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Abstract

Consider the problem of approximating the tail probability of randomly weighted sums Z?:l ©;X; and
their maxima, where {X;,i > 1} is a sequence of identically distributed but not necessarily independent
random variables from the extended regular variation class, and {©;,i > 1} is a sequence of nonnegative
random variables, independent of {X;,i > 1} and satisfying certain moment conditions. Under the

assumption that {X;, i > 1} has no bivariate upper tail dependence along with some other mild conditions,
this paper establishes the following asymptotic relations:

k n n
Pr| max 0;X; >x)| ~Pr 0, X; >x |~ Pr(©;X; > x),
(s e =) ~oe(S o= x) - Sopni o

and

k ) )
Pr( max 6;X; > x) ~ Pr (Z @,-Xj' >x> ~ ZPr(@iXi > x),

Isk<oo i i=1 i=1

as x — 00. In doing so, no assumption is made on the dependence structure of the sequence {©;,i > 1}.
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1. Introduction

Let {X;,i > 1} be a sequence of identically distributed but not necessarily independent
random variables with a generic random variable (r.v.) X and common cumulative distribution
(c.d.f.) F, and {6;,i > 1} be another sequence of nonnegative r.v.’s, that is independent of the
sequence {X;,i > 1}. Note that {©;,i > 1} are also generally dependent. In this paper, we
discuss the tail probabilities of the randomly weighted sums

n
S, :=Z@,~X,~, n>1, (1.1)

and their maxima M, := maxj<x<, Sg, n > 1.

The randomly weighted sums S,, and their maxima M,, are frequently encountered in various
areas, especially in actuarial and economic situations. For example, in the actuarial context, the
r.v.’s {X;,i > 1} are often interpreted as the liability risks while the weights {©;,i > 1} stand
for the financial risks, such as the discount factors. More specifically, if we regard X; as the net
loss, i.e. the total amount of premium incomes minus the total amount of claims for an insurance
company during period i, then the sum S, is the discounted losses accumulated from time O to
time n. See Section 4.1 for detailed interpretation.

In this paper, we will focus on the case when the sequence {X;,i > 1} are heavy-tail
distributed (i.e. their moment generating functions does not exist). Specifically, we suppose
that {X;,i > 1} are from the extended regular variation class and have no bivariate upper
tail dependence (see Definition 2.2 and Remark 2.1 for its accurate definition), and that the
weights {©;,i > 1} satisfy certain moment conditions. See Definition 2.1 for the concept of
the extended regular variation class along with some other classes of heavy-tailed distributions.
We will establish the following asymptotics in the present paper.

6; X; ~P 6; X; ~ Pr(O; X; , 1.2
(lril]?i(nz >x> r(Z >x> ; T( > x) (1.2)

i=1

and

k . -~
Pr (lgllixoo Z 0;X; > x) Pr (Z 6; X" > x) ZPr(@le > x), (1.3)

i=1 i=1

as x — 0o (see Theorem 3.1), where x™ = max{0, x} for any real number x, and a(x) ~ b(x)
means that both lim sup, _, o, % < 1 and liminf,_, % > 1 hold for two positive functions
a(x) and b(x).

Due to the important role of the heavy-tailed distributions in many applied fields, there is a
proliferate of research being conducted to estimating the tail probabilities of sums S, and their
maxima M, with heavy-tail distributed r.v.’s {X;,i > 1}. To our knowledge, however, all the
results obtained so far are fully in line with ours, yet under different assumptions on {X;,i > 1}
and/or {©;,i > 1}. All the existing literature assume {X;, i > 1} to be independent, and some
of them even require the weights {©;, i > 1} to be specially structured such that ©; = [,_, Y&,
i > 1, for an independent sequence of r.v.’s {Y, k > 1}.

Next, we shall have a review on the related literature. First look at those papers that consider
the case when {X;,i > 1} are from the regular variation class R_, for ¢ > 0. Resnick
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and Willehens [23] established the following asymptotic result (1.4) under the assumption that
{Xi,i > 1} are nonnegative r.v.’s.

Pr (Z 0 X; > x) ~ F(x) Z E[67]. (1.4)

i=1 i=1

Later on, Goovaerts et al. [14] generalized their results by allowing {X;, i > 1} to be real-valued,
and establishing the more general results that are similar to (1.2) and (1.3); also see [24]. The
conditions imposed on {6;,i > 1} by Resnick and Willehens [23], Goovaerts et al. [14], and
Tang [24] for their results are all essentially the same as that for ours in the present paper (see
assumptions H1 and H2 in Section 2). Under a different condition that is defined through the right
endpoints of {©;,i > 1}, Chen et al. [6] achieved an asymptotic formula for the maxima M,,.

Besides the regular variation class, asymptotic results like (1.2) and (1.3) have also been
attempted by several papers for {X;,i > 1} from some other wider class of heavy-tailed
distributions. Tang and Tsitsiashvili [25] established the asymptotic formulation regarding the
maxima M, as in (1.2) for the case when {X;,i > 1} belong to the intersection of the long-
tailed class and dominant variation class, and {©;, i > 1} are structured through the independent
sequence {Y;, i > 1} of r.v.’s as mentioned before. Later on, Wang and Tang [28] extended their
results by allowing {©;, i > 1} to be generally structured, and establishing the asymptotic results
not only for the maxima M,, but also for the sums S,. Papers considering the subexponential
class, which is a very general class of heavy-tailed distributions, include [26,7]. While their
results are applied to more general {X;,i > 1}, more strong conditions are demanded on the
weights {©;, i > 1}. Tang and Tsitsiashvili [26] suppose the weights to be bounded, while Chen
and Su [7] assume some conditions on the density of ©; for eachi > 1.

Note that the results in (1.2) hold for a fixed integer n. Theoretically, it is also interesting
to investigate when they are valid uniformly for n > 1. The existing literature addressing this
issue are [29,28], with the former discussing the maxima M,, for {X;,i > 1} from the consistent
variation class, and the latter on both the sums §,, and the maxima M,, for {X;,i > 1} within
the extended regular variation class. Moreover, another two interesting papers related to ours are
[20,21], where the large deviation techniques are employed to obtain certain estimate of the tail
probabilities of the maxima. It is also worth mentioning that many papers reviewed above were
tackling the problem in the context of ruin theory, where the ruin probabilities are defined by the
tail probabilities of the maximum in a discrete time risk model (see Section 4.1).

The rest of this paper is constructed as follows. Section 2 is the preliminary, where we recall
some definitions and present some lemmas that are crucial to the proof of our main results.
Section 3 states the main results along with some remarks. Section 4 is some applications of our
main results. The proof of our main results and some lemmas are presented in Appendix.

2. Preliminary

Here and henceforth, all limit relationships are for x — oo unless stated otherwise. For two

positive functions a(x), b(x), throughout this paper, we write a(x) < b(x) if limsup,_, Zg) <
1, a(x) 2 b(x) if liminf,_ b(jé) > 1, a(x) ~ b(x) if both, and a(x) =< b(x) if 0

< liminfy_, Zg; < limsup,_, o % < 0o. We shall use the symbols x* = max{x, 0} for

areal number x and F = 1 — F forac.d.f F.
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A r.v. X orits c.d.f. F(x) satisfying F(x) > 0 for all x € (—00, 00) is heavy-tailed to the
right, or simply heavy-tailed, if Ee”X = oo for all y > 0. We recall here two important classes
of heavy-tailed distributions as follows.

Definition 2.1. (1) Regular Variation (R_,) Class. A r.v. X or its c.d.f. F on (—o0, +00)
belongs to R_, for some « > 0, if

F
lim £ _ e
x—>00 F(x)
holds for any y > 0.
(2) Extended Regular Variation (ERV) Class. A r.v. X or its c.d.f. F(x) on (—oo, +00) belongs
to ERV(—a, —pB) for 0 < o < B < oo such that

2.1)

F F
s < timinf 20 < fimsup 20N <o foralls > 1, 22)

x—>o00  F(x) x—oo F(x)

or equivalently

F(sx) . F(sx) < b

s~ % < liminf _( < lim sup

< — forall0 <s < 1. 2.3)
x—00  F(x) x—oo  F(x)

In addition to the above two classes, there are some other important classes of heavy-tailed
distributions known as the Consistent variation class C, the Dominant variation class D, the
Subexponential class S, and the Long-tailed class £. These classes satisfy the following inclusion
relations:

R_o CERV(—a,—B)CcCCcDNLCSCL. 2.4)

Moreover, if F € ERV(—a, —f), then it follows from Proposition 2.2.1 of [4] or Section 3.3 in
[25] that, for any «’ and B’ satisfying o’ < « and B’ > B, there exist positive constants C; and
D;,i = 1,2, such that

FO) _ (x)

— Ci| - 2.5

Fo) — '\ @
forallx > y > Dj, and

F(y) <x>’3'

— <G| = 2.6

o) = 2 v (2.6)

forall x > y > D;. Due to the arbitrariness of 8’ > B, fixing the variable y in (2.6) immediately
leads to

x P =0o(F ), forallg*> pB. 2.7)

For a comprehensive review on heavy-tailed distributions and their applications in insurance and
finance, we refer to [4], [8], and [12].

Next, we recall the definition of the index of upper tail dependence for a bivariate random
vector X = (X1, X2). By Sklar’s Theorem (see [19] or [17]), we see that if X has continuous
marginal distributions F7 and F>, then the dependence structure of X; and X, is completely
determined by a bivariate copula function C (u, v) and the joint distribution function of X is given
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by C(Fi(x), F>(x)). The index of upper tail dependence is a concept relevant to the dependence
in extreme values (which depends mainly on the tails) defined as follows.

Definition 2.2. Suppose a bivariate copula C is such that

1-2 C(v,
Ay = lim 1-2v+Cv) (2.8)
v—>1" 1—v

exists, then C has upper tail dependence if A, € (0, 1], and no upper tail dependence if A, = 0.

Remark 2.1. If {X;, i > 1} are identically distributed, Sklar’s Theorem ensures us that A, = 0
is equivalent to the following equation.

. Pr(X; > x,Xj > x) C e
lim =0, foris#j,i,j>1. 2.9)
X—>00 Pr(X; > x)

If the above condition (2.9) is satisfied, we say {X;, i > 1} is bivariate upper tail independent, or
has no bivariate upper tail dependence, or has zero index of bivariate upper tail dependence.

Assumptions. For notational convenience, we state the following two assumptions regarding the
sequences {X;,i > 1} and {©;,i > 1}.

H1. There exists a constant § > 0 such that E@iﬂM < ooforalli > 1, and {X;,i > 1} are
identically distributed as a generic c.d.f. F € ERV(—«, —f),0 < o < < 00, satisfying

condition (2.9) and
Pr(X < —x) B

im (2.10)
x—oo Pr(X > x)
H2. Z;’il Pr(©;X; > x) < oo and either of the following two statements holds:
(1) forO < B < 1, there exists 0 < § < o suchthat 8+ 6 < 1 and
o o
Y B/ <0, D EO <00 @.11)
i=1 i=1

(2) for 1 < B < o0, there exists 0 < § < « such that
o0

3 (E@f‘“)ﬂlﬁ < o0, i (E@;HS)ﬁ < 0. 2.12)

i=1 i=1

In the proof of our main results (Theorem 3.1), we need the following series of lemmas.
Besides their critical role in the proof of Theorem 3.1, some of these lemmas are themselves
interesting. Among them, Lemma 2.1 is a direct consequence of Theorems 3.5(iii) and 3.5(v)
in [8]. For the proof of the other lemmas, refer to Appendix A.2. It is worth noting that Davis
and Resnick [10] have derived the same result as Lemma 2.2 for {X;,i > 1} € R_, with index
o > 0, and hence Lemma 2.2 is a generalized version of their result. The technique employed in
the proof of Lemma 2.5 is a combination of that used in [23] and [13].

Lemma 2.1. Suppose X is a nonnegative r.v. from ERV(—a, —f) for some 0 < o < < 09,
and O is a nonnegative r.v., for which there exists a constant 8 > 0 such that EOP < co. Then
OX € ERV(—a, —p).
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Lemma 2.2. Suppose {X;,i > 1} is a sequence of nonnegative and identically distributed r.v.’s
from ERV (—a, —B) such that (2.9) is satisfied. Then

Pr (Z X; > x) ~ ZPr(Xi > x) (2.13)
i=I i=1

holds for any fixed integer n > 1.

Lemma 2.3. Suppose X| and X, are two identically distributed r.v.’s from ERV(—«, —f) for
some 0 < a < B < oo, while O and 6O, are another two nonnegative r.v.’s, independent of
(X1, X2) and satisfying Eé)l.ﬂ—’_(S < oo for some § > 0,1 = 1,2. If X1 and X» are bivariate
upper tail independent, i.e. (2.9) holds with i, j = 1, 2, then

Pr(©1X) > x, X3 > x)
im
X—>00 Pr(©;X; > x)

=0, fori=1,2. (2.14)

Lemma 2.4. Suppose X is a r.v. from ERV(—a, —8) with 0 < o < B < oo such that (2.10) is
satisfied, and © is another nonnegative rv. satisfying EOP < oo for some § > 0. Then

Pr(OX < —xy) _

2.15
560 Pr(6X > x) ( )

holds for any y > 0.
Lemma 2.5. Suppose {X;,i > 1} and {©;,i > 1} are two sequences of rv.’s satisfying

assumptions H1 and H2, then there exist a positive integer No and a positive real number D
such that, given any € > 0,

Pr( > exf > x) <(+e) Y Pr(OX;>x) (2.16)

i=n+1 i=n+1
holds for n > Ny and x > D.

3. Main results and some remarks

The following theorem is our main result. We delay its proof to Appendix A.1.

Theorem 3.1. (a) Suppose that assumption H1 is satisfied for model (1.1), then we have for any
fixed integer n > 1,

QX ~P @X ~ P@l‘Xi ) 3.1
(o) w(Bon ) Sren oo

(b) if additionally assumption H2 holds, then we also have

k 00 00
Pr( max 6; X; >x) ~ Pr (Z QiXiJr >x) NZPr(QiXi > X). 3.2)

Isk<o0im i=1 i=1
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Remark 3.1. Clearly, if {X;,i > 1} is a sequence of i.i.d. r.v.’s, condition (2.9) is satisfied
automatically and hence can be dropped for the results in Theorem 3.1. Actually, if the sequence
{X;, i = 1} are Negatively Quadrant Dependent (NQD) (see [17], p. 20 for the definition of NQD
sequence), then condition (2.9) can also be dropped for Theorem 3.1, since in this case

Pr{X,->x,Xj>x}< " Pr(X; > x) Pr(X; >x)_0 i1

(3.3)

0 < lim < lim
x—>00 Pr(X; > x) x—>00 Pr(X; > x)

It is worth mentioning that sequences of r.v.’s of those notions such as Negative Dependence
(ND) (see [11], or [5]), and Negative Association (NA) (see [1], or [16]) all satisfy condition
(2.9) by their relation with NQD.

Remark 3.2. If F(x) € R_ for some « > 0, then by the definition of R_,, we see that (3.1)
and (3.2) in Theorem 3.1 can be, respectively, rewritten as follows:

k n n
P 6;X; ~P 6;X; ~F E6?,
T (121]?;(” 2 i X > x) T (Z i X > x) (x) ; ;

i=1

and

k 00 00
Pr( max 6;X; > x) ~ Pr (Z @,-Xl.+ > x) NF(x)ZEQf‘.

Isk<oo =] i=1 i=1

Moreover, when {X;,i > 1} are i.i.d r.v.’s from R_,, condition (2.10) can be dropped for these
asymptotic results to be valid. See Appendix A.3 for the proof. Thus, these results generalize the
main results of [14] in the sense of allowing {X;,i > 1} to be generally dependent but with no
bivariate upper tail dependence.

Remark 3.3. When {X;,i > 1} are identically distributed as a generic c.d.f. F(x) € R_,
for « > 0, satisfying conditions (2.9) and (2.10), Weng et al. [30] established the following
asymptotic results.

Let {r;,i > 1} be a sequence of constants such that r; > 0,i > 1, and set 6; = []

(1+7r;)~",i > 1. Then

k n n
P 0; X; ~P 0; X; ~F 0%, 3.4
r{lrg]gﬂi:l ; l>x} ri;l z>X} (X);, 3.4

and if additionally Y i, 6% < oo, then

i=1"i

k 00 (o)
Pr{ max 0; X; > x} ~ Pr{Z@iX,.* > x} ~f(x)29i“. 3.5)
i=1

Isk<oo iy i=1

i
j=1

Obviously, if taking ©; = 6; for each i in Theorem 3.1, we immediately recover (3.4) and
(3.5) by the definition of R_,. Weng et al. [30] also presented many comments on the conditions
(2.9) and (2.10) in an actuarial perspective.

Remark 3.4. As pointed out in Remark 2.1, condition (2.9) holds if and only if the copula
governing the bivariate dependence structure of the individual net losses has zero index of upper
tail dependence. Consequently, to verify condition (2.9), one may turn to model the bivariate
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dependence structure of {X;,i > 1} via a bivariate copula, and to determine if the copula has
zero index of upper tail dependence. For some families of copulas, the tail behavior is well
known. For example, if the generator ¢ (¢) for an Archimedean copula satisfies

.odo
}1_2%5(]5 (1) # —o0, (3.6)

where ¢~!(-) is the inverse of ¢(-), then the copula has no upper tail dependence. See, for
example, [22, Chapter 8] for detailed discussion on the Archimedean copulas with respect to
the index of upper (lower) tail dependence. Other important families of copulas with zero index
of upper tail dependence include Gaussian copulas, Farlie—Gumbel-Morgenstern copulas.

4. Applications of main results

In this section, we will present two examples to illustrate certain implications of our main
results obtained in the previous section. In the first example, we will establish certain asymptotic
bounds for the ruin probabilities in a discrete time risk model, while in the second one we
will show some asymptotic properties with respect to the tail probability of the marginal of the
stationary solution to a stochastic difference equation.

4.1. Ruin probabilities in a discrete time risk model

Let Z; € (0,00) and X; € (—o0, 00) be two r.v.’s, respectively, representing the discount
factor and net loss for an insurance company, i.e. the total claim amount minus the total premium
income, during the ith period, i > 1. The randomness of the discount factors may result from the
stochastic interest rates or random return on investment in risky assets by the insurance company.
Denote ©; = ]_['j:l Z;,i > 1. Then ©; stands for the discount factor from time i to time
0. Therefore, if we suppose that the net losses are calculated at the end of the year and that
the insurance company starts with initial capital x, then her discounted surplus, denoted by U,,,
accumulated till the end of year n is

n
Up = x, Unzx—ZX,-Qi, n>1. 4.1)

i=1

Set S, = Z?:l X; ©; for n > 1, then the finite time ruin probability is defined as

Y(x;n) :Pr(max Si > x|Uyp :x) “4.2)

0<i<n

and the infinite time ruin probability as

Y(x) = lggo Y(x;n) =Pr (Omax Si > x|Up = x> . 4.3)

Note that ¥ (x; n) is the probability that the insurance company’s surplus will become negative
at certain time point during the period [0, n], and ¥ (x) is the probability that the surplus will
ever become negative on the infinite time horizon. Once the surplus becomes negative, we say
that the insurance company gets ruined.

Risk models are basically of two classes: the continuous time models and the discrete time
models. Discussing the ruin probabilities is one of the most important topics in risk theory. There
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are many publications tackling the ruin probabilities of model (4.1) and/or its variations. To our
knowledge, however, all of them only address the case when {X;, i > 1} are independent just as
introduced in the first section. Investigation on discrete time risk model (4.1) has many merits.
The most important one is that the discrete time risk models themselves are interesting stochastic
models both in theory and in application, and in many cases the associated ruin probabilities are
crucial. Moreover, some continuous time risk models can be approximated by discrete time risk
models, and ruin probabilities in many continuous time risk models can be reduced to those in
embedded discrete time risk models. See, for example, [15,3,18], and references therein.

Now let us consider the ruin probabilities of model (4.1) by applying Theorem 3.1. For this
purpose, we assume that the sequences {X;,i > 1} and {6;,i > 1} satisfy corresponding
conditions imposed in Theorem 3.1. Then, by the definitions of the above ruin probabilities,
one immediately obtains the following asymptotics.

¥ (x,n) ~ Pr (Z 0 X; > x) ~ ZPr(@iX,» > X), (4.4)
i=1 i=1
and
V¥(x) ~Pr (Z 6: X > x) ~ ZPr(@ix,» > x), 4.5)
izl i=1

as the initial capital x tends to infinity.

With the moment conditions regarding ©; in Theorem 3.1, the assumptions in Theorem 3.3(iv)
of [8] are satisfied. Consequently, by (4.4) and (4.5) we can further deduce the following
asymptotic bounds for the ruin probabilities.

F(x) Zn: E min (ﬁ ze, ﬁ zf) < yn) < Fx) i: E max (ﬁ ze, ﬁ Zf) ,(4.6)
i=1 =1 =1 i=1 =1 =1

Fx) i E min (ﬁ ze, ﬁ zf‘) < yx) <Fx) i E max (ﬁ ze, ﬁ zf) L@
i=1 =1 =1 i=1 =1 =1

The above asymptotic results generalize the counterparts in Theorem 5.2 of [25] in the sense of
allowing the net losses {X;, i > 1} to be r.v.’s that have no bivariate upper tail dependence while
general dependence structure in other aspects.

If we assume that {Z,,, n > 1} is a sequence of i.i.d. nonnegative r.v.’s, then it is easy to check
that the moment assumptions with respect to {©;,i > 1} in Theorem 3.1 are equivalent to the
following one:

H3. There exists some § > 0 such that E(Z‘lw”s) < 1.

Consequently, if F € R_, for some o > 0 and assumption H3 is satisfied, then applying
Corollary 3.6 (iii) of [8] to the asymptotic formulas (4.4) and (4.5), we derive the following
results:

EZY(1 - (EZ})")
1 - EZY

¥ (x;n) ~ F(x) , 4.8)

o

Fory—2 4.9
¥ (x) (x)m- 4.9
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It is worth mentioning that estimating ruin probabilities based on the risk models with
dependent elements is one of the challenges in actuarial science. The results obtained so far
are very limited, and only those risk modes with very special structures have been attempted;
see, for example, [2,9].

4.2. Stochastic difference equations

Consider stochastic difference equations of the form
Yo=Z Yy 1+ Xy, nx>1, (4.10)

with {X,,n > 1} and {Z,,n > 1} being two sequences of r.v.’s, such that {Z,,n > 1} is
independent of {X,,n > 1}, {Z,,n > 1} are nonnegative i.i.d. r.v.’s, and {X,,n > 1} are
identically distributed r.v.’s with no bivariate upper tail dependence.

Such equations have been widely studied in a variety of contexts under the assumption that
X,,n > 1 are identically and independently distributed; see, for example, [27,23] among many
others. We are interested in the implications of Theorem 3.1 for such equations. If we further
suppose that {X,,, n > 1} are changeable, then the stationary solution {Y;,, n > 1} of (4.10) exists
with marginal distribution satisfying

00 n—1
<y (]_[ Zi) X, @.11)

n=1 \i=I1

where an empty product is set equal to 1, and notation 2 means equality in distribution. Now if
we let O, = ]_[?:_1l Z; for n > 1, then the same reasoning as employed in the former subsection
regarding ruin probabilities in model (4.1) will immediately enable us to obtain similar results
for the tail probability Pr (Y] > x). Specifically, if {X;, ©;,i > 1} satisfy the corresponding
conditions in Theorem 3.1, then we have

o
Pr(Y; > x) ~ Zpr((aixi > X), (4.12)
i=l1
and
_ o0 _ o0
F(x))_ Emin (9;", 9,.") <SPr(Y) > x) S F() Y Emax (9;", 9}3) : (4.13)
i=l1 i=l1
if {Z,, n > 1} are i.i.d. nonnegative r.v.’s, satisfying assumption H3, then
Pr(Y; > x) F@) (4.14)
T > N —, .
S . =57

Note that (4.14) is the one-dimensional version of one result in [23], where {X,,n > 1} is
assumed to be i.i.d. Thus the result we derived here is a partial generalization of theirs.
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Appendix. Proof of main results and lemmas
A.l. Proof of main results

Proof of (a) of Theorem 3.1. Since {©;, i > 1} are nonnegative, we have
n k n
6; X; < max Z@iXi < Z@in, n>1.
i=1

i=1 O<k=n ;=

Thus, it suffices to show forn > 1,

n n
Pr (Z 6: X" > x) ~ > Pr(6iX; > x), (A.1)
i=1

i=1

and

Pr (Z 0iX; > x) 2 > Pr(6X; > x). (A.2)

i=1 i=1
(A.1) follows immediately from the combination of Lemmas 2.1-2.3, and the fact that
Pr (Qin' > x) =Pr(6;X; > x) forx > 0andi > 1. Below we turn to prove (A.2).
Apparently, (A.2) holds for n = 1. Now we suppose n > 2. Let v > 1 be a constant, and set
y = (v—1)/(n—1). Then, clearly y > 0. For notation convenience, we further denote the events

A; = (6;X; <wx), A7 =(6;X; < —yx), i>1
In order to prove (A.2), we first analyze its left hand side.

Pr (Zn: 6;X; > x)

i=1

v

=1 1<i<n

n
Pr( 6;X; > x, max 6;X; > vx)

v

n n
ZPr (Z ;X5 > x, 6;X; > vx)
i=1 s=1
n
— Z Pr (Z O X > x, O X > vx, O X; > vx)

1<k#l<n s=1
= A — A. (A.3)
As for A in (A.3), we see that

n
Pr (Z X5 > x, 6;X; > vx)

s=1

n
2Pr<Z@SXS>x, 6;X; >vx, ©;X;>—yx for 1§j§n,j;ék)

s=1
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=Pr(@,~X,~ > vx, 0;X; >—yx,1§j§n,j7ék)

n
>1— |:Pr(A,') + ) Pr(A]T):| , 1<i<n. (A.4)
Jj=1,j#i
Moreover, it follows from Lemma 2.4 that
Pr(A>)
lim — 1~
x—00 Pr(0;X; > x)

Hence, combining (A.4) and (A.5) yields

=0 forl <j<n. (A.5)

n n

> Pr(6:X; >vx)— > Pr(A]T)

o Ay o=l j=1j#i

lim 1nfn— > liminf

X—>00 X—>00
Z Pr(@,-X,- > X)

i=1

Z Pr(@iX,' > x)
i=1

n
> Pr(6;X; > vx)
= liminf = . (A.6)
x—>o0 M
> Pr(6;X; > x)
i=1
As for Aj in (A.3), by Lemma 2.3 we have

n
Pr(z O X > x, O Xy > vx, O/ X; > vx)

s=1

lim m
X—>0Q
> Pr(6;X; > x)
i=1
. Pr(Ou Xy > vx, 6, X; > vx) . Pr(©;X; > vx)
< lim limsup ———
X—00 Pr(©;X; > vx) r—o0 Pr(@1X; > x)

=0, forl<k#I[<n,
which implies

: Ar
lim — =2 . (A7)

n
e > Pr(6;X; > x)
i=1

Finally, combining (A.3), (A.6) and (A.7), we obtain
n
QiXi > X ZPI‘(@,’X,’ > vx)

Pr(
X > liminf =1 . (A.8)
X—>00
> Pr(6:X; > x) > Pr(6;X; > x)
i=1

i=1

M=

lim inf
X—>0Q

Letting v — 1in (A.8) leads to (A.2). [
Proof of (b) of Theorem 3.1. It suffices to show
n o
Pr( max 0:X; > x) ~ ZPr(@iX,- > x), (A.9)
i=1

1<n<oo
i=1
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and

Pr (Z 6:X; > x) ~ > Pr(6X; > x). (A.10)

i=1 i=1

As the proof of (A.9) and (A.10) is quite similar, we shall just prove (A.9).
By (a) of Theorem 3.1, we have for any m > 1,

n n
Pr| max ©;X; > x| > Pr| max 0;X; > x
1<n<oo =1 I<n<m =1

~ (i— i )Pr(@iXi > x). (A.11)

i=1 i=m+1

Since Z —1 Pr(6;X; > x) is assumed to converge, letting m — oo in (A.11) immediately
yields

1<n<oo

n o0
Pr( max 6, X; > x) pe Pr(©;X; > x).
=1 i=1
Consequently, we will complete the proof if we can show

n o0
Pr( max 0:X; > x) <D Pr(6iX; > x). (A.12)
1 i=1

1<n<oo i

Note that

max ZOX < max Z()X + Z o, x;

1<n<oo % O<n=m ;3 i=m+1

holds for all m > 1. Hence, for any constants 0 < v < 1, m > 1, and x > 0, we have

Pr(max 91X5>x>§Pr<max Z@X >(1—v)x)
1

1<n<oo i O<n<m 4
o0
Pr( Z 6: X" > vx). (A.13)
i=m+1
By (a) of Theorem 3.1, we have
m
Pr (Og}ngcmZ@X > (1 —v)x) ~ ;Pr(QiXi > (1 —v)x). (A.14)

Moreover, given any € > 0, it follows from Lemma 2.5 that

Pr( Z 6: X" > vx) <(l+e) Z Pr(6;X; > vx) (A.15)

i=m+1 i=m+1
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holds for large enough integer m and real number x. Therefore, combining (A.13)—(A.15), we
obtain

Pr( max 6;X; > x) < ZPr(QiXi > —-vx)+UA+¢€
1

1<n<oo 4 :
i= i=1

o0
X Z Pr(6;X; > vx). (A.16)
i=m+1

Note that ©; X; € ERV(—a«a, —B) for i > 1. Thus, if we first let m — oo and then let v | 0 in
the above equation, we immediately get (A.12), by which the proof is complete. [J

A.2. Proof of lemmas

Proof of Lemma 2.2. Apparently, (2.13) holds for » = 1. Hence, we suppose n > 2.
On the one hand, we have

(S0 <m0}

i=1 i=1
n
>y Pr(Xi>x)— Y Pr(Xi>x.X;>x),
i=1 I<i#j<n
and assumption (2.9) leads to

> Pr(Xi>=x X;>x)

l<i#j<n ) '
=< E -0
i Pr(X; > x) I<iZj<n Pr(X; > x)
i=1

Hence,

Pr (Z X; > x) 2> Pr(X; > x). (A.17)
i=1 i=1

On the other hand, for any fixed real number v such that 1/2 < v < 1,

Pr(iX:;X,'>x> Pr(U(X >vx)>+Pr<ZX > x, ﬂ(x <vx))

i=1 j=1

IA

= L+ b. (A.18)
As for I7, we see by the arbitrariness of v on the interval (1/2, 1) that

n
; Z Pr(X; > vx)
hrr} lim sup —1 < 1111} limsup = =1, (A.19)
Ve by sy T S prXs > )
i=1 i=1

N

Next we shall estimate /5.

Iz_Pr<ZX > X, m(X < vx), Tax Xk>il_c>

i=1 j=1
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n n
< ZPr(ZXi >x, X <uvx, Xp > )—C>

k=1 i=1 n
n n X
< Pr( > Xi> (1 —vx, X > —)
k=1 i=1ik n
n n
(1 —-v)x X
< Pr| X; — X —].
=3 > (x-S
k=1i=1,i#k
. 1—v . Pr(Xk>(lr;%|)x) 11—\ P ..
Since T < 1, we see that limsup, _, o, e < (nTl) for 1 < k < n. Combining
this with condition (2.9), we further have
I
lim ——=
X—> 00
S Pr(X; > x)

i=1

n n
> Y Br (X,- SIS

B
N—

k=1i=1,i#k
< lim =i -
X—>00
> Pr(X; > x)
i=1
. n n Pr (X,' > (1n_:)])x,Xk > %)
< lim
T = i=LLitk Pr(Xy > x)

p= Ao x> G pr (x> Goor)

n—

. n n Pr(X
=Jim ) 2

k=1 i=1.i%k Pr (Xk > %) Pr(Xy > x)

=0. (A.20)
As a result, combining (A.18)—(A.20) yields

n n
Pr (XI: X; > x) < X;Pr(X,- > X). (A21)
1= 1=

Consequently, by (A.17) and (A.21), we obtain (2.13). O

Proof of Lemma 2.3. Due to the asymmetry between the two cases of i = 1 and i = 2, we will
just prove (2.14) for i = 2 bellow.

Denote G; to be the c.d.f. of ©; fori = 1, 2, and G(x, y) to be the join distribution function
of O and ;. Let us first analyze the numerator on the left hand side of (2.14).

Pr(61X) > x, ©:3X2 > x) = (// +/f )Pr(xl>f,x2>f)dG(s,t)
s<t s>t N t
Pr(X; > X0 > 2)dG(s, 1)
/‘/SSZ r(1>t, 2>t> S,

+/[ Pr(Xl A R f) dG(s, 1)
s>t s s

L A () + Ay (x). (A.22)

IA
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Since X and X, belong to ERV(—«, —f),

A OPr(X;>% X,>12
timsup — =10 < Jim sup / (X >4 X ’)dGz(t)
x—oo Pr(X; > x) x—o00 Jo Pr(X; > x)
S Pr(X;>Z% X,>2
< / lim sup (X1 > §. X2 I)dGz(I)
0 x—o0 Pr (X2 > x)
—0. (A.23)

Moreover, due to the fact Pr(X,6> > x) < Pr(X; > x) (see Theorem 3.5(v) of [8]), (A.23)
results in

lim A1 (A.24)
x—00 Pr(X,6, > x)
Using the symmetry between A;(x) and A (x), we also have
A
2(%) (A25)

lim —————— =
x—00 Pr(X760; > x)
Consequently, combining (A.22), (A.24) and (A.25) results in (2.14). O

Proof of Lemma 2.4. The proof is quite similar to that of Lemma 2.3. Denote G to be the c.d.f
of O, then for any y > 0,

lim sup ——— = = limsup —)dG(t)
X—00 Pr (X > x) X—00 Pr (X > x)

% Pr(X <-2)
< / lim sup —————=dG(¢)
0 x—o00 Pr(X >x)

=0. (A.26)

Pr(OX < —xy) /00 Pr(x <-%
0

Consequently, due to the fact that Pr(©X > x) =< Pr(X > x) we have

Pr(0X < —xy) -

lim sup <0, (A.27)

r—oo Pr(OX > x)

which immediately implies (2.15).
Proof of Lemma 2.5. Note that

o0
Pr( Z Qin.Jr >x>

i=n+1

o o0 o0
< Pr( U x> x)) +Pr< oxt>x () @x;f < x))

i=n+1 i=n+1 i=n+1

o0 o0
< Z Pr(6;X; > x) +Pr( Z Oi X Lo x+ <) > x) (A.28)
i=nt1 i=ntl T
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holds for all x > 0 and any n > 0. Thus, it is sufficient for us to show

i=n+1

( Y OiX; 1(9X+<x)>x>
lim =0
n—oo

(A.29)
Z Pr(6; X > x)

i=n+1

holds for sufficiently large x. We shall consider the two cases in assumption H2.

Corresponding to the case (1) in assumption H2, we suppose temporarily that 0 < 8 < 1, and
that there exists 0 < § < « satisfying B +68 < 1, > 12, E@iﬂ—HS < oo,and ) 72, E@f‘_8 < 00.
As for the generic r.v. X and the common c.d.f. F(x) of {X;,i > 1}, we see that Pr(X* < x) =
1 —Pr(Xt >x)=1—-Pr(X > x) =1— F(x)and xF(x) — 00 as x — 00. So, it follows
from (2.6) that there exist positive constants C; and D, such that

EOX Iixra)  —xF(0) + [3 Fls)ds
X F(x) B xF(x)

/Dz/x / Fsx)
= -1+
nafx) F (x)

< —l+4+o()+ C2/ —BH) g
0

=k <oo, i>1,

where o(1) is in the sense that x — 00. Now we shall estimate the numerator on the left-hand
side of (A.29). It follows from the Markov’s inequality that

o0 1 o0
+ +
Pr( Z Q[Xi ](@iX;I—SX) > .X) < ; ( Z E I:QiXi I(Qixffx, O<@i§1):|>

i=n+1 i=n+1

o0
+)1C ( Y E [eile(@ixkx, @»1)]) (A.30)

i=n+1
for x > 0 and n > 0. Let G, () be the c.d.f of B, k > 1. Then, using (2.5) we have

E[Qixfrl(xﬁ@gx, 0<@,-51)] /1 ELX; L (x+ <o) PO/ o »
xF(x) ~Jo x/t-F(x/t) Fkx)
1
1
<k —1%7%4G; (t
<k /0 174G, (0
k
< C—‘E[Q;H], forall§ > 0andi > I. (A31)
1
Similarly, we can obtain fori > 1,
E(@iX,-+1<x,+@,-§x, @,->1)) _/00 ELX i < /0)] Fam, 4G
xF(x) )i x)t-F&x/  Fx)

< CokE (9[’* 5) . (A32)
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Moreover, we also have the fact as mentioned in the end of proof of Lemma 2.3 that Pr(6; X; >
x) < Pr(X; > x), or equivalently,

Pr(@iXi+ >x)=<Pr(X; >x), i>1. (A.33)

Consequently, combining (A.30)—(A.33) and the assumptions Zf’i 1 E(G)iﬁ +5) < 00,
Pl E(@f‘_‘s) < 00, we have, for large enough x and any n > 1,

o
Pr{ 9,-X;“I<QX¢<X) > X
i=n+1 =

§ Pr(@,-}(;r > x)
i=n+1

© E(0: Xl gx+<r.0,<1) x  E(Oi Xl gx <01
< i i
< xPr(@,'Xj' >x) xPr(@in' >x)

i=n+1 i=n+1

o0 o
<E Y EOF)+E Y EOFT)
i=n+1 i=n+1

< o0, (A.34)

where E1 and E; are some positive constants.
Now suppose, regarding (2) of assumption H2, that 1 < f < o0, and that there exists

1 1
0 < & < « satisfying > 2, (E@lﬂ+6>'S+5 < oo and Y 2, <E 9;"_8) P < 0. Then, by
(2.6) there exists constants Cp and D5 such that

B[ hxran]  —aP9F ) + 78+ 9)s#- T F(s)ds
xBHF (x) xBHF (x)

Dy/x 1 B+s—1F
-1+ ds/ ’ +ds/ ('B+8)S_ F(Sx)ds
0 Dy/x F(x)

1
—14o() + Czds/ (B +8)s?~¥lds
0

IA

= ky < 00 (A.35)

forany 0 < 8 < 8 and i > 1, where o(1) is in the sense that x — 00. Consequently, the same
reasoning as in the case 0 < B < 1 along with Minkovski inequality yields

o0
Pr( > QiX?'I(@inr<x) >x>
i=n+1 b

ioj Pr(6: X > x)
i=n+1

00 pts
E|: Z QiX;rI(Q,-X.Jrgx):|
i=n+1 !

o0
xPH8 3 Pr(6: X > x)
i=n+1
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1
B+EN\ B+
+
0 E [QiXi I(@,-Xffx,@il)]

<
< T
1 - B+8
N
N 00 E[QiX,-Jrl(e,-xﬁsx,Qiﬂ)]
I LRy
00 1 i 75 o
- [El ) [E(@;"—ﬁ)]““ +E Yy [E(Qzﬁ+8)]ﬁ+5]
i=n+1 i=n+1
L (A.36)

for all n > 1, where E1 and E, are some positive constants.

By (A.34) and (A.36), we see that (A.29) holds for both cases, and therefore the proof is
complete.

A.3. Proof of Remark 3.2

Note that condition (2.10) is used in the proof of Theorem 3.1 only in derivation of (A.6).
Suppose {X;,i > 1} are i.i.d. r.v.’s from R_,. We shall show (A.6).

Based on (A.4), we see that forany 1 <i <n,

n
Pr (Z X5 > x, 60;X; > vx)

s=1

>Pr(6;X; >vx, O X; > —yx,1 <s<n,s #1i)
=E [Pr(@iX,- > vx|Fg) - l_[ Pr(6;X; > —yx|]-"9):| , (A.37)
1<s<n,s#i
where Fg = 0{6;,1 <i < n}. As aresult, applying Fatou Lemma and combining the fact that

lim Pr{©&;X; > —yx|Fg}=1 forl <s <n, (A.38)

X—> 00

we have

n
Pr( > 6:;X; > x, 6;X; > vx)
lim inf —="!

X—>00 Pr(©;X; > x)

.. Pr(O:X; > vx|Fe)
Ell f .
= kIngé Pr(@,-X,- > )C) 1_[

lim Pr(O6;X, > —yXIf@)}
—00

X
1<s<n,s#i

<i<n. (A.39)

—E limianr(@iXi > vxlf@) 1
X—00 Pr(©;X; > x)
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On the other hand, since {X;,{ > 1} are from R_, and E @;H"S < 00, it follows from Lemma 2.1
that {©; X;,i > 1} € R_,. Consequently, for any given v > 1,
Pr(X; > vx) _

=v %<o0, 1<i<n,
x—o0o Pr(X; > x)

and
P i X
im M:E[@f‘], 1<i<n.
x—o0 Pr(X; > x)
Hence,
L Pr(e;X; > vx|Fo) L Pr(6X; > vx|Fe) Pr(X; > x)
E [ liminf = E [liminf .
X—00 Pr(6;X; > x) xX—00 Pr(X; > x) Pr(6;X; > x)
L Pr(6:X; > vx|Fo) . Pr(X; > x)
= E [ liminf . _
xX—00 Pr(X; > x) x—00 Pr(6;X; > x)
= E[v " 671/E[67]
=v %<o00, 1<i<n. (A.40)

Combining (A.39) and (A.40) leads to

n
Pr O, X > x, 0;X; > vx
. (2 Y Y ) _ Pr(;X; > vx) .
lim inf > lim ————, 1 <i<n
X—>00 Pr(©;X; > x) x—oo Pr(©;X; > x)

, (A4D)
by which we have (A.6) and the proof is complete.  [J
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