For human populations, the factors and features may include demographical 

variables, social and economic indicators, and geographical variables. 

Assumption A1 leads to the conclusion that the conditional distribution of y  given x  for units in the 

non-probability sample is the same as the conditional distribution of y  given x  for units in the target 

population. It implies that the auxiliary variables x  should include relevant predictors for the study 

variable .y  With the given datasets AS  and ,BS  sensitivity analysis through comparisons of marginal 

distributions and conditional models can be helpful in building confidence on assumption A1. For 

variables which are available in both AS  and ,BS  one can compare the empirical distribution functions (or 

moments) from AS  to the survey weighted empirical distribution functions (or moments) from .BS  

Marked differences between the two indicate that AS  is a non-probability sample with unequal propensity 

scores. One possible sensitivity analysis on assumption A1 is to select a variable z  which has certain 

similarities to ,y  and a set of auxiliary variables u  with both z  and u  available from AS  and .BS  We fit 

a conditional model z u  using data from AS  and a survey weighted conditional model z u  using data 

from .BS  If u  includes all the key auxiliary variables for assumption A1, we should see the two versions 

of fitted models to be similar to each other. Drastic differences between the two fitted models are a strong 

sign that either the z  is itself an important auxiliary variable for assumption A1 or the assumption is 

questionable. 

 
7.2 Assumption A2 
 

A casual look at assumption A2 may have people believe that it should easily be satisfied in practice, 

since a similar assumption is widely used in missing data analysis and causal inference. It turns out that 

the assumption can be highly problematic, and for scenarios where the assumption fails to hold, the target 

population is different from the one assumed for the estimation methods. It is similar to the frame 

undercoverage and nonresponse problems which are discussed extensively in probability sampling. 

Assumption A2 states that ( )1 , 0A

i i i iP R y = = x  for all .i  It is equivalent to stating that every unit 

in the target population has a non-zero probability to be included in the non-probability sample. If the 

sample was taken by a probability sampling method, this would be the scenario where the sampling frame 

is complete and there are no hardcore nonrespondents. For most non-probability samples, the concept of 

“sampling frame” is often irrelevant or simply a convenient list, and the selection and inclusion of units 

for the sample may not have a structured process. In her presentation at the 2021 CANSSI-NISS 

Workshop, Mary Thompson pointed out that “the statement that the sample inclusion indicator R  is a 

random variable is itself an assumption” for non-probability survey samples. 

Let U  be the set of N  units for the target population. Let  0 and 0 .A

iU i i U =    It is apparent 

that 0U U  and 0U U  when assumption A2 is violated. There are two typical scenarios in practice. 

The first can be termed as stochastic undercoverage, where the non-probability sample AS  is selected 

from 0U  and 0U  itself can be viewed as a random sample from .U  For example, the contact list of an 

existing probability survey is used to approach units in the population for participation in the non-
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probability sample. In this case 0U  consists of units from the probability sample. Another example is a 

volunteer survey where the target population consists of adults in a specific city/region but the participants 

are recruited from visitors to major shopping centers in the region over certain period of time. The 

subpopulation 0U  includes visitors to the chosen locations over the sampling period and it is reasonable to 

assume that 0U  is a random sample from the target population. Let 1iD =  if 0i U  and 0iD =  otherwise, 

1, 2, , .i N=  We have  

 ( ) ( )1 , , 1 0 and 1 , , 0 0i i i i i i i iP R y D P R y D= =  = = =x x   

for 1, 2, , .i N=  If the subpopulation 0U  is formed with an underlying stochastic mechanism such that 

( )1 , > 0i i iP D y= x  for all ,i U  we have  

 ( ) ( ) ( )1 , 1 , , 1 1 , 0A

i i i i i i i i i i iP R y P R y D P D y = = = = = = x x x   

for 1, 2, , .i N=  In other words, the assumption A2 is valid under the scenario of stochastic 

undercoverage for non-probability samples. 

The second scenario is termed as deterministic undercoverage where units with certain features will 

never be included in the non-probability sample. Suppose that participation in the non-probability survey 

requires internet access and a valid email address, and 20% of the population have neither access to the 

internet nor an email address, we have an example where the 20% of the population have zero propensity 

scores. There is no simple fix to the inferential procedures developed under A2. Yilin Chen’s PhD 

dissertation at University of Waterloo (Chen, 2020) contained one chapter dealing with some specific 

aspects of the scenario. 

 
7.3 Assumption A3 
 

Among all the assumptions, this one is less crucial to the validity of the proposed inferential 

procedures. Under assumption A3, the full likelihood function for the propensity scores is given in (4.1). 

For any parametric model on ( ), ,A

i i = x α  the quasi log-likelihood function *( )α  given in (4.2) leads 

to the quasi score functions *( ) ( ) ,=  U α α α  which remains unbiased even if assumption A3 is 

violated. There might be some efficiency loss without assumption A3 in estimating the model parameters 

α  but the estimation methods are still valid under the other three assumptions. 

 
7.4 Assumption A4 
 

It is not difficult to find an existing probability sample from the same target population. It might be 

very hard, however, to have a probability survey sample which contains the desirable auxiliary variables. 

Existing probability surveys are designed with specific aims and scientific objectives, and the auxiliary 

variables included in the survey are not necessarily relevant to the analysis of a particular non-probability 

survey sample. The ultimate goal for satisfying assumption A4 is to identify and gain access to an existing 
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probability survey sample with a rich collection of demographical variables, social and economic 

indicators, and geographical variables. 

A rich-people’s problem (when one has too much money) for assumption A4 may also occur in 

practice when two or more existing probability survey samples are available. How to combine all of them 

for more efficient analysis of non-probability survey samples is a research topic that deserves further 

attention. Some practical guidances on choosing one reference probability sample from available 

alternatives include following considerations. 

(i) Check for availability of important auxiliary variables which are relevant to characterizing the 

participation behavor or having prediction power to the study variables in the non-probability 

sample;  

(ii) Give first preference to the one with a larger set of variables that are common to the non-

probability sample;  

(iii) Assign second preference to the probability sample with a larger sample size;  

(iv) And lastly, use the probability sample for which the mode of data collection is the same as the 

one for the non-probability sample.  

 

It was shown by Chen et al. (2020) that two reference probability survey samples with the same set of 

common auxiliary variables tend to produce very similar IPW estimators but the one with a larger sample 

size leads to better mass imputation estimators. 

 
8. Concluding remarks 
 

In the early years of the 21st century, Web-based surveys started to become popular, which generated 

substantial amount of research interest on the topic (Tourangeau, Conrad and Couper, 2013). Issues and 

challenges faced by web-based and other non-probability survey samples led to the “Summary Report of 

the AAPOR Task Force on Non-probability Sampling” by Baker, Brick, Bates, Battaglia, Couper, Dever, 

Gile and Tourangeau (2013). Among other things, the report indicated that (i) unlike probability sampling, 

there is no single framework that adequately encompasses all of non-probability sampling; (ii) making 

inferences for any probability or non-probability survey requires some reliance on modeling assumptions; 

and (iii) if non-probability samples are to gain wider acceptance among survey researchers there must be a 

more coherent framework and accompanying set of measures for evaluating their quality. 

Survey sampling researchers have been answering the call with intensified explorations on statistical 

inference with non-probability survey samples. The current setting of two samples AS  and ,BS  with the 

non-probability sample AS  having measurements on both the study variable y  and auxiliary variables x  

and the probability sample BS  providing information on ,x  was first considered by Rivers (2007) on 

sample matching using nearest neighbor imputation, which is the original idea leading to the mass 
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imputation method (Kim et al., 2021). The weighted logistic regression using the pooled sample for 

estimating the propensity scores proposed by Valliant and Dever (2011) was the first serious attempt on 

the topic, which serves as a motivation for the pseudo maximum likelihood method developed by Chen 

et al. (2020). Brick (2015) considered compositional model inference under the same setting. Elliott and 

Valliant (2017) provided informed discussions on inference for non-probability samples. Yang, Kim and 

Song (2020) addressed issues with high dimensional data in combining probability and non-probability 

survey samples. 

Statistical inference with non-probability survey samples is part of the more general topic on 

combining data from multiple sources. The term “data integration” is frequently used under this context. 

Combining information from independent probability survey samples has been studied extensively in the 

survey literature; see, for instance, Wu (2004), Kim and Rao (2012) and references therein. Inferences 

with samples from multiple frame surveys are another topic which has been heavily investigated by survey 

statisticians; see Lohr and Rao (2006) and Rao and Wu (2010a) and references therein. In her recent 

Waksberg award invited paper, Lohr (2021) provided an overview on multiple-frame surveys and some 

fascinating discussions on using a multiple-frame structure to serve as an organizing principle for other 

data combination methods. With emerging new data sources and reshaped views on traditional data 

sources such as administrative records, data integration has become a very broad area that calls for 

continued research. Further discussions are provided by Lohr and Raghunathan (2017) on combining 

survey data with other data sources and by Thompson (2019) on combining new and traditional sources in 

population surveys. Kim and Tam (2021) and Yang, Kim and Hwang (2021) discussed data integration by 

combining big data and survey sample data for finite population inference. Yang and Kim (2020) 

contained a review on statistical data integration in survey sampling. 

One of the essential messages that the current paper conveys is the concepts of validity and efficiency 

in analyzing non-probability survey samples. Validity refers to the consistency of point estimators and 

efficiency is measured by the asymptotic variance of the point estimator. Validity is of primary concern 

and efficiency pursuit is a secondary goal when valid alternative approaches are available. Discussions on 

validity and efficiency require a suitable inferential framework and rigorous developments of statistical 

procedures, which is another main message from this paper. Non-probability samples do not fit into the 

traditional design-based or model-based inferential framework for probability survey samples. Standard 

statistical concepts and inferential procedures, however, can be built into a suitable framework for valid 

and efficient inference with non-probability survey samples. 

Non-probability samples may have a very large sample size. Large sample sizes are a double-edged 

sword: when the inferential procedures are valid, large sample sizes lead to more efficient inference; when 

the estimators are biased, large sample sizes make the bias even more pronounced. A non-probability 

survey sample with a 80% sampling fraction over the population does not necessarily provide better 

estimation results than a small probability sample (Meng, 2018). 
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The large sample sizes also make non-probability samples connected to the modern big data problems. 

The role of traditional statistical methods in the era of big data was convincingly argued by Richard 

Lockhart (2018): “Huge new computing resources do not put an end to the need for careful modelling, for 

honest assessment of uncertainty, or for good experiment design. Classical statistical ideas continue to 

have a crucial role to play in keeping data analysis honest, efficient, and effective.” 

Jean-François Beaumont (2020) raised the question “Are probability surveys bound to disappear for 

the production of official statistics?” The short answer is that probability sampling methods and 

probability survey samples will remain as an important data collection tool for many fields, including 

official statistics, and design-based inference will play a crucial role for any evolving inferential 

framework. The current trend of using non-probability samples and data from other sources will continue. 

Valid and efficient statistical inference with non-probability samples requires auxiliary information from 

the target population. A few high quality national probability surveys with carefully designed survey 

variables can play a pivotal role in analysis of non-probability survey samples. 
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Abstract 

Non-probability surveys play an increasing role in survey research. Wu’s essay ably brings together the many 
tools available when assuming the non-response is conditionally independent of the study variable. In this 
commentary, I explore how to integrate Wu’s insights in a broader framework that encompasses the case in 
which non-response depends on the study variable, a case that is particularly dangerous in non-probabilistic 
polling. 

 
Key Words: Survey sampling; Non-probability polls. 

 
 
1. Introduction 
 

Surveys are going through massive changes. Gone are the days of random digit dialing phone surveys 
producing reliably representative samples. Now hardly anyone answers the phone or even responds to 
emails. Pollsters have responded by coming up with a myriad of clever new ways to generate survey 
responses in this unwelcoming environment. 

The most pervasive innovation is, without a doubt, the use of non-probability samples, often via the 
internet. While the implementation varies, the approach typically gathers contact information for a large 
number of people who are willing to respond and then involves selecting a subset from that pool for any 
given survey. These surveys have proven cost-effective and have often – if, perhaps, not always – 
produced serviceable results. 

But are they believable? Most surveys do not have a ground truth against which to assess results; the 
lack of such information is, after all, the reason why someone is conducting the survey. Probability 
samples overcome this problem by relying on theory as the properties of such surveys are well understood. 
For non-probability samples, however, practice has vastly outpaced theory, meaning that the basis for 
believing the results is rather speculative. 

Wu’s paper therefore is a welcome contribution to our understanding of non-probability surveys. He 
focuses on the class of estimators that assume ignorable non-response and puts them in context relative to 
each other and identifies avenues for future work. 

One important point made by Wu is that “there must be a more coherent framework and accompanying 
set of measures for evaluating their quality” (page 305). I heartily concur. In this commentary, I expand on 
this point in three ways. In Section 2 I explore how to do this within the scope of the research he 
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examines. In Section 3 I seek to expand the scope of such a framework, noting that the consequences of 
violations of key assumptions are so much more severe in a non-probability setting that we should build 
our framework to encompass violations of the key missing-at-random (MAR) assumption. In Section 4 I 
then explore what, if anything we can do about it. Finally, in Section 5 I provide a few concluding 
remarks. 

 
2. Non-probability surveys when data is MAR 
 

Wu grounds his analysis with a clear exposition of the four assumptions underlying the models he 
examines. The most important assumption is that data is MAR, meaning that given a set of covariates the 
study variable is independent of the decision to respond. (Although the nomenclature is standard in the 
literature, I cannot resist registering unease with the “missing at random” label. Of course, data is missing 
at random – something that is true even for MAR’s opposite (and also inaptly named) missing-not-at-
random (MNAR). I dream of a day when the nomenclature matches the definition, perhaps by replacing 
MAR with the term “conditional independence” would be a better name. However, I recognize how hard 
it is to change the accepted terms people use.) 

Given these assumptions, Wu divides approaches into those that are model-based, inverse propensity 
weighting (IPW) based and double robust models. In the model-based approaches, we see the range of 
efforts to impute from the observed sample, including mass imputation that, broadly conceived, includes 
flexible sample-matching approaches that allow us to represent a larger population based on observed data 
points that are “close”, variously defined. IPW builds on the same assumptions. Doubly robust estimators 
tend to be newer and attractive for their ability to give researchers two bites at the apple of relying on 
correct assumptions; Wu ably documents the headaches these models bring when we try to do inference 
with them, however. 

While Wu has shown the differences in these approaches, it is useful to appreciate that he is fishing in 
one fairly specific corner of the pond. All models use similar information in similar ways: they all assume 
MAR and provide tools to model or impute the behavior of unobserved people as direct extrapolations 
from the observed data. If college graduates differ from non-college graduates and we have too many 
college graduates, all the MAR-based approaches will extrapolate to the general population directly from 
the data in the sample on two groups in proportion to these groups’ presence in the target population. 

My intuition is that the models considered by Wu are roughly equally useful – and also roughly 
vulnerable to violations of MAR. Or, are there contexts in which we expect the differences across the 
methods to be substantial? Answering this is not easy, of course, but I would be fascinated to learn Wu’s 
perspective on where the main “action” is in non-probability samples and which of the models he 
considers would be best suited to accounting for such problems. 

One possible focus would be on the flexibility across models. At this point, my intuition is that while 
these differences could be substantial in theory, in practice these differences are relatively modest. This is 
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especially true if an experienced researcher with domain knowledge specifies a parametric model with a 
deft touch – including the right interactions and so forth. 
 

3. Non-probability surveys when data is not MAR 
 

We should take very seriously Wu’s call for more coherent framework for analyzing non-probability 
samples. And we should aim big here as a paradigm for non-probability samples is, essentially, a 
paradigm for the whole field given the importance and trajectory of non-probability samples. 

As we think about formulating a framework for polling it is useful to recall George Box’s famous 
aphorism: “Since all models are wrong the scientist must be alert to what is importantly wrong. It is 
inappropriate to be concerned about mice when there are tigers abroad” (Box, 1976). The tiger in non-
probability samples does not live between quota sampling and IPW models. The tiger can almost certainly 
be found instead in the MAR assumption. The violation of this assumption is the signature weakness of 
MAR and any framework for non-probability surveys should therefore start there. 

The issue is that while MAR violations are a problem in probability sampling (arising due to non-
response among the randomly contacted individuals), MAR violations are more serious in a non-
probabilistic world. The idea is formalized in Meng (2018) who provides an identity for the error in a 
survey: 

 ,
data difficultydata quality

data quantity

= .n N R Y Y
N nY Y

n
 −

−  (3.1) 

The first term in the equation is , ,R Y  the correlation in the population between R  and .Y  This 
quantity can be taken to reflect quality of data with regard to sampling. The second term in the Meng 
equation, ,N n n−  relates to the size of the population (capital )N  and the size of the sample (lower 
case ).n  The third term in the Meng equation is ,Y  the standard deviation of .Y  

When , 0,R Y   the sampled mean will be non-zero unless =n N  (meaning the sample is the entire 
population) or = 0Y  (meaning the value of Y  is the same for everyone in the population), neither of 
which are interesting polling contexts. 

This is an identity so even when the expected value of , = 0R Y  there will be some error (as in the case 
of random sampling). However as we move to non-random sampling we can expect the realized 
correlation of R  and Y  to grow. The larger , ,R Y  the larger the sampling error, the exact magnitude of 
which will interact with the other terms. 

The most explosive implication of the Meng equation emerge from the interaction of the first two 
terms. When there is MNAR (meaning there will be specific reason to expect , 0R Y   because R  
depends on ),Y  the actual error depends on the total population. This result is shocking to modern polling 
sensibilities but is vital to appreciate in the context of non-random sampling. 
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We can construct a simple two country world to elaborate on how this works. Suppose that our study 
variable is covid rates and, for the purposes of our example, that covid rates are the same in both 
countries. One country is huge (China, perhaps) and the other is small (Luxembourg perhaps). If we 
randomly sampled 1,000 people in each country we could produce estimates with the same precision for 
each country, despite their massive population differences. 

What happens if we are dealing with a non-random sample of 1,000 people in each country? Suppose 
for simplicity that people’s eagerness for testing is simply a function of their symptoms and that people 
with more symptoms are more likely to have covid. This creates MNAR sampling because opting into the 
sample will be associated with higher expected values of our study variable. 

In China we will get the 1,000 sickest people. They will be really sick, as they will be in something 
like the top 0.00001 percentile. In Luxembourg we will also get the 1,000 sickest people, but you don’t 
have to be as sick to get into this set as you would in a much bigger country. This means that the 1,000 
sickest people in Luxembourg will be in roughly the top 0.2 percentile; still very sick relative to the 
population, but not as skewed as in China. In short, MNAR data will produce an error proportional to the 
population size for a given sample size. 

(Note that true random samples are virtually unheard of given non-response among those who are 
randomly contacted. The actual practice of probability samples can be described as random contact, 
defined as surveys in which people are randomly contacted even as the response among those contacted 
may be non-random. Random contact surveys can violate MAR, but nonetheless have strong virtues. 
Bradley, Kuriwaki, Isakov, Sejdinovic, Meng and Flaxman (2021) and Bailey (2023) show how survey 
error in random contact surveys is proportional to the response rate rather than to the population size.) 

MAR violations in non-probability sampling lead to errors that are proportional to population size. To 
use Box’s metaphor, this is where the tigers are. Hence as we pursue Wu’s exhortation for more coherence 
in how we evaluate new forms of polling, we should aim to agree on a framework that encompasses the 
possibility of MAR violations rather than a framework that assumes away this problem. 

 
4. What to do about MAR violations? 
 

Wu follows much of the literature in shying away from MNAR models. Part of the basis for this is a 
perception that MNAR non-response is essentially intractable. For example, Wu notes somewhat 
pessimistically that “it is well understood that the MAR assumption cannot be tested using the sample data 
itself” (page 302) and that “the biased nature of non-probability samples cannot be corrected by using the 
sample itself” (page 284). 

In terms of guidance for survey researchers concerned about violations of MAR, Wu offers only a 
modest test, which basically consists of finding another variable that is similar to the study variable but 
that is available for the whole population. If only it were that easy! Generations of pollsters have scoured 
data for such variables and yet continue to worry about MNAR, especially when response is non-random. 
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Wu’s framing understates what we can do about MAR violations. These efforts will require 
assumptions, of course, but at least we can relax the severe assumption of MAR. The connection to the 
earlier points is key: since we are going to need assumptions, it is important that we have a framework for 
thinking about which ones are the most consequential so that we can focus our efforts appropriately. The 
Meng equation highlights how MAR violations play a central role in creating error in a non-probabilistic 
sampling world and therefore we should do whatever we can to address that issue. 

A widely known example of a model that can tackle MNAR data is the Heckman (1979) selection 
model. This model allows for – and even estimates the magnitude of – the MAR violations. It is not 
without problems, of course. As a practical matter it requires an exclusion restriction (an assumption that 
one or more variables affect response but not the study variable) and many modern scholars are 
understandably cautious about the Heckman model’s strong parametric assumption. 

Scholars have made considerable progress beyond the Heckman model in dealing with MAR 
violations (Bailey, 2023). The parametric assumption is easy to relax via copula functions (Gomes, 
Radice, Brenes and Marra, 2019). If we are interested in studying determinants of ,Y  there is a substantial 
and growing literature applying highly flexible control functions for MNAR contexts (Das, Newey and 
Vella, 2003; Liu and Yu, 2022). And if we can identify variables that affect propensity to respond but not 
the outcome of interest, multiple methods will model and offset MNAR sampling (Peress, 2010; Sun, Liu, 
Miao, Wirth, Robins and Tchetgen-Tchetgen, 2018). 

 
5. Conclusion 
 

Wu’s paper ably and usefully summarizes the state of the literature of analysis of non-probability 
survey data under the assumption of MAR. He also highlights a critical need for the field to coalesce 
around a more coherent framework to evaluate these and other polling innovations. 

In this note, I build off Wu’s work to propose a framework that not only encompasses the MAR 
models analyzed by Wu, but MNAR models as well, as the violation of the MAR assumption is something 
particularly relevant and harmful for non-probability surveys. 
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1. Introduction 
 

Thanks to Dr. Changbao Wu for an excellent review of the previous work and open issues for 
statistical inference from non-probability samples. Given the large and rapidly developing work in this 
area, Dr. Wu was understandably unable to cover all of it; my own understanding has blinders as well but 
I will touch on a few additional approaches that relate to topics he considered. I will also discuss the issue 
of modeling versus weighting for different inferential targets, and use his discussion and conclusions to 
highlight the critical importance of probability samples – in particular high-quality studies that focus on 
estimation of relevant covariates – to improve inference for the profusion of non-probability samples used 
as replacements for traditional probability samples in many research and official statistics settings. To 
avoid notation confusion, all notation will follow that of Wu, except where new notation is required. 

Section 2 reviews additional approaches to combining data from probability and non-probability 
surveys. Section 3 briefly reviews the issue of weighting versus modeling when adjusting non-probability 
survey data. Section 4 reviews some recent developments in sensitivity analyses of standard assumptions 
for adjusting non-probability survey data using probability survey data. Section 5 concludes with call to 
systematically design a set of probability surveys with the explicit purpose of adjusting non-probability 
surveys. 

 
2. Additional approaches to combining data from probability and 

non-probability surveys 
 

Dr. Wu’s paper follows the general prescription of 1) using model estimation and subsequent 
calibration to probability-sample-estimated covariate distributions, 2) developing propensity score 
estimates based on discrepancies between the probability- and non-probability sample data, and 3) doubly-
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robust methods that combine 1) and 2) in a manner such that only one of the two underlying models needs 
to be correct. 
 

2.1 Propensity score estimators 
 

Rivers (2007) appears to have been the first to suggest estimating propensity score using logistic 
regression with membership in the non-probability sample as the outcome and taking the reciprocal of the 
resulting propensity scores to use as inclusion weights. This approach was formalized further in Valliant 
and Dever (2011). Separately, using simple results from Bayes’ theorem and discriminant analysis first 
described in Elliott and Davis (2005), Elliott, Resler, Flannagan and Rupp (2010) and Elliott (2013) 
developed a somewhat different estimator of the form  

 ( ) ( ) ( ) ( )
( )

ˆ or , ,ˆˆ , = .ˆ or , ,
A A B iA

i i A B
B A B i

P i S i S i S
P i S P i S

P i S i S i S


  
  

  

x α
x α

x α
 (2.1) 

( )ˆ or , ,A A B iP i S i S i S   x α  can be obtained using logistic regression, or using one of the suite of 
machine learning-type approaches such as support vector machines (Soentpiet, 1999), targeted maximum 
likelihood estimation (Van Der Laan and Rubin, 2006), or Bayesian Additive Regression Trees (BART) 
(Chipman, George and McCulloch, 2010), and ( )ˆ or , ,A B B iP i S i S i S   x α  obtained as 

( )ˆ1 or , , .x αA A B iP i S i S i S−     In principle ( ) =1 B
B iP i S d  is known since sampling probabilities 

are known for all elements of the population, including those in the non-probability sample, but in practice 
analysts with access only to public use data may have to estimate this as well. (In addition, B

id  may 
include calibration and non-response adjustments that are not known for the non-probability sample 
elements.) This last point is critical as use of the probability sample to develop propensity scores using 
only the discrepancies between the non-probability sample and the probability sample will be biased 
unless the probability sample used an equal probability (epsem) design, as noted by Wu. 

In contrast, Chen, Li and Wu (2020) shows that using a pseudo-likelihood approach to estimating 
( )ˆ ,A

i i x α  directly from the population likelihood for the indicators ( )AI i S  as a function of ix  yields 
an estimator that does not require ( )BP i S  for elements in the non-probability sample under the 
restriction that ( ),A

i i x α  follows a generalized linear model with a canonical link, i.e., logistic regression. 

(None of these approaches actually has the correct intercept to obtain a true propensity score; however, 
as noted in Wu, weighted estimation usually uses Hájek-type estimators [using weights to estimate a 
population total for denominators; Hájek, 1971] so that propensity scores estimated up to a normalizing 
constant are sufficient.) 

 
2.2 Doubly-robust estimators 
 

If inference is focused on a particular variable Y  available only in the non-probability sample, we can 
return to the model-assisted estimators that date back to Cassel, Särndal and Wretman (1976), which posit 
a model for the expectation ( ) = .xi i iE y m  Combining this with propensity score estimates of the 
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probability of being in the non-probability sample (which we are treating as an “unknown probability 
sample” – more about this under Assumptions below) yields estimators of the form  

 
ˆ1 1 ˆˆ ˆˆ

A B

Bi i
i iAA B

i S i Si

y m d m
N N 

−
+   (2.2) 

corresponding to DR 2̂  of (4.11) in Wu. The intuition is that any bias due to the model misspecification in 
estimation of im  in 1

ˆ ˆB
B

B
i ii SN

d m
  will be equal to and opposite in sign of ˆ1

ˆ ˆ
i i

A A
A i

y m
i SN 

−

  if the model for 
A
i  is correctly specified. Conversely, if the model for A

i  is misspecified but im  is correctly specified, 
ˆi iy m−  will be iid with mean zero and consequently ˆ1

ˆ ˆ
i i

A A
A i

y m
i SN 

−

  will also have mean 0, yielding an 
unbiased estimator. Chen, Valliant and Elliott (2019) used LASSO for prediction in combination with 
generalized regression estimators (McConville, Breidt, Lee and Moisen, 2017) when X  is of high 
dimension. As Wu notes, Wu and Sitter (2001) show the equivalence between GREG applied to predicted 
values and DR estimators of the form in (2.2), which indicates that the Chen et al. (2019) approach was 
equivalent to (2.2) with LASSO estimation for im  and an assumption of simple random sampling for the 
non-probability sample. 

A disadvantage of using (2.1) as opposed to Chen et al. (2020) as the estimator of ,A
i  and thus of ,A

id  
is the requirement that the probability sample weights B

id  be known or at least estimated for the non-
probability sample. An advantage of using (2.1), is that non-linear models and machine learning methods 
can be used in estimation. Rafei, Flannagan and Elliott (2020) uses BART to estimate both im  and ,A

i  
reducing the impact of potential model misspecification. Simulations showed considerable improvement 
in bias and variance reduction over the method of Chen et al. (2020) when the linear models is 
misspecified. Variance estimation can proceed by adapting Rubin’s multiple imputation rules: from M  
independent draws from BART, the mean of the variances computed treating the draw of A

id  as known 
using standard complex sample design estimators and added to 1M

M
+  times the variance of the point 

estimates computed across the draws of A
id  yield an approximately unbiased variance estimator. 

An alternative approach to doubly-robust estimation uses the fact that the propensity score is the 
coarsest possible “balancing score” that contains all of the information about the association between the 
sampling indicator and the outcome of interest. This has led to the development of mean estimators that 
use smooth functions of weights to produce consistent estimators that can be more efficient when weights 
are highly variable or only weakly related to the outcome (Elliott and Little, 2000; Zheng and Little, 
2005). Zhou, Elliott and Little (2019) extended this idea into the causal inference setting in non-
randomized settings, in which probability of assignment to a treatment or exposure (propensity score) is 
estimated as a function of covariates ( ),Z iP x α  using logistic regression, and then non-observed potential 
outcomes zY  under treatment arm i iz z   for observed treatment iz  are imputed from  

 ( )( ) ( )* * 2ˆ ˆˆ ˆ~ ( , ) ( , ), ,Z
i Z i Z Z i i ZY N s P g P +x α θ x α x β  (2.3) 
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where *P  is the logit transformation of ,P  *ˆ( )Z Zs P θ  denotes a penalized spline with fixed knots (Eilers 
and Marx, 1996) of propensity, and *ˆ( , )Z i Zg P x β  is a general function of covariates including the 
propensity scores. The resulting estimator is doubly robust in the sense that if either ( ),Z iP x α  or 

*ˆ( ) = ( , )z
Z i ZE Y g P x β  is correctly specified, ( )zY  will be approximately unbiased; see Zhang and Little 

(2009). This can be implemented in the non-probability setting by replacing ˆ ( , )Z iP x α  in the mean model 
for (2.3) with ˆ A

i  estimated using (2.1) to obtain a draw of ( ).b
iY  (Note this requires obtaining ˆ A

i  for the 
probability sample elements requiring prediction.) Inference can proceed by obtaining =1, ,b B  draws 
from the posterior distribution of the estimated population quantity of interest, e.g., for the population 
mean  

 
( )( ) ( ) ( )

( ) = R A

b b b
i i i ii S i Sb

N Y y Y
Y

N
 

+ − 
  

where now ( )b
iN  is a estimate of the population represented by the weight R

id  obtained from a finite 
population Bayesian bootstrap (Little and Zheng, 2007); more complete FBPP extensions to complex 
sample designs that include clustering and stratification are available in Dong, Elliott and Raghunathan 
(2014). 

As in the estimation of (2.1), the non-parametric (spline) component of (2.3) can be replaced with other 
machine-learning estimators; see Chapter 4 of Rafei (2021) for implementation using Gaussian processes. 
Also, extensions to non-normal models are direct, although not necessarily computational easy. 

 
2.3 Poststratified estimators 
 

Wu also describes the use of poststratified estimators in the context of quota sampling, which is not 
only a very old form of non-probability sampling but indeed the standard before Neyman made the case 
for stratified random sampling (Neyman, 1934). Wu’s Section 5 suggests a robust alternative to the 
propensity score estimates obtained by ordering observations in the probability sample by ˆ ,i  stratifying 
into K  strata based on this ordering, and computing the predicted proportion of the population belonging 
to the thk  stratum as proportion of the sample weights kW  in this stratum using the probability sample, 
with  

 PST
ˆˆ = k k

k
W y   (2.4) 

where ky  is the mean within the thk  stratum in the non-probability sample. Wu notes the tradeoff between 
choosing K  to be large enough to retain homogeneity within units but small enough to obtain stable 
estimates of ,ky  suggesting 30 as the old “rule of thumb” for “large [enough] sample sizes”. I would add 
that a more formal approach discussed in Little (1986) suggests a method to generate strata (there in the 
context of non-response adjustment) that minimizes mean square error by maximizing the 
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between-stratum-to-within-stratum variance. It would seem such an approach would be appropriate to 
consider in the non-probability post-stratified estimator as well. 

A more direct approach to obtain estimates using a post-stratified type estimator is multilevel 
regression and poststratification (Wang, Rothschild, Goel and Gelman, 2015; Downes and Carlin, 2020). 
Here only data from the non-probability sample is used in the outcome model:  

 ( )[ ] 0 [ ]= T j
k i k l k

j
E Y a + +x β  (2.5) 

where =1, ,k K  indexes the poststratum developed from =1, ,j J  variables, 2
[ ] ~ (0, )j

l k ja N   for 
=1, , jl L  and [ ]l k  maps the postratum cell k  to the appropriate category l  of variable .j  The 

poststratifed estimator is still given by (2.4) with ˆ
kW  now replaced with known population totals ;kW  

posterior inference is obtained though posterior draws of 0 ,  ,β  and [ ]
j

l ka  to obtain a draw of  

 ( ) ( ) ( ) ( )
PST 0 [ ]

1ˆ = .b b T b j b
k k l k

k i k jk

W a
n

 


  
+ +  

   
  x β   

Though not technically doubly-robust, it has been shown to work well in some applications where J  is 
large enough to capture all of the important discrepancies between the probability and non-probability 
sample, and the non-probability sample is sufficiently large to allow reasonably accurate estimation of 

[ ].
j

l ka  In the absence of known joint distributions of a high dimensional ,X  this approach has the 
weakness of relying on estimated distributions, which are unstable. A possible alternative might be replace 
the simple ky  with (2.5) in Wu’s poststratified estimator (2.4), using the fact that the sampling weights 

R
id  summarize the information about X  in the probability sample similar to that of the propensity score 

for non-probability sample. 

 
3. Weighting vs. modeling for the general user 
 

Wu’s paper and the above addendums tend to follow the long-trodden path regarding weighting versus 
modeling in the finite population inference setting, dating back at least to Hansen, Madow and Tepping 
(1983). In thinking about this choice I believe it is important to distinguish between models used to derive 
so-called descriptive parameters – in the sense of Kalton (1983) – and models that are of interest in and of 
themselves, so-called analytic parameters in regression models, latent classes analysis, etc. For the former 
distinguishing a descriptive target of interest Y  from potential modeling covariates X  has the advantage 
of creating doubly-robust estimators that are targeted to a single descriptive parameter. This also requires 
assumptions such as A1 in Section 2.1 (propensity score does not depend on Y  conditional on ).X  When 
models themselves are the targets of interest, it may be that developing weights via propensity scores to 
account for selection bias and, as Wu notes, employing standard weighted estimating equations may be the 
most sensible choice, since typically a wide number of models may be considered. This comes at the cost 
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of double robustness, since there is usually no attempt to model the analytic parameter directly. 
Developing ways to extend double-robustness into a broader class of model parameter estimates may be a 
fruitful exercise. 

 
4. Unverifiable assumptions: Recent developments in sensitivity 

analysis 
 

Wu provides four key assumptions required to correct for selection bias in non-probability surveys 
using data from probability surveys: they can be roughly summarized as “selection at random” or SAR 
(covariates in the non-probability sample explain the probability of selection in the non-probability 
sample); “positivity” (all elements in the population have a non-zero probability of selection into the non-
probability sample); “independence” (elements are selected independently into the non-probability 
sample); and “common covariates” (there exists a probability survey with covariates whose subset 
matched the covariates required for the MAR assumption to hold). It might be worth noting that the first 
two assumptions basically require the non-probability survey to be a probability survey “in disguise” – 
that is, there really are non-zero probabilities of selection into the non-probability survey for all elements 
in the population, but we as analysts just do not know what they are. 

In practice neither of these assumptions probably hold precisely. Some recent work has focused on the 
failure of the first, the SAR assumption. Some existing measures borrowed from the non-response 
literature have been repurposed here: for example, the R-indicator measure (Schouten, Cobben and 
Bethlehem, 2009), which in this context is the measure of the variability in the probabilities of selection in 
the non-probability sample:  

 
2

=1 =1

1ˆ ˆ ˆ= 1 2
1

A An n
A A
i j a

i ja

R n
n

 
 

− − −  
    

R̂  can range between 0 and 1, where 1 is achieved when probabilities of selection are constant – 
suggesting something akin to a simple random sample, with less chance for selection bias – and 0 – 
suggesting all elements are either included with probability 1 or 0, maximizing the risk of selection bias. 

Of course, in the absence of the outcome Y  in the probability sample, there is no way to directly assess 
selection bias. Hence recent work has extended Andridge and Little (2011), which develops a sensitivity 
analysis using a pattern-mixture model, wherein selection into non-probability sample is allowed to 
depend entirely on a scalar reduction to the covariates ,X  entirely on the outcome ,Y  or some convex 
combination thereof. Little, West, Boonstra and Hu (2020), Andridge, West, Little, Boonstra and 
Alvarado-Leiton (2019), and West, Little, Andridge, Boonstra, Ware, Pandit and Alvarado-Leiton (2021) 
consider sensitivity to this assumption in the estimation of the mean of a normally distributed variable, the 
mean of a binary outcome, and the regression parameters in a linear regression model, respectively, in 
non-probability samples. By varying the convex mixing parameter ,  sensitivity to the SAR assumption 
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can be assessed. Boonstra, Little, West, Andridge and Alvarado-Leiton (2021) finds that these “standard 
measures of bias” (SMB) compare favorably with alternatives such as R̂  in a simulation study. An 
important point to note is that the methods that extend Andridge and Little (2011) do not depend on 
assumption of common covariates in a probability sample. This suggests that methods that use information 
available in the probability sample to assess SAR are an open area for development. 

The second assumption – positivity – is also unlikely to exist precisely in many practical settings. My 
own work in this area has focused on naturalistic driving studies, which typically involve convenience 
samples in a limited geographical area: for example, the Second Strategic Highways Research Program 
(SHRP2) recruited drivers in six specific geographic regions across the United States (Transportation 
Research Board (TRB) of the National Academy of Sciences, 2013). This corresponds to the second 
scenario given by Wu in Section 7.2, where only a subpopulation has any chance of being selected into the 
non-probability sample, which as he notes has “no simple fix”. Following his notation of D  providing an 
indicator of membership in the subpopulation, it would seem that if , A

i i i iD Y ⊥ X  – that is, if the 
distribution of , YX  is the same for = 0D  and =1D  after weighting for A

i  within the =1D  stratum – 
then lack of positivity would have no impact on inference. This is likely a tall order in the most general 
settings but might be reasonably well approximated if the analysis of interest involves a subset of , YX  
that is only weakly associated with D  even before adjustment. 

Finally, regarding the fourth assumption – existence of a probability sample with available X  – I very 
much second Wu’s observation that methods to take advantage of multiple probability surveys need more 
development. However, it remains more likely that a researcher will struggle to find a single probability 
sample with sufficient covariates than struggle with a surfeit of options (Wu’s “rich person’s problem”). 
To this end I will conclude with a call to action by the survey community. 

 
5. Probability sampling in the 21st century: Now more than ever 
 

I learned statistics, and particularly survey statistics, near the end of the 20th century, when probability 
sampling was the unchallenged touchstone of survey design. I was first introduced to the problem of 
making inference from non-probability samples in the late 00’s in the context of injury analysis using 
Crash Injury Research (CIREN) data, where analysts were treating a highly-restricted sample of 
individuals in passenger vehicle crashes as if they were a random sample of crash victims and 
consequently finding non-sensible results (Elliott et al., 2010). About the same time web surveys were 
exploding in popularity and survey statisticians were somewhat at a loss as to how to make inference from 
such data. I will admit to a rather paternalistic attitude at the time – I almost avoided trying to do research 
in this area because I thought it would only encourage “bad behavior” regarding sample design. I did not 
think I could single-handedly stop it, but I did not want to participate in what I perceived as the 
downgrading of science. I came to recognize, however, that many of these new data sources have 
advantages beyond what can be achieved through the traditional probability sample, certainly within 
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limited budgets. This is above and beyond the increasing challenges to implementing probability surveys, 
especially in general populations, due to non-response, lack of adequate sampling frames, etc. 

However, I remain concerned that the idea that we have developed methods to deal with the limitations 
of non-probability surveys means that probability sampling is passe is becoming entrenched among 
scientists and policy makers with limited statistical training, despite efforts like those of Bradley, 
Kuriwaki, Isakov, Sejdinovic, Meng and Flaxman (2021) and Marek, Tervo-Clemmens, Calabro et al. 
(2022). However, as Wu’s review notes, the absence of probability samples unmoors the non-probability 
sample from the possibility of even partial calibration or other adjustment approaches (although sensitivity 
analyses such as those SMB approaches noted above do not require benchmarking probability samples). 
Hence I believe it is increasingly critical for an organized and ideally government funded stable of high-
quality probability surveys to be put into place for routine data collection. Some of these obviously 
already exist – the US Census’ American Community Survey and the National Center for Health Statistics 
National Health Interview Survey premier among them – but going forward I believe it would be valuable 
for statistical agencies to explicitly coordinate around the need for high quality probability surveys to 
serve a role as analytic partners to the non-probability survey world rather than just as stand-alone 
products. This means thinking carefully about important covariates across a variety of public health and 
social science roles in which survey data play a role. Choices will have to be made given limited budget 
constraints, and at the same time provisions should be made for sufficient funding to retain the quality 
needed for adjustment. Finally, while some methods do not require microdata and thus can use summary 
measures such as those avaiable in the American Communities Survey, other will require such data, which 
likely means new areas of research to be explored in the fields of privacy and confidentiality research as 
applied to the combining of data from probability and non-probability surveys. 
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Abstract 

Strong assumptions are required to make inferences about a finite population from a nonprobability sample. 
Statistics from a nonprobability sample should be accompanied by evidence that the assumptions are met and 
that point estimates and confidence intervals are fit for use. I describe some diagnostics that can be used to 
assess the model assumptions, and discuss issues to consider when deciding whether to use data from a 
nonprobability sample. 
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1. Introduction 
 

Many thanks to Changbao Wu for his stimulating review and assessment of methods for making 
inferences from nonprobability samples. I especially appreciate his thoughtful examination of the strong 
assumptions needed to derive the bias and variance of estimates. 

Wu reviews three approaches for estimating the finite population mean y  of a variable y  that is 
measured in a nonprobability sample AS  of size .An  Because this sample is not representative of the 
population (and hence the sample mean Ay  is likely biased for estimating ),y  each approach relies on 
information from a high-quality probability sample BS  of size :Bn  BS  does not measure y  but it contains 
a set of auxiliary variables x  that are also observed in .AS  

In the model-based predictive approach, a model is developed on AS  to predict y  from .x  The mass 
imputation (MI) estimator, for example, uses the model to impute an estimate *

iy  of iy  for every member 
of the probability sample .BS  Then the population total of y  is estimated by *‍,

B

B
i ii S

d y
  where B

id  is 
the design weight of unit i  in .BS  

In the inverse propensity weighting (IPW) approach, a model is developed predicting the probability 
A
i  that population unit i  appears in AS  as a function of .x  Then unit i  in AS  is assigned weight 

1 ˆA A
i iw =  and the population total is estimated by ‍.

A

A
i ii S

w y
  

Wu also reviews a “doubly robust” estimator of y  that, by combining the predictive and IPW 
estimators, is approximately unbiased under the assumptions if either model is correctly specified. In this 
discussion, I will concentrate on the predictive and IPW approaches because these methods generalize 
more easily for multivariate analyses and estimating population characteristics other than means. 

In Section 2, I explore assumptions needed for inference from nonprobability samples and diagnostics 
for assessing them. Then, in Section 3, I look at some questions to ask when deciding which approach (if 
any) to use for inference. 
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2. Model assumptions and diagnostics 
 

Probability sampling gained widespread use after the theory was developed in the 1930s and 1940s 
because it provided a mathematically justified solution to the problem of how to generalize from a sample 
to a population. Under minimal assumptions, a full-response probability sample produces approximately 
unbiased estimates of population quantities, accompanied by confidence intervals that have approximately 
correct coverage probabilities. It is the only method that is guaranteed to produce accurate confidence 
intervals without making assumptions about the unsampled members of the population. A probability 
sample is representative because of the procedure by which it is drawn. 

All other methods require huge assumptions. The major assumptions for the predictive and IPW 
methods, given in Section 2.1 of Wu’s article, are: (A1) y  and the random variable indicating 
participation in AS  are independent given ,x  (A2) every unit in the population has 0,A

i   and (A3) the 
random variables indicating participation in AS  are independent given .x  These assumptions imply that 
the auxiliary information x  is rich enough to develop inverse propensity weights that remove selection 
bias for ,y  and that a model developed on AS  to predict y  from x  will also apply to units not in .AS  

Statistical properties of the estimators are developed assuming that (A1) - (A3) are true and that the 
models adopted for weighting or imputation are correctly specified. Under those conditions, the estimated 
population mean is approximately unbiased with variance given by the appropriate theorem. But, as Wu 
points out, that variance estimate is conditional on the assumptions being satisfied; if the assumptions are 
not met, it will severely underestimate the true mean squared error and give a misleading impression of 
the estimate’s trustworthiness. If An  and Bn  are large but (A1) is violated, the bias might be 10 
percentage points but the reported standard error of an MI or IPW estimate will be close to zero. In 
practice, many nonprobability samples will violate the assumptions: Mercer, Lau and Kennedy (2018) 
found, when weighting online opt-in samples with rich auxiliary information, that “even the most effective 
adjustment strategy was only able to remove about 30% of the original bias”. 

The assumptions cannot be fully tested because they involve missing data ‒ population members 
missing from AS  and y  values missing from .BS  But, as with nonresponse adjustments in probability 
samples (Lohr, 2022, Chapter 8), one can perform model checks and diagnostics using available 
information, with the recognition that these might not catch all model deficiencies. 
 

Compare statistics from the nonprobability sample with those from other data sources 
 

Wu suggests comparing empirical distribution functions of variables in x  from AS  with the survey-
weighted empirical distribution functions from .BS  Differences may indicate that observations in AS  have 
unequal propensity scores or that the x  variables are measured differently in AS  than in BS  (see 
Section 3). One can also compare empirical distributions from AS  with those from another probability 
survey .CS  

If IPW is used, one can also compare propensity-score-weighted empirical distribution functions from 

AS  with those from BS  and other surveys. This should be done only for variables not used in the 
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weighting, since the propensity score weights have already adjusted for imbalances in weighting variables. 
Dutwin and Buskirk (2017), for example, constructed propensity weights for a nonprobability sample 
through raking on marginal totals and then compared the cross-tabulations of those raking variables. 

Wu also suggests treating a variable z  that is measured in both AS  and BS  as a response variable, and 
comparing conditional models for z u  fitted on AS  and ,BS  where u  is a subset of x  (excluding ).z  
Differences in the two models can indicate that z  is needed as an auxiliary variable, and may also raise 
questions of how well the set of measured auxiliary variables satisfy assumption (A1). 

In an example from Kim, Park, Chen and Wu (2021), the estimated percentage of persons who 
volunteer was 24.8% from the Current Population Survey (the gold-standard estimate), but the MI and 
IPW estimates from AS  were both close to 50% with reported standard error less than one percentage 
point. The standard error, computed under the model assumptions, did not account for the selection bias of 

AS  with respect to volunteerism ‒ a bias that could not be removed using demographics, home ownership, 
and medical insurance as model covariates. 
 
Compare results from the IPW and MI approaches 
 

An alternative to using the doubly robust estimator for analysis is to use each model to identify 
potential deficiencies of the other. Possible investigations include comparing the empirical distribution of 
y  from AS  (using the inverse propensity weights) with the empirical distribution of *y  from BS  (using 

the imputed values and the survey weights). Similarly, as suggested by Chipperfield, Chessman and Lim 
(2012), one can compare estimated domain means from AS  and BS  for a set of domains 1, , .d D=   One 
might also compare imputations for y  fit to the unweighted data set AS  with imputations developed on 

AS  with inverse propensity weights. 

Simulation studies are valuable for checking the small-sample behavior when the assumptions are met, 
but are of limited value for exploring sensitivity to model assumptions. These explore model deviations 
devised by the investigators, but real surveys can diverge from the model in many unanticipated ways. 
 
Perform model diagnostics 
 

Of course, for either the IPW or model-predictive approach, analysts should employ standard 
regression diagnostics such as examining residuals and influential observations to examine model fit and 
sensitivity to outliers, and document the checks that were done. 

For the IPW approach, it is also desirable to examine characteristics of the final weights. The 
coefficient of variation of the weights provides a rough measure of the amount of adjustments that were 
needed to make sample AS  “representative”. A low coefficient of variation, however, does not necessarily 
mean the sample is representative; this may merely reflect inadequacy of the available auxiliary 
information for developing weights. For example, suppose a quota sample from an opt-in internet panel is 
drawn to match the population with respect to the auxiliary variables. The inverse propensity weights will 
have little variation because the x  variables were used to form the quota classes, but the sample may still 
produce biased estimates of y  variables such as internet usage or volunteering. 
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The graphical methods proposed by Makela, Si and Gelman (2014) for assessing weight adjustments in 
surveys can be used with IPW as well. Brick (2015) suggested looking at the magnitude of the IPW 
adjustments in the weighting cells. One can also examine the distribution of the weights within domains of 
interest. 

The inverse propensity weights can also provide information about assumption (A2). A domain that 
has high weights relative to other domains may have undercoverage in .AS  Dever (2018) proposed 
investigating assumption (A2) by identifying individuals in BS  who have no close match in .AS  

Bondarenko and Raghunathan (2016) reviewed and proposed graphical and numerical diagnostic tools 
for assessing and improving imputation models. None of these diagnostics, however, will test the 
assumption that the regression model fit on AS  applies to units not in .AS  Just as Ay  may be a biased 
estimator of ,y  regression coefficients derived from AS  may also be biased, and the model constructed 
from AS  to predict y  from x  might not apply to other parts of the population. 
 
Take a small probability sample to investigate assumptions 
 

The preceding steps can identify some model deficiencies, but cannot fully test assumptions (A1) and 
(A2). But one can test the imputation model by obtaining data about y  on a probability subsample of .BS  
Similarly, one could take a probability sample from population members not in AS  to check inferences 
from the IPW approach, or observe y  on a subsample of units in BS  that are similar to those with high 
weights in ,AS  or that have no close match in .AS  

 
3. When should one use nonprobability samples? 
 

Wu describes methods for combining information from probability and nonprobability samples after 
the decision has been made to do so. A first question, however, is whether the operation should be done at 
all. It may be desired to use a nonprobability sample because no high-quality probability sample measures 

,y  and it is thought that “any information is better than no information”. But is that true? 

Suppose that, despite the careful model-fitting and model-checking, key statistics are still biased. 
Could reporting a flawed statistic be worse than reporting no statistic? Bad statistics, once published, can 
circulate for a long time ‒ even after more rigorous studies show that they are biased. In 1975, advice 
columnist Ann Landers asked her readers to respond to the question “If you had it to do over again, would 
you have children?” About 70% of the 10,000 persons who mailed a response said they would not have 
children in a do-over. This statistic is still cited, even though it is from a convenience sample, has been 
contradicted by numerous other studies, and is nearly 50 years old (Lohr, 2022). It is also unlikely that 
predictive modeling or IPW would have corrected the selection bias affecting Landers’ statistic, which 
occurred within all demographic groups. 

With these issues in mind, here are some questions that could be asked when deciding whether to use 
estimates from a nonprobability sample and, if so, which statistical method to use for making inferences. 
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• How will the statistics be used? Estimates from the nonprobability sample might serve well for 
developing a marketing strategy or for an exploratory sociological study, but might not be 
deemed reliable enough for estimating unemployment or the number of persons requiring food 
assistance. Statistics from a nonprobability sample should be accompanied by evidence that the 
estimates are fit for use. 

• What is the quality of the data in ?AS  Administrative records such as tax records have a 
different quality profile than a survey of volunteers recruited through an internet advertisement. 

 

If the population for AS  is well-defined (for example, tax filers), it may be better to report 
statistics for that population than to attempt to generalize to the population of .BS  For tax 
records, many persons below preset income thresholds have 0A

i =  and assumption (A2) is 
violated. Instead, a multiple-frame approach might be adopted, where a different data source is 
used to estimate y  for the parts of the population not in AS  (Lohr, 2021). 

Since all of the models rely on auxiliary information ,x  it is important to have AS  and BS  
measure the x  variables the same way. If income is used as an auxiliary variable, the same 
questions should be used to define income in both surveys, and income should be measured for 
the same unit (person or household). 

Kennedy (2022) suggested that some respondents to opt-in online surveys may provide 
incorrect demographic information or bogus answers to questions; if that occurs, model 
predictions will be flawed. It may even be possible for outsiders desiring a specific outcome to 
manipulate the data in AS  ‒ for example, an organization might arrange for the survey to be 
taken by a set of volunteers whose claimed demographic characteristics match those of the 
population but who give the “desired” answer for .y  Some proponents of nonprobability 
samples argue that low-response-rate probability samples also require weighting adjustments or 
imputation, but there is one important difference: the probability survey may have nonresponse, 
but the initial sample is selected randomly and cannot be manipulated by outside organizations. 

If the data in AS  are low-quality, is it worth spending the time to construct models? As Louis 
(2016) said, “Space-age procedures will not rescue stone-age data”. 

 

• How detailed is the auxiliary information? If AS  is large, and the auxiliary information is 
specific enough to be able to identify specific records, then linking records between AS  and BS  
would be a better method for combining the data. Imputation or IPW would be used if the 
auxiliary information x  is rich enough to give good predictions of iy  or ,A

i  but not rich 
enough to permit accurate linkage. If there is little auxiliary information, however, then one 
would expect low variation in the propensity scores or imputed values, and the methods may 
give poor predictions ‒ with little information to diagnose potential problems. 

• What analyses are desired? Wu discusses estimating the population mean, but the analyst may 
also want to look at relationships between y  and other variables, or estimate means or medians 
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for subgroups. The choice of method depends in part on the variables that are available in AS  
and .BS  If AS  contains many response variables whose relationship is of interest, the IPW 
approach might be preferred. 

If it is desired to explore relationships between y  and variables measured only in ,BS  imputation 
might be a better choice. Here, though, the analyst should be careful to acknowledge the 
imputation when presenting results ‒ if, say, linear regression is used for the imputation, the 
correlation calculated on BS  is not between variable u  and variable ,y  but between u  and ˆ.x βT  

 

• What are the implications for data equity? Jagadish, Stoyanovich and Howe (2021) defined 
“representation equity” as “increasing the visibility of underrepresented groups that have been 
historically disadvantaged or suppressed in the data record”. 

Nonprobability samples have the potential to improve data equity. They can increase the sample 
size and visibility of rare population subgroups ‒ a large data set AS  might contain 10,000 
members of the subgroup, while even a full-response probability survey with Bn = 60,000 
might contain only ten. Or the nonprobability sample may contain population members who are 
underrepresented in the probability survey because they are out of scope, undercovered in the 
sampling frame, or prone to nonresponse. In these situations, AS  provides information about 
groups that are not as well represented in the probability survey. 

On the other hand, historically disadvantaged groups may be underrepresented in all data 
sources, including .AS  For example, a large nonprobability sample of electronic health records 
will be able to generate estimates for more population subgroups than a small probability 
sample about health. But persons without health insurance or access to medical care are 
underrepresented. In this situation, relying on AS  to produce population estimates may 
reinforce inequities. If the estimates are used to distribute resources, then, as the program is 
implemented, more data will be collected in the areas getting those resources and will validate 
their needs, but no such follow-up will be done in areas that are inaccurately determined to 
receive no resources. The feedback loop will propagate the inequitable representation in data 
sources. 

The MI and IPW methods have different data equity implications. Imputation assigns a 
predicted value of y  to each observation in ,BS  and the imputed y  value may differ from the 
y  value the respondent would have supplied if asked ‒ particularly if the respondent is in a 

subgroup that is unrepresented or misrepresented in .AS  Will the model give accurate 
predictions for historically underrepresented subgroups? Did the respondents to BS  give 
informed consent for y  to be imputed? 

IPW assumes that the propensity scores can be estimated from auxiliary information. Is that 
information rich enough to give accurate weights? Are some subgroups unrepresented in ?AS  It 
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may be useful to compare the results from the two methods, and from other data sources if 
available, for historically underrepresented population subgroups.  

 

Wu’s critical review raises many important issues for persons interested in using nonprobability 
samples to make inferences about the population. I especially appreciate his assessment of the strong 
assumptions needed for the model-based methods, and applaud the emphasis on addressing these 
problems during the survey design stage. 
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Abstract 
Non-probability samples are deprived of the powerful design probability for randomization-based inference. 
This deprivation, however, encourages us to take advantage of a natural divine probability that comes with 
any finite population. A key metric from this perspective is the data defect correlation (ddc), which is the 
model-free finite-population correlation between the individual’s sample inclusion indicator and the 
individual’s attribute being sampled. A data generating mechanism is equivalent to a probability sampling, in 
terms of design effect, if and only if its corresponding ddc is of N-1/2 (stochastic) order, where N is the 
population size (Meng, 2018). Consequently, existing valid linear estimation methods for non-probability 
samples can be recast as various strategies to miniaturize the ddc down to the N-1/2 order. The quasi design-
based methods accomplish this task by diminishing the variability among the N inclusion propensities via 
weighting. The super-population model-based approach achieves the same goal through reducing the 
variability of the N individual attributes by replacing them with their residuals from a regression model. The 
doubly robust estimators enjoy their celebrated property because a correlation is zero whenever one of the 
variables being correlated is constant, regardless of which one. Understanding the commonality of these 
methods through ddc also helps us see clearly the possibility of “double-plus robustness”: a valid estimation 
without relying on the full validity of either the regression model or the estimated inclusion propensity, 
neither of which is guaranteed because both rely on device probability. The insight generated by ddc also 
suggests counterbalancing sub-sampling, a strategy aimed at creating a miniature of the population out of a 
non-probability sample, and with favorable quality-quantity trade-off because mean-squared errors are much 
more sensitive to ddc than to the sample size, especially for large populations. 

 
Key Words: Data defect index; Design probability; Divine probability; Device probability; Design-based inference; 

Model-assisted survey estimators; Non-response bias. 
 
 
1. Distinguish among design, divine, and device probabilities 
 

1.1 What can statistics/statisticians say about non-probability samples? 
 

Dealing with non-probability samples is a delicate business, especially for statisticians. Those who 
believe statistics is all about probabilistic reasoning and inference may question if statistics has anything 
useful to offer to the non-probabilistic world. Whereas such questioning may reflect the inquirers’ 
ignorance about or even hostility towards statistics, taking the question conceptually, it deserves 
statisticians’ introspection and extrospection. What kind of probabilities are we referring to when the 
sample is non-probabilistic? The entire probabilistic sampling theory and methods are built upon the 
randomness introduced by powerful sampling mechanisms, which then yields the beautiful designed-
based inferential framework without having to conceive anything else is random (Kish, 1965; Wu and 
Thompson, 2020; Lohr, 2021). When that power ‒ and beauty ‒ is taken away from us, what’s left for 
statisticians? 
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A philosophical answer by some statisticians would be to dismiss the question altogether by declaring 
that there is no such thing as probability sample in real life. (I was reminded by Andrew Gelman about 
this sentiment when I sought his comments on this discussion article. See 
https://statmodeling.stat.columbia.edu/2014/08/06 for a related discussion.) By the time the data arrive at 
our desk or disk, even the most carefully designed probability sampling scheme would be compromised 
by the imperfections in execution, from (uncontrollable) defects in sampling frames to non-responses at 
various stages and to measurement errors in the responses. In this sense, the notion of probability sample 
is always a theoretical one, much like efficient market theory in economics, which offers a mathematically 
elegant framework for idealization and for approximations, but should never be taken literally (e.g., Lo, 
2017). 

The timely article by Professor Changbao Wu (Wu, 2022) provides a more practical answer, by 
showcasing how statisticians have dealt with non-probability samples in the long literature of sample 
surveys and (of course) observational studies, especially for causal inference; see Elliott and Valliant 
(2017) and Zhang (2019) for two complementary overviews addressing the same challenge. To better 
understand how probability theory is useful for non-probability samples, it is important to recognize (at 
least) three types of probabilistic constructs for statistical inference, as listed in Section 1.2. Non-
probability samples take away only one of the three, and as a result, they typically force a stronger 
reliance on the other two. 

With these conceptual issues clarified, the rest sections discuss a unified strategy for dealing with non-
probability samples. Section 2 reviews a fundamental identity for estimation error, which has led to the 
construction of data defect correlation (Meng, 2018). Section 3 then discusses how this construct suggests 
the unified strategy. Section 4 demonstrates the strategy respectively for the qp  and p  settings in Wu 
(2022). Section 5 then applies the strategy to the two settings simultaneously to reveal an immediate 
insight into the celebrated double robustness, as reviewed in Wu (2022). Inspired by the same construct, 
Section 6 explores counterbalancing sampling as an alternative strategy to weighting. Section 7 concludes 
with a general call to treat probability sampling theory as an aspiration instead of the centerpiece of survey 
and sampling research. 
 

1.2 A trio of probability constructs 
 

The first of the three named constructs below, design probability, is self-explanatory. It is at the heart 
of sampling theory and reified by practical implementation, however imperfect the implementation might 
be. The distinction between the next two, divine probability and device probability, may be more nuanced 
especially at practical levels. But their conceptual differences are no less important than distinguishing 
between an estimand and an estimator. Fittingly, the data recording or inclusion indicator, a key quantity 
in modeling non-probability samples, provides a concrete illustration of all three probabilistic constructs; 
see the leading paragraph of Section 4. 
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Design Probability. A paramount concept and tool for statistics – and for general science ‒ is randomized 
replications (Craiu, Gong and Meng, 2022). By designing and executing a probabilistic mechanism to 
generate randomized replications, we create probabilistic data that can be used directly for making 
verifiable inferential statements. Besides probabilistic sampling in surveys, randomization in clinical 
trials, bootstraps for assessing variability, permutation tests for hypothesis testing, and Monte Carlo 
simulations for computing are all examples of statistical methods that are built on design probability. Non-
probability samples, by definition, do not come with such design probability, at least not an identified one. 
Hence, the phrase non-probability samples should be understood as a short hand for “samples without an 
identified design probability construct”. 

It is worth to remind ourselves, however, that there is a potential for design probabilities to come back 
in a substantial way especially for large non-probability data sets, such as administrative data, due to the 
adoption of differential privacy (Dwork, 2008), for example by US Census Bureau (see the editorial by 
Gong, Groshen and Vadhan, 2022, and the special issue in Harvard Data Science Review it introduces). 
Differential privacy methods inject well-designed random noise into data for the purpose of protecting 
data privacy while not unduly sacrificing data utility. Like the design probability used for probabilistic 
sampling, the fact that the noise-injecting mechanism is designed by the data curator, and is made publicly 
known, renders the transparency that is critical for valid statistical inference by the data user (Gong, 
2022). The area of how to properly analyze non-probability data with differential privacy protection is 
wide open. Even more so is the fascinating area of how to take into account the existing defects in non-
probability data when designing probabilistic protection mechanisms for data privacy to avoid adding 
unnecessary noise. Readers who are interested in forming a big picture of the statistical issues involved in 
data privacy should consult the excellent overview article by Slavkovic and Seeman (2022) on the general 
area of “statistical data privacy”. 

Divine Probability. In the absence of design probability for randomization-based inference, in order to 
conduct a (conventional) statistical inference, we typically conceptualize that the data at hand is a 
realization of a generative probabilistic mechanism given by nature or God. (I learned about the term 
“God’s model” during my PhD training, which I took as an expression for faith or something beyond 
human control, rather than reflecting one’s religious belief. The phrase “divine” is adopted here with a 
similar connotation.) We do so regardless of whether we believe or not that the world is intrinsically 
deterministic or stochastic (e.g., see David Peat, 2002; Li and Meng, 2021). We need to assume this divine 
probability primarily because of the restrictive nature of the probabilistic framework to which we are so 
accustomed. For example, in order to invoke the assumption of missing at random, we need to conjure a 
probabilistic mechanism under which the concept “missing at random” (Rubin, 1976) can be formalized. 
As Elliott and Valliant (2017) emphasized, the quasi-randomization approach, which corresponds to the 
qp  framework of Wu (2022), “assumes that the nonprobability sample actually does have a probability 
sampling mechanism, albeit one with probabilities that have to be estimated under identifying 
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assumptions”. That is, we replace the design probability by a divine probability that we have faith for its 
existence, which then typically is treated as the “truth” or at least as an estimand. 

Conceptually, therefore, we need to recognize that the assumption of any particular kind of divine 
probability is not innocent, as otherwise we will not need to rely on our faith to proceed. Nor is it always 
necessary. Any finite population provides a natural histogram for any quantifiable attributes or a 
contingency table for any categorizable attributes of its constituents, and hence it induces a divine 
probability without referencing any kind of randomness, conceptualized or realized, if our inferential 
target is the finite population itself (not a super-population that generates it, for example). The empirical 
likelihood approach takes advantage of this natural probability framework, which also turns out to be 
fundamental for quantifying data quality via data defect correlation (see Meng, 2018). The same emphasis 
was made by Zhang (2019), whose unified criterion was based on the same identity for building data 
defect correlation; see Section 2 below. 

Device Probability. By far, most probabilities used in statistical modeling are devices for expressing our 
belief, prior knowledge, assumptions, idealizations, compromises, or even desperation (e.g., imposing a 
prior distribution to ensure identifiability since nothing else works). Whereas modeling reality has always 
been a key emphasis in the statistical literature, we inevitably must make a variety of simplifications, 
approximations, and some times deliberate distortions in order to deal with practical constraints (e.g., the 
use of variational inference for computational efficiency; see Blei, Kucukelbir and McAuliffe (2017)). 
Consequently, many of these device probabilities do not come with a requirement of being realizable, or 
even coherent mathematically (e.g., the employment of incompatible conditional probability distributions 
for multiple chain imputation; see Van Buuren and Oudshoorn (1999)). Nor are they easy or even possible 
to be validated, as Zhang (2019) investigated and argued in the context of non-probability sampling, 
especially with the superpopulation modeling approach, which corresponds to the p  framework of Wu 
(2022). Nevertheless, device probabilities are the workhorse for statistical inferences. Both quasi-
randomization approach and super-population modeling rely on such device probabilities to operate, as 
shown in Wu (2022) and further discussed in Sections 4-5 below. The lack of design probability can only 
encourage more device probabilities to make headway. To paraphrase Box’s famous quote “all models are 
wrong, but some are useful”, all device probabilities are problematic, but some are problem-solving. 
 

1.3 Let’s reduce “Garbage in, package out” 
 

In a nutshell, probabilistic constructs are more needed for non-probability samples than probability 
ones precisely because of the deprivation of the design probability. Therefore, dealing with non-
probability samples is not a new challenge for statisticians. If anything is new, it is the availability of 
massive amounts of large and non-probabilistic data sets, such as administrative data and social media 
data, and the accelerated need to combine multiple sources of data, most of which inherently are non-
probabilistic because they are not collected for statistical inference purposes (e.g., Lohr and Rao, 2006; 
Meng, 2014; Buelens, Burger and van den Brakel, 2018; Beaumont and Rao, 2021). Contrary to common 
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belief, the large sizes of “big data” can make our inference much worse, because of the “big data paradox” 
(Meng, 2018; Msaouel, 2022) when we fail to take into account the data quality in assessing the errors and 
uncertainties in our analyses; see Section 6.1. 

It is therefore becoming more pressing than ever to greatly increase the general awareness of, and 
literacy about, the critical importance of data quality, and how we can use statistical methods and theories 
to help to reduce the data defect. The central concern here goes beyond the common warning about 
“garbage in, garbage out” ‒ if something is recognized as garbage, it would likely be treated as such 
(likely, but not always, because as Andrew Gelman reminded me that “many researchers have a strong 
belief in procedure rather than measurement, and for these people the most important thing is to follow 
the rules, not to look at where their data came from”). The goal is to prevent “garbage in, package out” 
(Meng, 2021), where low quality data are auto-processed by generic procedures to create a cosmetically 
attractive “AI” package and sold to uninformed consumers or worse, to those who seek “data evidence” to 
mislead or disinform. Properly handling non-probability samples obviously does not resolve all the data 
quality issues, but it goes a very long way in addressing an increasingly common and detrimental problem 
of lack of data quality control in data science. 

I therefore thank Professor Changbao Wu for a well timed and designed in-depth tour of “the must-
sees” of the large sausage-making factory for processing non-probability samples. It adds considerably 
more detailed and nuanced exhibitions to the general tour by Elliott and Valliant (2017), which includes 
excellent illustrations on many forms and shapes of non-probability samples as well as their harms. It also 
showcases theoretical and methodological milestones for us to better appreciate the millstones displayed 
in the intellectual tour by Zhang (2019), which challenges statisticians and data scientists in general to 
understand better the quality, or rather the lack thereof, of the products we produce and promote. 
Together, this trio of overview articles form an informative tour for anyone who wants to join the force to 
address the ever-increasing challenges of non-probability data. Perhaps the best tour sequence starts with 
Elliott and Valliant (2017) to form a general picture, with Wu (2022)’s as the main exhibition of 
methodologies, and ends with Zhang (2019) to generate deep reflections on some specific challenges. For 
additional common methods for dealing with non-probability samples, such as multilevel modeling and 
poststratification, readers are referred to Gelman (2007), Wang, Rothschild, Goel and Gelman (2015) and 
Liu, Gelman and Chen (2021). 

As a researcher and educator, I have been beating similar drums but often frustrated by the lack of time 
or energy to engage deeply. I am therefore particularly grateful to Editor Jean-François Beaumont for 
inviting me to help to ensure Professor Wu’s messages are loud and clear: data cannot be processed as if 
they were representative unless the observed data are genuinely probability samples (which is extremely 
rare); many remedies have been proposed and tried, but many more need to be developed and evaluated. 
Among them, the concept of data defect correlation is a promising general metric to be explored and 
expanded, as demonstrated below. 
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2. A finite-population deterministic identity for actual error 
 

To demonstrate the fruitfulness of the finite-population framework, consider the estimation of the 
population mean, denoted by ,G  of { ( ) : },i iG G X i= N  where {1, , }N=N  indexes a finite 
population, and the ’siX  are data collected on individual .i  For each ,i  let 1iR =  if iG  (or rather )iX  is 
recorded in our sample, and 0iR =  otherwise; hence the sample size is 

=1
.N

R ii
n R=  We stress that this 

is an all-encompassing indicator, which can (and should) be decomposed into (1) ( ), , ,J
i i iR r r=  when 

the data collection consists of J  stages (e.g., (1)
ir  indicates whether or not the thi  individual is sampled, 

and (2)
ir  whether the individual responded or not once sampled). 

Let { , }iW i S  be a set of weights to be determined, where the index set { : 1},iS i R= =  such that 
0.ii S

W


  Let WG  be the weighted sample average, expressible in three ways: 
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



= = =
 
 

 (2.1) 

where ,I I IR R W=  and E I  is taken with respect to the uniform distribution over the index set .N  The 
first expression in (2.1) simply defines a weighted sample average. With the help of ,iR  the second 
expression turns the sample averages into finite-population averages. This trivial re-expression is 
fundamental because it explicates the role of iR  in influencing the behavior of WG  as an estimator of .G  
The third expression reveals a divine probability through ,I  the finite-population index (FPI) variable, by 
utilizing the fact that averaging is the same as taking expectation over a uniformly distributed random 
index .I  All finite-population moments then can be expressed via E .I  

In particular, we can express the actual error of WG  via the following identity, where the first 
expression can be traced back to Hartley and Ross (1954), who used it to express biases in ratio 
estimators. The second expression was given in Meng (2018) with a slightly different (but equivalent) 
expression:   

 ,

Cov ( , ) .
E [ ]

WI I I
W GR G

I I W

N nR GG G
R n

 −
− = =    (2.2) 

Here , Corr ( , )I I IR G R G =  is the finite-population correlation between IR  and ,IG  2
G  is the finite-

population variance of ,IG  and Wn  is the effective sample size due to using weights (Kish, 1965) 

 2 ,
1 CV

R
W

W

nn =
+

 (2.3) 

with CVW  being the coefficient of variation (i.e., standard deviation/mean) of { , }.iW i S  

The expression (2.2) is an algebraic identity because it holds for any instances of 
 ( , ), .i i iG RW iN  Hence no model assumptions are imposed, not even the assumption that R  (or any 
quantity) is random, echoing the comment by Mary Thompson, as quoted in Wu (2022), that “the sample 
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inclusion indicator R  is a random variable is itself an assumption”. The only requirement is that the 
recorded iG  is unchanged from the ’siG  in the target population. (But note this requirement has two 
components: (1) there is no over-coverage, that is, everyone in the sample belongs to the target population, 
e.g., no non-eligible voters are surveyed when the target population is eligible voters, and (2) there is no 
measurement error; extensions to the cases with measurement errors are available, but not pursued in this 
article.) When we use equal weights, the three factors on the right-hand side of (2.2) reflect respectively 
(from left to right) data defect, data sparsity, and problem difficulty, as detailed in Meng (2018) and 
further illustrated in Bradley, Kuriwaki, Isakov, Sejdinovic, Meng and Flaxman (2021) in the context of 
COVID-19 vaccination surveys. 

In particular, when all weights are equal, ,R G  is termed as data defect correlation (ddc) in Meng 
(2018) because it measures the lack of representativeness of the sample via capturing the dependence of 
inclusion/recording indicator on the attributes ‒ the higher the dependence, the more biased the sample 
average becomes for estimating population averages. With the basic strategies of probabilistic sampling or 
inverse probability weighting, ddc will be zero on average because E( ) 1,i iW R =  and it is of 1 2( )pO N −  
order because it is essentially an average of N  independent terms (Meng, 2018). Our general goal here 
therefore is to bring down ddc to 1 2( )pO N −  for non-probability samples, which we shall refer to as 
“miniaturizing ddc” because 1 2N −  is typically a minuscule number in practice. 

When we use weights, the first term ,R G  captures the data defect that still exists after the weighting 
adjustment, since no weights are perfect in practice. Identity (2.2) shows the impact of the weights on both 
data quality and data quantity. The impact on the nominal effective sample size Wn  is never positive 
because W Rn n  as seen in (2.3). Incidentally, the exactness of (2.3) reveals that this well-known 
expression is in fact not an approximation (which is often attributed to Kish (1965)), but an exact formula 
for the reduction of the sample size due to weighting if the weighting had no impact on ddc. However, 
weighting can have a major positive impact on reducing the overall error by judiciously choosing weights 
to significantly decrease ddc, though apparently at the price of .W Rn n  Of course, this is exactly the aim 
of the quasi-randomization framework, as discussed below. Most importantly, however, (2.2) leads to a 
unified insight about the variety of methods reviewed in Wu (2022), including an intuitive explanation of 
the doubly robust property, which has been receiving increased attention for integrating data sources 
including both probability and non-probability samples (e.g., Yang, Kim and Song, 2020). 

Indeed, Zhang (2019, Section 3.1) used the first expression in (2.2) to define a unified non-parametric 
asymptotic (NPA) non-informativeness assumption, which requires that the numerator Cov ( , )I I IR G  
goes to zero, while keeping the denominator E [ ]I IR  positive, as .N →  This unification permits 
Zhang (2019) to evaluate the quasi-randomization approach and regression modeling via a common 
criterion. The ddc framework echoes this unification, as discussed in Section 3 below, with Section 4 
stressing the same broad message as emphasized by Zhang (2019). Section 5 harvests another low-
hanging fruit of the ddc formulation, since it provides an immediate explanation of the celebrated double 
robustness. Section 6 then ventures into a much harder area of engineering a more representative 
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sub-sample out of a large non-representative sample, a worthwhile trade-off because data quality is far 
more important than data quantity (Meng, 2018), as briefly reviewed below. 

 
3. A unifying strategy based on data defect correlation 
 

In the setup of Wu (2022), for each individual ,i  we have a set of attributes { , },i i iA y= x  where y  is 
the attribute of interest, and x  is auxiliary, which is useful in two ways. First, reducing the sampling bias 
due to non-probability sampling becomes possible when the non-probability mechanism can be (fully) 
explained by .x  Second, by taking advantage of the relationships between iy  and ,ix  we can improve the 
efficiency of our estimation. As a starting point, Wu (2022) assumes that we have two data sources 
available, which we denote via two recording indicators, R  and *.R  The main source of the data is a non-
probability sample, where we observe both iy  and xi  for { : 1},ii S i R  =  but the recording indicator 

iR  is determined by a mechanism uncontrolled by any (known) design probability. A second source is 
(assumed to be) a probability sample, where we observe xi  only, for * *{ : 1}.ii S i R  =  This second 
sample provides information to estimate population auxiliary information that is useful for estimating 
population quantities about ,y  such as its mean. Hence this setup is closely related to the setup where 

* ;S S =N  see Tan (2013). 

Now for any function ( ),m x  let ( ), .i iz y m i= − x N  Clearly we can estimate the population 
mean E ( )N I Iy y=  via estimating E ( )I Iz z=  and  E ( ) .I Im m= x  From the second sample, m  can 
be estimated unbiasedly since it involves x  only. We therefore can focus on estimating ,z  while 
recognizing that a more principled approach is to set up a likelihood or Bayesian model to estimate all 
unknown quantities jointly (Pfeffermann, 2017). Applying identity (2.2) with G z=  then tells us that our 
central task is to choose the weight { , }iW i S  and/or the m  function to miniaturize the ddc , .R z  For 
our current discussion, it is easier to explain everything via the covariance   

 ,
1

1Cov ( , ) Cov ( , ( )) ( )
N

I I I I I I I I i i iR z
i

c R z W R y m W R z z
N =

 = − = −x  (3.1) 

instead of the correlation ,R z  because Cov ( , )I I IR z  is a bi-linear function in IR  and .Iz  However, 

, ,R z  being standardized, is more appealing theoretically and for modelling purposes; see Sections 6 
and 7. 

The expression in (3.1) tells us immediately how to make it zero in expectations operationally, and in 
what sense conceptually. For whatever probability we impose on iR  (to be specified in late sections), let 

Pr ( 1 ),i iR = = A  which we assume will depend on iA  only. Then the linearity of the covariance 
operator implies that the average covariance with respect to the randomness in iR  is given by 

 ( ),E[ ] Cov , ( ) ,I I I I IR zc W y m= −A x  (3.2) 
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where { , }.iA i= A N  Similarly, if one is willing to posit a joint model for  ( , ),i iR y iN  
conditioning on X  in the independence form ( )1 , ,N

i i i iP R y= x  then 

 ( ),E[ ] Cov ,E ( ) ( ) .I I I I I IR zc W y m= −X x x  (3.3) 

Very intuitively, one can ensure a zero covariance or correlation between two variables by making 
either of them a constant. The two choices then would lead to respectively the quasi-randomization 
approach by making 1I IW    and the super-population approach by making E[ ] ( )x xI I Iy m−  a 
constant (e.g., zero). The fact that either one is sufficient to render zero covariance (under the joint model) 
yields the double robustness, because it does not matter which one. But clearly these are not the only 
methods to achieve a zero correlation/covariance or double robustness, an emphasis of Kang and Schafer 
(2007) in their attempt to demystify the doubly robust approach (Robins, Rotnitzky and Zhao, 1994; 
Robins, 2000; Scharfstein, Rotnitzky and Robins, 1999). See also Tan (2007, 2010) for discussions and 
comparisons of an array of estimators, including those corresponding to only the quasi-randomization 
approach or only the super-population approach, some of them are doubly robust. 

Indeed, because formula (2.2) is an identity for the actual error, any asymptotically unbiased (linear) 
estimators of the population mean must imply its corresponding ddc is asymptotically unbiased for zero, 
and vice versa, with respect to the randomness in R  or in { , }.R y  However, it is possible for ddc to be 
asymptotically unbiased for zero, without assuming any model is correctly specified – see Section 5 for an 
example. (This “double-plus robustness” is different from the “multiple robustness” of Han and Wang 
(2013), which still needs to assume the validity of at least one of the posited multiple models.) These two 
observations suggest that any general sufficient and necessary strategy for ensuring asymptotically 
consistent/unbiased (linear) estimators for the population mean would be equivalent to miniaturizing ddc. 

As an example of a unified insight that otherwise might not be as intuitive, expression (3.2) suggests 
that we should include our estimate of I  as a part of the predictor in the regression model ( ),Im x  since 
that can help to reduce the correlation between I IW   and ( ),I I Iz y m= − x  especially when we use 
constant weights .IW  Using ˆ I  as a predictor for y  is generally hard to motivate purely from the 
regression perspective, especially when we assume y  and R  are independent given x  (typically a 
necessary condition to proceed, as discussed in the next section). However, expression (3.2) tells us that 
for the purpose of estimating the mean of ,y  it is not absolutely necessary to fit the correct regression 
model ( ).m x  Rather, it is sufficient to ensure the “residual” Iz  is as uncorrelated with I IW   as I  varies. 
However, it is critically important to recognize that it is not sufficient to ensure zero or small correlation 
only among the observed data, because Cov ( , 1)I I I I IW z R =  tells us little about 
Cov ( , 0).I I I I IW z R =  In the setting of Wu (2022), our ability to extrapolate from 1IR =  to 0IR =  
depends on the availability of the (independent) auxiliary data indexed by * 1,IR =  which allow us to 
observe some ’sIx  for which 0.IR =  

The strategy of including propensity estimates as a predictor has been found beneficial in related 
literature. For example, Little and An (2004) included the logit of ̂  in their imputation model, and 
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reported the inclusion enhanced the robustness of the imputed mean to the misspecification of the 
imputation model. The method was further developed and enhanced by Zhang and Little (2009) and by 
Tan, Flannagan and Elliott (2019), who used the term “Robust-squared” to emphasize the enhanced 
robustness. In a more recent article on such a strategy for non-probability samples, Liu et al. (2021) 
emphasized the importance of including the estimated propensity ˆi  “as a predictor” in ˆ( , )m x   (using 
notation in this article). Furthermore, in the literature of targeted maximum likelihood estimation (TMLE) 
for semi-parametric models for dealing with non-probability data (van der Laan and Rubin, 2006; Luque-
Fernandez, Schomaker, Rachet and Schnitzer, 2018) (also see Scharfstein et al. (1999); Tan (2010)), the 
variables ˆI IR   and ˆ(1 ) (1 )I IR − −  are called clever covariates and are used in the regression 
models for .Iy  The implementations and theories of TMLE, and the related Collaborative TMLE 
(van der Laan and Gruber, 2009, 2010), are mathematically more involved than those under finite-
population settings as discussed below, but the insights gained from (3.2)-(3.3) can provide us with 
helpful intuitions on understanding the essence of such methods. 

 
4. Quasi-randomization or super-population implementations 
 

In a nutshell, the quasi-randomization approach focuses on making I IW   a constant variable (induced 
by FPI ).I  When our sample is genuinely selected by a probabilistic scheme by design, then 

Pr ( 1 ),i i iR = = x  for ,iN  is a design probability, free of ,iy  but it can depend on xi  for example 
when xi  includes a stratifying variable. When the design probability is unavailable, we first need to 
invoke a divine probability. This could be a natural one given by the finite population, such as the 
propensity Pr ( 1 )i I I I iR A A = = =  induced by FPI, where { , },i i iA y= x  or an imagined super-
population one such as the ’siR  being generated independently from Ber ( ),i  where 

Pr ( 1 ) 0.i i iR A = =   This positivity assumption is necessary if the finite population is pre-specified, 
or its imposition defines the finite population that can be studied. (This is a practically rather relevant 
consideration, such as in election polling, where the finite population may not be always pre-specified 
even theoretically.) Since these divine probabilities are unknown and serve as our estimand, we need to 
assume some device probabilities, such as via a generalized linear model ( , )xi i ig y =  to proceed, even 
though we don’t really believe in any particular choice of .g  

For our current discussion, suppose our divine probability is given by the super-population Bernoulli 
model. Let 

=1
,N

R ii
n R=  and ( ) Pr ( 0 ) 1 (1 ),R i N ip n =  = − −A A  where { , }.iA i= A N  

Because the iR  here is controlled by a divine probability, the sample size Rn  is no longer a design 
variable to be conditioned upon in our replication scheme; it is generally no longer an ancillary statistic. 
Nevertheless, we should condition on 0,Rn   a universal requirement for constructing data-driven 
estimates for .G  Fortunately this conditioning does not create mathematical complications to the 
simplicity granted by the independence among ,i i N  as functions of .iA  This is because 

( ) Pr ( 1 , 0) ( ) ,i i R iR n p  =  =A A A  but the normalizing constant ( )Ap  ‒ which depends on 
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the entire A  ‒ is not relevant for the developments in this article, such as assigning weights that are 
proportional to 1( ).i

− A  

Consequently, under this divine probability, which corresponds to (the true model for) the q -model 
setting in Wu (2022), we have for any chosen ,IW  by (3.1) 

 ,

1

E ( , 0) = Cov ( E[ , 0], ( ))

( ) Cov ( , ( )),
R I I I R I IR z

I I I I I

c n W R n y m

p W y m−

  −

= −

A A x

A x
 

(4.1)
 

where E  is with respect to the (unknown) divine probability over IR  (for fixed ).I  It follows then that, 
regardless of whether we want to ensure zero expectation in (3.2) or in (4.1), we will impose 1,I IW    
that is, 1,I IW  −  the well-known inverse probability weighting. Therefore, if our postulated model q  
permits us to reliably capture i  in reality, then 1 2

, ( )pR zc O N −=  because it has mean zero (with respect 
to the divine probability), and it is a weighted average of N  essentially independent Bernoulli variables, 
as seen in (3.1). 

This is a randomization oriented approach because it treats the entire finite population attribute values 
A  as fixed, and the hypothetical replications are generated only by repeated realizations of the recording 
indicator .IR  Of course, in general, the values of { , }i i N  are unknown, and worse they are 
inestimable from a non-probability sample without further assumptions. To proceed, we pose assumptions 
such as missing at random, i.e., Pr ( 1 ) Pr ( 1 ),i i i iR A R= = = x  and the requirement of an auxiliary 
sample so that we have some values of xi  with 0.iR =  We also have choices on how to estimate the 
inclusion propensity Pr ( =1 ),i i iR = x  parametrically or non-parametrically. These assumptions, 
requirements, and estimation methods are all essential for practical implementation, as carefully reviewed 
and discussed by Wu (2022); also see Tan (2010) for a detailed comparison of various estimation 
strategies. Nevertheless, the overarching idea of quasi-randomization methods is to choose IW  to free 

I I IR W R=  from I  in expectation over the posited hypothetical replications, to regain the freedom 
guaranteed by probability sampling. 

Complementarily, the super-population approaches aim to miniaturize ,R zc  via making the other 
variable in , ,R zc  that is, Iz  free of I  in expectation, but over a different hypothetical replication scheme. 
Here the idea is to choose an ( )xim  that is a good approximation to iy  such that the residual 

( )xi i iz y m= −  will be zero in expectation conditioning on .x  Typically, this is done by considering a 
joint model for { , }i iR y  given ,ix  and with a specific regression model ( ),y x  using the notation in 
Wu (2022). It is important to recognize that, although we only specify the regression model iy  given ,ix  
we must include iR  in the replications in order to capture the possible dependence of iR  on the entire 

{ , },i i iA y= x  which is the key concern for non-probability samples. Indeed, it is this joint specification 
that permits the adoption of the missing at random assumption to reduce ( , ) ( ),i i i i iP y R P y=x x  
which in turn permits us to focus on specifying a single regression model ( )xi iy  for both observed 
and unobserved individuals. Therefore, when we write E ,  we mean the expectation with respect to   
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 1( , ) ( ) ( , ) (1 ) ( ),i iR R
i i i i i i i i i i i iP R y P R P y R y  −= = −x x x x  (4.2) 

where Pr ( 1 )xi i iR = =  is left unspecified, unlike with the quasi-randomization approach. 

It follows then that, conditioning on { , }X xi i= N  and 0,Rn   which does not alter ( )XP y  
because y  and R  are independent given ,X  we have 

 1
,E ( , 0) [ ( )] Cov ( , E[ ] ( )).R I I I I I IR zc n p W y m− = −X X x x  (4.3) 

Clearly, (4.3) becomes zero when we choose ( ) E [ ]x xI I Im y=  and that the   model is (first-order) 
correctly specified, that is, E [ ] E[ ].I I I Iy y =x x  This summarizes the super-population approach, and 
it renders 1 2

, ( )pR zc O N −=  for similar reasons as given for the quasi-randomization framework. 

 
5. Quasi-randomization and super-population implementations 
 

Once a joint model for { , }i iR y  is set up, of course we can use it for estimating both i  and the 
regression function ( ),m x  each of which is made possible by the availability of the auxiliary probability 
sample, and the assumption of missing at random. But as shown before, correctly specifying and 
estimating one of them is sufficient for miniaturizing , .R zc  However, from (4.3), in order for the 
covariance/correlation to be zero, neither multiplicative correction to I  via IW  nor the additive 
adjustment for E( )xI Iy  via ( )xIm  need to be correct. All we need is that, after the correction or 
adjustment, what is left would be uncorrelated with each other. The aforementioned framework of 
Collaborative TMLE was built essentially on this insight (e.g., see Section 3.1 of van der Laan and 
Gruber, 2009), though the heavy mathematical treatments in its literature might have discouraged readers 
to seek such intuitive understanding.  

To provide a simple illustration, consider a finite population that is an i.i.d. sample from a super-
population model:  

 
3

0
E[ ] , ~ (0,1).k

k
k

y x x x N
=

=   (5.1) 

The non-probability sample is generated by a mechanism R  such that ( ) ( )Pr 1 , ,R y x x= =  that is, 
it is determined by the magnitude of x  only. Suppose we mis-specify the function form for   (e.g., the 
divine model may not be monotone in ,x  but the device model such as the conventional logistic link is), 
as well the regression model by choosing 2

0 1 2( ) .m x b b x b x= + +  Since 2x  is uncorrelated with x  or 
3x  under ~ (0,1),x N  we know that our least-square estimator for 2b  would still be valid for 2  even 

under the mis-specified regression model. This turns out to be sufficient to ensure the asymptotic 
unbiasedness (as )N →  of the following “doubly robust” estimator for ,Ny =  the finite-population 
mean,  
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( )

( )

*
1 1

*
1 =1

ˆ ˆ( ( )) ( )
ˆ ,

N N
i i i i i ii i

N N
i i ii i

R w x y m x R m x

R w x R
 = =
+

=

−
= +
 

 
 (5.2) 

where *R  indicates the auxiliary sample (of x  only). Or equivalently,  

 
( ) ( )( )

( )( )
( )( )

( )
*

*

ˆCov , ˆCov ,
ˆ ,

EE
I I I I I I I I

N
I II I I

R w x y m x R m x
y

RR w x
+

−
− = +  (5.3) 

which makes it clearer that any bias in ̂+  is controlled by the covariance (or correlation) involving ,R  
since the covariance involving *R  is already miniaturized by the assumption that the auxiliary sample is 
probabilistic (which, for simplicity, is assumed to be a simple random sample). 

Here ( )w x  is any weight function such that ( )3E ,x w x
      where the expectation is with 

respect to ~ (0,1),x N  and 2
0 1 2

ˆˆ ( ) ,m x b b x x= + +  with 2̂  being the least-square estimator for 2  
from the biased sample, and 0b  and 1b  can be chosen arbitrarily. Because the finite-population 
covariance/correlation between ( ) ( )I Ix w x  and k

Ix  is 1 2( ),pO N −  for 1k =  and 3,k =  the 
misfitted parts for   or m  do not contribute to the ddc (asymptotically) since they are uncorrelated with 
each other under the super-population model, leading to further robustness going beyond “double 
robustness”. This of course does not mean that we can misfit a model arbitrarily and still obtain valid 
estimators, but it does imply that having at least one model being correct is a sufficient, but not necessary, 
condition for the validity of the doubly robust estimators. 

It is also worth stressing that, in formatting the regression model, we do not necessarily need to invoke 
a device probability, e.g., a super-population regression model, because the FPI variable provides a finite-
population regression via applying the least-squares method to regress iy  on , .i ix N  This regression 
fitting itself says little about whether the resulting regression line ˆ ( )xy m=  is a good fit to ( , )xi iy  or 
not. However, the example above indicates that, for the purpose of estimating the population average of 

,y  the lack of fit may not matter that much, as long as the “residual” ˆ ( )xI I Iz y m= −  has little 
correlation with ,I IW   as two functions of the FPI variable .I  Indeed, as discussed in Section 3, we can 
consider including ˆ I  in the regression model ˆ ˆ( , ).I Im x  How effective this strategy is in general is a 
topic of further research. 

 
6. Counterbalancing sub-sampling 
 
6.1 The devastating impact of data defect on effective sample size 
 

A key finding, which has surprised many, from studying the data quality issue is how small the size of 
our “big data” is when we take into account the data defect. To prove this mathematically, we can equate 
the mean-squared error (MSE) of WG  in (2.1), with the MSE of a simple random sampling estimator of 
size eff .n  This yields (see Meng (2018) for derivation):  
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 eff 2 2
, ,

1 1 ,
1 E[ ] 1

W W

W WR G R G

f fn
f f 

 
− −

 (6.1) 

where W Wf n N=  and the expectation E  is with respect to the conditional distribution of R  given .Wn  
It is worthwhile to note that this (conditional) distribution can involve all three types of probability 
discussed in Section 1.2 because the variations in R  can come from multiple sources. For example, in 
typical opinion surveys, there will be (1) design probability in the sampling indicator, (2) divine 
probability in formulating the non-response mechanism, and (3) device probability for estimating the 
mechanism and the weights. 

Expression (6.1) is the weighted version/extension of the expression given in Meng (2018) with equal 
weights, which reveals the devastating impact of a seemingly tiny ddc. Suppose our sample is 1% of the 
population, and it suffers from a half-percent ddc. Applying (6.1) (with equal weights) with Wf = 0.01 
and ,R G = 0.005 yields effn  404 regardless of the sample size .Rn  In the case of the 2020 US 
presidential election, 1% of the voting population is about 1.55 million people, and hence the loss of 
sample size due to a half percent ddc is about 1 - (404 / 1,550,000) > 99.97%. Such seemingly impossible 
losses have been reported in both election studies (Meng, 2018) and COVID vaccination studies (Bradley 
et al., 2021). A most devastating consequence of such losses is the “big data paradox”: the larger the 
(apparent) data size, the surer we fool ourselves because our false confidence (in both technical and literal 
sense) goes up with the erroneous data size, while the actual coverage probability of the incorrectly 
constructed confidence intervals become vanishingly small (Meng, 2018; Msaouel, 2022). 

A positive implication from this revelation, however, is that we can trade much data quantity for data 
quality, and still end up having statistically more accurate estimates. Of course, in order to reduce the bias, 
we will need some information about it. If we have reliable information on the value of ddc, we can 
directly adjust for the bias in estimating the population average corresponding to the ddc, for example by a 
Bayesian approach, similar to that taken by Isakov and Kuriwaki (2020) in their scenario analysis. 
Furthermore, if we have sufficient information to construct reliable weights, we can use the weights to 
adjust for selection biases as commonly done. Nevertheless, even in such cases, it may still be useful to 
create a representative miniature of the population out of a biased sample for general purposes, which for 
example can eliminate many practitioners’ anxiety and potential mistakes for not knowing how to 
properly use the weights. Indeed, few really know how to deal with weights, because “Survey weighting is 
a mess” (Gelman, 2007). 

However, creating a representative miniature out of a biased sample in general is a challenging task, 
especially because ddc can (and will) vary with the variable of interest. Nevertheless, just as weighting is 
popular tool despite it being far from perfect, let us explore representative miniaturization and see how far 
we can push the idea. The following example therefore is purely for brainstorming purposes, by looking 
into a common but challenging scenario, where we have reasonable information or understanding on the 
direction of the bias, that is, the sign of the ddc, but rather vague information about its magnitude. A good 
example is non-representativeness of election polls because voters tend to not want to disclose their 
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preferences when they plan to vote for a socially unpopular candidate; we therefore know the direction of 
the bias, but not much about its degree other than some rough guesses (e.g., a range of 10 percentage 
points). 

 
6.2 Creating a less biased sub-sample 
 

The basic idea is to use such partial information about the selection bias to design a biased sub-
sampling scheme to counterbalance the bias in the original sample, such that the resulting sub-samples 
have a high likelihood to be less biased than the original sample from our target population. That is, we 
create a sub-sampling indicator ,IS  such that with high likelihood, the correlation between I IS R  and IG  
is reduced, compared to the original , ,R G  to such a degree that it will compensate for the loss of sample 
size and hence reduce the MSE of our estimator (e.g., the sample average). We say with high likelihood, in 
its non-technical meaning, because without full information on the response/recording mechanism, we can 
never guarantee such a counterbalance sub-sampling (CBS) would always do better. However, with 
judicious execution, we can reduce the likelihood of making serious mistakes. 

To illustrate, consider the case where y  is binary. Let 1 0 ,r r = −  where yr  is the propensity of 
responding/reporting for individuals whose responses will take value :y  Pr ( 1 ).y I I Ir R y y= = =  If the 
sample is representative, then like , ,R G    is miniaturized, meaning that it is on the order of 1 2.N −  This 
is most clearly seen via the easily verifiable identity (see (4.1) of Meng, 2018) 

 ,
Cov ( , ) (1 )= ,

(1 ) (1 )
I I I R R

R y
y R f f

p p p p
 −

 =
− −

 (6.2) 

where Pr ( 1)I Ip y= =  and Pr ( 1),R I If R= =  which is the original sampling rate. A key ingredient of 
CBS is to determine = ( 1 , 1)y I I I Is P S y y R= = =  for 0,1,y =  that is, the sub-sampling probabilities 
of individuals who reported 1y =  and 0,y =  respectively. 

To determine the beneficial choices, let Pr ( 1 1)S I I If S R= = =  be the sub-sampling rate, and 

1 1 0 0.S s r s r = −  Then by applying (2.2) (with equal weights) and (6.2) to both the sample average and 
the sub-sample average, we see that the sub-sample average has smaller (actual) error in magnitude if and 
only if  

 
2 2 2

2 .S S
S

S R R

f
f f f

                
 (6.3) 

Writing 1 0r r r=  and 1 0 ,s s s=  the right-hand side of (6.3) becomes  

 
2

2* * 1(1 ) ,
1

rssp p
r

 − + −    − 
 (6.4) 
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where * Pr ( 1 1)I I Ip y R= = =  is observed in the original sample, which should remind us that *p  may 
be rather different from the p  we seek, because of the biased R -mechanism. 

An immediate choice to satisfy (6.4) is to set 1,s r−=  which of course typically is unrealistic because 
if we know the value of ,r  then the problem would be a lot simpler. To explore how much leeway we 
have in deviating from this ideal choice, let 1,r = −  we can then show that (6.4) is equivalent to  

  *( 1) [1 (1 ) ] ( 1) 2 0.s p s − + + − +   (6.5) 

This tells precisely the permissible choices of s  without over-correcting (in the magnitude of the resulting 
bias):   

(i)  When 1,r   i.e., 0,   we can take any s  such that  

 
*

*

[1 (1 ) ] 1;
1 (1 )

p s
p




+− −
 

+ +
 (6.6) 

(ii)  When 1,r   i.e., 0,   we can take any s  such that  

 
*

*

1 (1 )1 .
[1 (1 ) ]

ps
p


 +

− −
 

+ +
 (6.7) 

This pair of results confirms a number of our intuitions, but also offers some qualifications that are not 
so obvious. Since we sub-sample to compensate for the bias in the original sample, s  and r  must stay on 
the opposite side of 1, i.e., ( 1) ( 1) ( 1) 0,s r s − − = −   as seen in (6.6)-(6.7). To prevent over 
corrections, some limits are needed, but it is also possible that the initial bias is so bad that no sub-
sampling scheme can make things worse, which is reflected by the positivizing function [ ]x +  in the two 
expressions above. However, the expressions for the limits as well as for the thresholds to activate the 
positivizing functions are not so obvious. Nor is it obvious that these expressions depend on the unknown 
p  indirectly via the observed *,p  and hence only prior knowledge of r  is required for implementing or 

assessing CBS. 

This observation suggests that it is possible to implement a beneficial CBS when we can borrow 
information from other surveys (or studies) where the response/recording behaviors are of similar nature. 
For example, we may learn that a previous similar survey had r = 1.5 (e.g., those with 1y =  had 6% of 
chance to be recorded, and those with 0y =  had only 4% chance). Taking into account the uncertainty in 
the similarity between the two surveys, we might feel comfortable to place (1.2, 1.8) as the plausible range 
for r  in the current study. Suppose we observe *p = 0.6, this means that the maximum ‒ over the range 
r (1.2, 1.8) ‒ of the lower bound on the permissible s  as given in (6.6) is 

 [1 (1 0.6) ( 1)] [1.4 0.4 ] 1.4 0.4 1.2 = 0.7.
1 1.6( 1) 1.6 0.6 1.6 1.2 0.6

r r
r r

+ +− − − − − 
= 

+ − −  −
 (6.8) 
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Therefore, as long as we choose [0.7,1),s  we are unlikely to over-correct. The price we pay for this 
robustness is that the resulting sub-sample is not as good quality as it can be, for example, when the 
underlying r  for the current study is indeed 1.5 (in expectation). Choosing any [0.7,1)s  will not 
provide the full correction as provided by 1s r= = 0.67, that is, the sub-sample average will still have a 
positive bias but with a smaller MSE compared to the original sample average. Of course both the 
feasibility and effectiveness of such CBS need to be carefully investigated before it can be recommended 
for general consumption, especially going beyond binary .y  The literature on inverse sampling (Hinkins, 
Oh and Scheuren, 1997; Rao, Scott and Benhin, 2003) is of great relevance for such investigations, 
because it also aims to produce simple random samples via subsampling, albeit with a different motivation 
(to turn complex surveys into simple ones for ease of analysis). 

 
7. Probability sampling as aspiration, not prescription 
 

As it should be clear from the definition of ddc, it is not directly estimable from the biased sample 
alone. One therefore naturally would (and should) question how useful ddc is or could be. The answer 
turns out to be an increasingly long one thanks to ddc being model-free and hence a versatile data quality 
metric for both probability samples and non-probability samples. Its usefulness for generating theoretical 
insights is demonstrated by its role in quantifying the data quality-quantify trade-off via effective sample 
size as seen in (6.1), in understanding simulation errors in quasi-Monte Carlo as explored in Hickernell 
(2016), and in anticipating the “double-plus robustness” phenomenon as presented in Section 5. Its 
methodological usages are illustrated by the scenario analyses for the 2020 US Presidential election 
(Isakov and Kuriwaki, 2020) and for the COVID-19 vaccination assessments (Bradley et al., 2021). Its 
practical implications can be found in epidemiological studies (Dempsey, 2020), particle physics 
(Courtoy, Houston, Nadolsky, Xie, Yan and Yuan, 2022), and political polling (Bailey, 2023). 

Not surprisingly, these practical applications found the notion of ddc and the underlying error 
decomposition (2.2) helpful because of the non-probability samples they need to deal with, either due to 
distortions to the probability samples such as by a biased non-response mechanism or due to selection 
biases in the first place such as selective COVID-19 testing. Professor Wu’s overview, and the many 
references cited there and in this discussion, should make it clear that non-probability samples are almost 
surely everywhere. I am invoking this strong probabilistic phrase not merely for its humorous value. When 
we consider the unaccountably many possible values for the mean of ddc, the probability ‒ however we 
construct it to capture the wild west of data collection processes out there ‒ that it will land precisely on 
zero must be zero. This zero mean is a necessary condition for the sample to be a probability sample, 
because a probability sample implies that ddc must be of the order of 1 2N −  order (Meng, 2018), which is 
impossible when its mean is non-zero (asymptotically). This observation suggests that we should move 
away from our tradition of treating probability sampling as a centerpiece and then try to model the much 
larger world of non-probability samples as “deviations” from it. Instead, we should start with studying 
samples with general collection mechanisms using tools or concepts such as ddc, and then treat (design) 
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probability samples as the very special, ideal case ‒ always an aspiration, but never the only prescription 
for action. 
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Comments on “Statistical inference with non-probability 
survey samples” 

Zhonglei Wang and Jae Kwang Kim1 

Abstract 

Statistical inference with non-probability survey samples is a notoriously challenging problem in statistics. We 
introduce two new methods of nonparametric propensity score technique for weighting in the non-probability 
samples. One is the information projection approach and the other is the uniform calibration in the reproducing 
kernel Hilbert space. 

 
Key Words: Information projection; Uniform function calibration; Data integration. 

 
 
1. Introduction 
 

We would like to congratulate Dr. Changbao Wu on the outstanding work in non-probability sampling. 
Even though probability sampling served as a golden standard tool for finite population inference in the 
past decades, it has recently become tarnished gold due to low response rates and high costs. Non-
probability sampling, on the other hand, is popular due to its feasibility and low cost (Couper, 2000; 
Kaplowitz, Hadlock and Levine, 2004). More importantly, non-probability sampling, such as a web 
survey, can quickly gather up-to-date information when compared to a probability sample. However, 
because the selection mechanism is unavailable for non-probability sampling, failing to correct the 
selection bias in analyzing a non-probability sample may result in inefficiency or even erroneous 
inference. As a result, adjusting the selection bias for a non-probability sample is a fundamental topic for 
survey sampling researchers, and this work presents the most comprehensive answers to this subject. 

Dr. Wu’s research, in particular, includes a thorough examination of propensity score (PS) techniques. 
Those PS techniques, on the other hand, have drawbacks. First, even for a correctly specified PS model, 
the inverse probability weighting estimator may be inefficient due to small estimated propensity scores. 
One alternative is post-stratification, as stated in Section 5 of the paper, although there is no clear 
guidance on how to choose .K  Furthermore, in practice, correctly specifying a PS model is difficult. 
While doubly robust estimation can help to safeguard a bad PS model, the final estimator is problematic 
when both the PS and regression models are incorrect (Kang and Schafer, 2007). 

To overcome the misspecification of the PS model, Dr. Wu has mentioned several nonparametric 
methods, including a kernel method and a tree-based method. In this discussion, we would like to expand 
on this direction and provide two more methods to augment the study. One is based on a density ratio 
model using information projection (Csiszár and Shields, 2004), and the other is by uniformly calibrating 
functions over a reproducing kernel Hilbert space (RKHS). As explained by Wahba (1990), RKHS is a 
very flexible function space for approximation. Instead of estimating the propensity scores, we aim at 
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estimating the sampling weights  1( ) :A
i Ai S −   to avoid possible inefficiency due to small estimated 

propensity scores. 

Denote AS  and BS  to be the index sets for the non-probability and reference probability samples, 
respectively, and the corresponding sample sizes are An  and .Bn  Let  ( , ) :i i Ay i Sx  and 
 ( , ) :B

i i Bd i Sx  be available, where iy  and ix  are the study variable and auxiliary vector for the thi  
unit and B

id  is the design weight for .Bi S  

The paper is organized as follows. In Section 2, we introduce the information projection approach. In 
Section 3, we introduce the basic idea of uniform calibration. Some concluding remarks are made in 
Section 4. 

 
2. Information projection approach 
 

Suppose that we are interested in estimating parameter 0θ  defined through  ( ; , ) = 0,NE U Yθ X  
where ( )NE   is the expectation with respect to the population empirical distribution Pr{( , )Y =X  

1( , )}=i iy N−x  for 1, ,i N=  and 0 otherwise, and ( ); ,U yθ x  is a certain estimating function. For 
example, ( ); ,U y y = −x  corresponds to 1

=1

N
y ii

N y −=   in the paper. We wish to obtain an estimator 
of 1( ) ,A

i
−  ( )Pr 1 , ,A

i i i iR y = = x  and 1iR =  if Ai S  and 0 otherwise. 

To estimate  1( ) : ,A
i Ai S −   we may use the relationship in the density ratio function. First, we 

consider a super-population model ,  and let 0 ( , )f yx  and 1 ( , )f yx  be the density functions of ( , )yx  
given 0R =  and 1,R =  respectively. Denote the density ratio function to be  

 0

1

( , )( , ) ,
( , )

f yr y
f y

=
xx
x

  

and by the Bayes formula, we have  

 1 Pr ( 0)( ) 1 ( , ).
Pr ( 1)

A i
i i i

i

R r y
R

 − =
= +

=
x  (2.1) 

Thus, there is a one-to-one relationship between 1( )A
i

−  and ( , ).i ir yx  

Under assumption A1, we can show that ( , ) ( ).r y r=x x  In this section, we make a more general 
assumption that there exists T

1( ) ( ( ), , ( ))Lb b=b x x x  such that  

 ( ).R Y⊥ b x  (2.2) 

Rosenbaum and Rubin (1983) called ( )b x  in (2.2) balancing scores. 

To estimate the density ratio function ( ),r x  we minimize the Kullback-Leibler divergence  

 0 0 1 0( ) = log( ) dQ f f f f   (2.3) 
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with respect to 0f  subject to some constraint, where both 0f  and 1f  are absolutely continuous with 
respect to a  -finite measure .  Regarding the constraint, we may use the following one  

  1 0Pr ( 1) ( ) ( ) (d ) Pr ( 0) ( ) ( ) (d ) = ( ) ,i iR f R f E = + = b x x x b x x x b X  (2.4) 

where ( )E   is the expectation with respect to the super-population model .  That is, given 1 ( ),f x  we can 
find 0 ( )f x  to minimize (2.3) under a calibration constraint with respect to ( ).b x  

By Lemma 3.1 of Wang and Kim (2021), the optimized conditional density function satisfies  

 
 
 

T

T

1*
0 1

1 1

exp ( )
( ) ( ) ,

exp ( )
f f

E
=

  

λ b x
x x

λ b x
 (2.5) 

where 1λ  is chosen to satisfy (2.4). Note that the solution (2.5) is equivalent to  

   T

0 1log ( ; ) ( )r = +x λ λ b x  (2.6) 

for the density ratio function ( ),r x  where T T

0 1= ( , ) ,λ λ  and 0  is a normalizing constant satisfying 

1( ; ) ( ) (d ) 1.r f  = x λ x x  Thus, the information projection finds the best model for propensity score 
function. 

Once the model is determined as in (2.6), we need to estimate the model parameters. Because of the 
moment constraints in (2.4), the sample-version estimating equation for λ  is the calibration equation 
given by  

    T

0 1
=1

1 11, ( ) 1 exp ( ) = 1, ( ) .
B

N
BA A

i i i i i
i i SA

n nR d
N n N




  −
+ +   

   
 b x λ b x b x  (2.7) 

Here, since  ( )E b X  is not available, we use its estimate 1 ( ).
B

B
i ii S

N d−
 b x  Once the parameter 

estimate λ̂  is obtained, we can construct  

  T

0 1
1 ˆ ˆˆ = 1 exp ( )A

i i
A

n
n

 −
+ + λ b x   

as the final PS weights. The parameter of interest can be estimated by solving 
1 ˆ ( ; , ) = 0

A
i i ii S

N U y−
 θ x  for .θ  

Wang and Kim (2021) developed this framework under the non-probability sampling setup where ix  
are available throughout the finite population. Consistency and the asymptotic normality can be developed 
under the assumption that  ( ; , )E U Yθ x x  lies in the linear space generated by  1 ( ), , ( ) .Lb bx x  
Instead of assuming the availability of  : 1, ,i i N=x  as in Wang and Kim (2021), there only exists a 
reference probability sample  ( , ) : .B

i i Bd i Sx  If the probability sample BS  is a census, then the method 
above reduces to the one considered by Wang and Kim (2021), except that we consider a finite population 
parameter 0.θ  In Section 11.2 of Kim and Shao (2021), the information projection approach is called the 
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maximum entropy method and applied to the data integration problem. In the simulation study presented 
in example 11.1 of the book, the proposed information projection method shows better performance than 
the methods of Chen, Li and Wu (2020) and Elliott and Valliant (2017). 

 
3. Uniform calibration approach 
 

Calibration is commonly used to improve the representativeness of a non-probability sample, but 
existing methods, including the information projection approach mentioned in Section 2, are based on 
calibrating a set of pre-specified functions. However, it is hard to correctly specify them for calibration in 
practice. In this section, we propose a general framework for uniformly calibrating functions in an RKHS. 
Instead of considering a parametric form for ( )E Y x  in (3.1), we only assume ( ) ( ),i i iE y m =x x  
where ( )m x  is a smooth function satisfying certain conditions. 

We still consider (2.1) under the assumption A1. Instead of assuming a set of pre-specified functions 
( ),b x  we propose to estimate  :i Ar i S  by the following optimization,  

 
2

1 22 2
0

2 2

( , )ˆ argmin ( ) ,sup H
A

u H

uS u Q
u u

 
 

    = − + 
    γ

γγ γ  (3.1) 

where ( )1= , , ,Nr rγ  = 0ir  for ,Ai S  0γ  is equivalent to 0ir   for 1, , ,i N=  H  is an RKHS,  

 ( )
2

1 1, 1 1 ( ) ( ) ,
A B

B
i i i i

i S i SA

NS u N r u N d u
n

− −

 

    = + − −   
     

 γ x x  (3.2) 

2 1 2
2 ( ) ( ) ,

A B
A B ii S S

u n n u−
 

= +  x  Hu  is the norm associated with the RKHS, ( )AQ γ  is a general 
penalty on γ  to avoid overfitting, and 1  and 2  are two tuning parameters; see Wahba (1990) for a 
detailed introduction about the RKHS. 

The intuition for the optimization (3.1) is briefly discussed. First, if ir  approximates the true density 
ratio ( )ir x  well, the bias of the first term in (3.1) is negligible for estimating 1

=1
( )N

ii
N u−  x  for .u H  

Besides, 1 ( )
B

B
i ii S

N d u−
 x  is design-unbiased. Thus, ( , )S uγ  balances two estimators for 

1
=1

( ),N
ii

N u−  x  and it is small if ir  approximately equals ( )ir x  for .Ai S  However, ( , )S uγ  is not scale 
invariant, and we have 2( , ) ( , )S cu c S u=γ γ  for cℝ. Thus, we use 2

2u  to make it scale-invariant. The 
term 2

1 Hu  is used to penalize the smoothness of the function u  for .u H  There exist different 
choices for ( )AQ γ . For example,  21( ) 1 ( 1)

A
A A ii S

Q Nn r−


= + −γ  corresponds to penalizing extreme 
values for the sampling weights, and Wong and Chan (2018) investigated a similar problem assuming the 
availability of { : 1, , }.i i N=x  The optimization (3.1) can be viewed as a “minmax” problem, and if 

,m H  the estimated density ratios  ˆ :i Ar i S  may lead to a reasonably good estimator  

 1ˆ ˆ1 1 .
A

uc i i
i S A

NN r y
n

 −



   = + −  
   

  (3.3) 



Survey Methodology, December 2022 365 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Uniform calibration is a new method for non-probability sampling, and there are some technical 
challenges in (3.1). For example, how to incorporate the design properties of BS  when establishing the 
theoretical properties of (3.3) has not be fully investigated, and we have finished a working paper about 
this topic (Wang, Mao and Kim, 2022). The kernel-based method is computationally expensive, especially 
when the sample sizes are large. It may be interesting to propose a more computationally efficient 
algorithm for the uniform calibration problem. One possible answer is to consider some other functional 
spaces, such as the one spanned by B-splines. In addition, it is also of interest to consider how to 
incorporate more than one reference probability sample, and how to formulate a uniform calibration if we 
have different covariates in different reference probability samples. 

 
4. Concluding remarks 
 

Propensity score weighting is an important tool for correcting selection bias in the nonprobability 
sampling. Dr. Changbao Wu made significant contributions on this important topic. In addition to the two 
additional methods, the empirical likelihood (EL) approach of Qin, Leung and Shao (2002) is potentially 
useful as another tool for propensity score weighting. In particular, the EL-based weighting method is 
applicable even under informative sampling. Further investigation on this direction will be explored 
elsewhere. 
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Abstract 
This response contains additional remarks on a few selected issues raised by the discussants. 
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Let me start by thanking the Editor of Survey Methodology, Jean-François Beaumont, for organizing 
the discussions and putting together a glamour array of discussants. Each discussant looked at the topic of 
non-probability survey samples, and more generally topics on data integration and combining data from 
multiple sources, with some unique perspectives. I have enjoyed reading the discussions and I believe they 
are significant contributions to dealing with non-probability and other types of samples with selection 
bias. In what follows, I will make some additional remarks on a few selected issues raised by the 
discussants. 
 

Michael A. Bailey 
 

Dr. Bailey focused on the limitations of the estimation methods I presented under the assumptions A1-
A4, and called for further development when these assumptions, and the so-called “MAR assumption” A1 
in particular, are violated. Bailey used non-probabilistic polling as an example to argue that “non-response 
(can indeed) depends on the study variable” and the danger of A1 being violated is real. 

While the criticism on the limitations of the methods reviewed in my paper is fair and square, the 
statements “(Wu) is fishing in one fairly specific corner of the pond” and “shying away from MNAR 
models” seem to show significant underappreciation on the importance of methodological development 
under the standard assumptions A1-A4 which were used by several authors on non-probability survey 
samples. First of all, the assumption A1 is on the participation (or inclusion/selection) mechanism for non-
probability samples, which is not the same as “non-response”. There are many scenarios where these 
assumptions can indeed be justified, especially for surveys using web- or phone-panels where the initial 
participation in those panels depends largely on certain demographic variables. Second, participation 
behaviour in non-probability surveys can be confounded by certain study variables during data collection 
in the same way we face in probability surveys on non-response, which is exactly how the current 
literature on non-probability surveys has been evolving in dealing with those issues. Third, any 
methodological advances in addressing the so-called “MNAR models” for non-probability surveys would 
require the foundation and thorough understanding established under the assumptions A1-A4. 
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Bailey also stated that “while MAR violations are a problem in probability sampling (arising due to 
non-response among randomly contacted individuals), MAR violations are more serious in a non-
probability world”. I heartily concur. As a matter of fact, violations of the positivity assumption A2 are as 
serious as violations of the “MAR assumption” A1, and the two are intercorrelated. Violations of A2 
imply that ( , ) 0xA

i A i iP i S y =  =  for some units in the target population, leading to the 
undercoverage problem that is as notorious as non-response. When A2 is violated but A1 holds, it is often 
believed that model-based prediction estimators can mitigate the biases due to undercoverage. Under the 
assumption A1 the sample inclusion indicator variable R  and the study variable y  are conditionally 
independent given ,x  which implies that  

 ( , 1) ( ).i i i i iE y R E y= =x x  (1) 

It follows that a valid prediction model xy  can be built using the observed data {( , ), }x Ai iy i S  (i.e., 
units with 1).iR =  Unfortunately, the equation (1) implicitly requires ( 1 ) 0,i iP R = x  and prediction-
based estimators are not immune to potential undercoverage biases. Bailey’s call for “a framework that 
encompasses the possibility of MAR violations” is in line with some of the current research effort on 
dealing with undercoverage and “non-ignorable” participation mechanisms for non-probability survey 
samples. See, for instance, Chen, Li and Wu (2023), Cho, Kim and Qiu (2022) and Yuan, Li and Wu 
(2022), among others. In a nutshell, valid statistical inferences under those scenarios require either 
external data such as a validation sample or additional assumptions such as the existence of instrumental 
variables. 

I am on the exact same page of discontent as Bailey with the “missing at random” label, since the term 
might be confused with “randomly missing” (Wu and Thompson, 2020, page 195). The term “ignorable” 
is also an unfortunate choice of terminology for missing data and causal inference literature, since it 
certainly cannot be ignored by the data analyst (Rivers, 2007). I use the standard term “propensity scores” 
for non-probability samples, while several other authors are in favour of “participation probabilities”, 
including Beaumont (2020) and Rao (2021). 
 

Michael R. Elliott 
 

Dr. Elliott discussed several issues with augmented materials and an expanded list of references. They 
are important additions to the current topic, especially the reviews on “additional approaches to combining 
data from probability and non-probability surveys” and sensitivity analysis on “unverifiable assumptions”. 

Elliott’s discussions on distinctions between descriptive parameters and analytic parameters and 
weighting versus modelling raised the critical issue of efficiency of the IPW estimators in practice. It has 
been known for probability survey samples that the inverse probability weighted Horvitz-Thompson 
estimator of the population total yT  is extremely inefficient (in terms of large variance) when the sample 
selection probabilities i  are unequal but have very weak correlation to the study variable ,y  although 
the estimator remains unbiased under such scenarios. Basu’s elephant example (Basu, 1971) described a 
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“convincing case” where the inverse probability weighted and unbiased Horvitz-Thompson estimator 
failed miserably, leading to the dismissal of the circus statistician. Discussions on weighting versus 
modelling, i.e., the IPW estimators versus model-based prediction estimators for descriptive population 
parameters, are highly relevant for both theoretical developments and practical applications. Our job as a 
statistician in dealing with non-probability survey samples could be very much in limbo unless we develop 
solid guidelines and diagnostic tools for choosing suitable approaches with the given dataset and 
inferential problems. 

Elliott echoed my call for a few large scale probability surveys with rich information on auxiliary 
variables with the statement “it is increasingly critical for an organized and ideally government funded 
stable of high-quality probability surveys to be put into place for routine data collection”. His comments 
on new areas of research on issues with privacy and confidentiality due to the need for microdata under 
the context of analyzing non-probability survey samples are a visionary call and deserve an increased 
amount of attention from the research community. 
 

Zhonglei Wang and Jae Kwang Kim 
 

Dr. Wang and Dr. Kim presented two new approaches to propensity score based estimation, one uses 
the so-called information projection through a density ratio model and the other employs uniformly 
calibration functions over a reproducing kernel Hilbert space. These are new adventures in the field, and 
Kim and his collaborators have the experience and the analytic power to move the research forward. 

The starting point for both approaches is the following equation which connects the propensity scores 
to the density ratios,  

 0

1

( 0) ( , )1 1 .
( 1 , ) ( 1) ( , )

x
x x

i i i

i i i i i i

P R f y
P R y P R f y

=
= +

= =
  

The propensity scores ( 1 , )xA

i i i iP R y = =  only require the model on 1iR =  given xi  and .iy  
Justification of the equation given above, however, requires a joint randomization framework involving 
both the model q  for the propensity scores and the superpopulation model   on ( , ).yx  From a 
consistency view point regarding the final estimator of the finite population mean of ,y  the joint 
framework imposes very little restrictions if the density ratios are modelled nonparametrically. The 
consequential impact of the approach is on variance and variance estimation. Variance of an estimator 
under a joint randomization framework involves more than one component, and variance estimation has 
further complications if nonparametric procedures are involved. Efficiency comparisons between the 
proposed methods and some of the existing methods need to be carried out under suitable settings. I am 
eager to see further developments on the proposed methods. 
 

Sharon L. Lohr 
 

Dr. Lohr’s extended discussions on diagnostic tools for assessing model assumptions are highly 
valuable to the topic. Her explorations of existing ideas and methods and the adaptations to the current 
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setting highlight the seemingly different but deeply connected issues faced by both nonprobability and 
probability survey samples. One such issue is the undercoverage problem (i.e., violations of assumption 
A2) and the interweave of assumptions A1 and A2. Lohr was rightfully concerned with prediction based 
estimators where the prediction model of y  given x  is built based on the nonprobability sample AS  and 
the mass imputation estimator is computed using observed x  in the reference probability sample ,BS  a 
scenario where each of the two assumptions A1 and A2 does not stand alone. The undercoverage problem 
is an example where “space-age procedures will not rescue stone-age data”. Lohr advocated to “take a 
small probability sample to investigate assumptions”, which is of necessity in theory since rigorously 
defendable methods under certain scenarios require validation samples. Developments of compromising 
strategies with existing data sources, however, are more appealing but also more challenging in practice. 

Lohr’s observation “nonprobability samples have the potential to improve data equity” is an important 
one, since inclusion of units from groups which may be invisible in probability samples can be boosted 
relatively easily for nonprobability samples. Lohr also observed that “historically disadvantaged groups 
may be underrepresented in all data sources, including (nonprobability samples)”. Addressing the issue of 
data equity with nonprobability survey samples presents both opportunities and challenges. 

Lohr’s question “when should one use nonprobability samples” is a tough one. The same question can 
be asked for any other statistical methods. We do not seem to always question the validity of the methods 
and the usefulness of the results in many other scenarios due to our unchecked confidence that the 
required assumptions seem to be reasonable. For nonprobability samples, we have a more vulnerable 
situation regarding assumptions, and assessments and diagnostics of these assumptions are more difficult 
than cases with controlled experiments and/or more structured data. From this view point, Lohr’s extended 
discussion on assessing assumptions should be read with deep appreciation. In practice, an important 
confidence booster on the assumptions is the thorough investigation at the “design stage”, if such a stage 
can be conceived prior to data collection, on variables which might be related to participation behaviour, 
and to include these variables as part of the sample with further exploration of existing data sources 
containing these variables. 
 

Xiao-Li Meng 
 

Dr. Meng’s discussion, with the formal title “Miniaturizing data defect correlation: A versatile strategy 
for handling non-probability samples”, should be a standalone discussion paper itself. Meng weaved 
through a number of issues in estimating a finite population mean with a nonprobability sample, and 
explored strategies and directions for constructing an approximately unbiased estimator using the central 
concept of the so-called data defect correlation (ddc). The discussions are fascinating and thought-
provoking, and will surely generate more discussions and research endeavours on implications of the ddc. 
I would like to use this opportunity to comment briefly on the ddc in relation to three basic concepts in 
probability sampling: sampling strategy, undercoverage, and model-assisted estimation. It is not a 
nostalgia for the good old days when probability sampling was the golden standard but rather an 
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appreciation of how research in survey sampling has been evolving and the potential usefulness of the ddc 
in dealing with nonprobability survey samples. 

The term sampling strategy refers to the pair of sampling design and estimation method (Thompson, 
1997, Section 2.4; Rao, 2005, Section 3.1). The two components go hand in hand and are the backbone of 
conventional probability survey sampling theory. For the estimation of the population total yT  of the study 
variable y  using a probabiliity sample S  with first order inclusion probabilities i , the Horvitz-
Thompson estimator HTŷ i ii S

T d y


=  with the weight 1
i id  −=  is the unique unbiased estimator among 

a class of linear estimators (Wu and Thompson, 2020). The theoretical argument for the result is 
straightforward due to the known inclusion probabilities i  under the given sampling design. Using the 
notation of Meng, the ddc involves three variables: the study variable ,G  the weight variable ,W  the 
sample inclusion indicator ,R  and is defined as the finite population correlation coefficient between 
R RW=  and .G  The ddc implicitly puts R  and W  as an inseparable pair for any inference strategy, 
with R  corresponding to the unknown “design” and W  for the “estimation method”. With the unknown 
“design” characterized by the unknown “divine probabilities” I  for the nonprobability sample, Meng 
showed through his equation (3.3) that 1

I IW  −  is essentially a required condition for unbiased 
estimation of G  if nothing is assumed on the outcome regression model. The result provides a 
justification of the use of inverse probability weighted (IPW) estimator for nonprobability samples as the 
only sensible choice if a superpopulation model on the study variable is not involved. 

The problem of undercoverage has been discussed extensively in the existing literature on probability 
sampling. For nonprobability samples the issue is closely related to the violation of the positivity 
assumption A2 as discussed in Section 7.2 of my paper and my comments to the discussions of Bailey, 
Elliott and Lohr, with additional details given in Chen et al. (2023). Let 0 1,U U U=   where 1U  is the 
uncovered subpopulation with ( 1 , ) 0.A

i i i iP R y = = =x  Let 0 1,N N N= +  where 0N  and 1N  are 
respectively the sizes of the two subpopulations 0U  and 1.U  Let CovI  and (0)Cov I  denote respectively 
the covariance with respect to the discrete uniform distribution over U  and 0.U  It can be shown that  

  (0)
0 1 1 0 0 0

ˆCov ( , ) Cov ( , ) ( ) ,I I I I I IR G R G G G N N = − −  (2) 

where k kN N =  for 0,1,k =  0
ˆ ,ii S

N W


=  S  is the set of units for the nonprobability sample, and 

0G  and 1G  are respectively the population means of 0U  and 1U  for the study variable .G  Equation (2) 
has two immediate implications. First, if the estimation method is valid in the sense that the value of 

(0)Cov ( , )I I IR G  is small, then the bias of the estimator WG  due to undercoverage depends on 1  (i.e., the 
size of the uncovered subpopulation 1)U  and 1 0G G−  (i.e., the difference between 0U  and 1),U  a 
statement which has previously been established under probability sampling. Second, the equation reveals 
a scenario for potential counterbalancing: A biased estimator WG  for the “sampled population mean” 0G  
can be less biased for the target population mean G  if (0)Cov ( , )I I IR G  and 1 0G G−  have the same plus 
or minus sign. 
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Meng’s discussions on quasi-randomization and/or super-population using the ddc provided a much 
deeper understanding on doubly robust estimation. Historically, model-assisted estimation started to 
emerge in survey sampling in the early 1970s, and the approach has the same spirit of double robustness. 
The generalized difference estimator of the population mean 1

=1

N
y ii

N y −=   as discussed in Cassel, 
Särndal and Wretman (1976) is given by  

 GD

=1

1ˆ ,
N

i i
y i

i S ii

y c c
N




− = + 
 
   (3) 

where S  is a probability sample, the ’si  are the first order inclusion probabilities, and 1 2{ , , , }Nc c c  
is an arbitrary sequence of known numbers. The estimator GD

ˆ y  is exactly unbiased for y  under the 
probability sampling design p  for any sequence ,ic  and is also model-unbiased if we choose 

( ).i i i ic m E y= = x  Cassel et al. (1976) showed a main theoretical result that the choice i ic m=  is 
optimal leading to minimum model-based expectation of the design-based variance GD

ˆ{ ( )}p yE V   when 
the model has certain structure in variance. The first part of the results on unbiasedness is under ( p  or 

);  the second part on optimality is under ( p  and ).  Note that the estimator ˆ
GDy  with the choice 

ˆi ic m=  has exactly the same structure of the doubly robust estimator discussed extensively in the missing 
data and causal inference literature since the 1990s, with the “divine probabilities” i  being unknown and 
estimated in the latter cases. 

The use of ddc in practice requires additional information from the population. Meng’s proposal of 
creating a representative miniature out of a biased sample echoes the call for a validation sample with a 
small size, since such a sample “can (also) eliminate many practitioners’s anxiety and potential mistakes 
for not knowing how to properly use the weights”. 

“There is no such thing as probability sample in real life” is probably a defendable statement for 
human populations. Probability samples, however, do exist in other fields such as business and 
establishment surveys, agricultural surveys, and natural resource inventory surveys; see Wu and 
Thompson (2020) for further detail. For humans, any rigorous rules and precise procedures are almost 
surely as aspiration, not prescription. 
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