Risk Aversion, Insurance Propensity, and Risk Measures

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science

University of Waterloo

2023 CSIAM Conference on Actuarial Theory and Applications Wuhan University, China, October 2023

(日)

Background 00000 nsurance propensity 0000000 Risk-insurance equivalence

Choice under dependence

Risk measures Conclusion

Content

- Maccheroni/Marinacci/W./Wu Risk aversion and insurance propensity arXiv: 2310.09173, 2023
- Han/Wang/W./Wu Risk concentration and the mean-Expected Shortfall criterion Mathematical Finance, 2023
- Bellini/Mao/W./Wu
 Duet expectile preferences

Working paper, 2023

<ロト < 同ト < ヨト < ヨト

Agend	2					
Background 00000	Insurance propensity 0000000	Risk-insurance equivalence	Choice under dependence	Risk measures 0000000000000	Conclusion	

1 Background

- Insurance propensity
- 3 Risk-insurance equivalence
- 4 Choice under dependence
- 5 Risk measures

6 Conclusion

• • = • • = •

Background ●0000	Insurance propensity 0000000	Risk-insurance equivalence	Choice under dependence	Risk measures	Conclusion 000

Risk aversion

Risk aversion

- Probability and gambling
- Finance
- Insurance
- Economics
- Psychology
- Experimental observations

e.g., Bernoulli 1738 ['54 ECMA] e.g., Markowitz'52 JF; Merton'73 ECMA e.g., Arrow'63 AER e.g., Pratt'64 ECMA e.g., Kahneman/Tversky'79 ECMA

e.g., Holt/Larry'02 AER

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Background 0●000	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures 0000000000000	Conclusion 000
What	is risk aver	sion?			

- Let \succeq be a preference relation over random payoffs on (S, Σ, P)
 - Arrow'63; Pratt'64
 Weak risk aversion

 $\mathbb{E}(f) \succeq f$

Rothschild/Stiglitz'70
 Strong risk aversion

$$f \geq_{\mathrm{cv}} g \implies f \succeq g$$

• $f \geq_{\mathrm{cv}} g$ means $\mathbb{E}(\varphi \circ f) \geq \mathbb{E}(\varphi \circ g)$ for all concave φ

Background	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures	Conclusion
00000					

What is risk aversion?

The expected utility (EU) theory von Neumann/Morgenstern'44

$$f \succeq g \iff \int u \circ f \mathrm{d}P \ge \int u \circ g \mathrm{d}P$$

for an increasing $u: \mathbb{R} \to \mathbb{R}$

► In the EU framework

concavity of $u \iff$ strong risk aversion \iff weak risk aversion

(日) ト イ ヨ ト イ ヨ ト

Background	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures	Conclusion
00000		0000000000000	000000000000	000000000000000000000000000000000000000	000

What is risk aversion?

► The dual utility (DU) theory (Choquet integral) Yaari'87 ECMA

$$f \succeq g \iff \int f \operatorname{d}(\phi \circ P) \geq \int g \operatorname{d}(\phi \circ P)$$

for an increasing $\phi: [0,1]
ightarrow [0,1]$ with $\phi(0)=0$ and $\phi(1)=1$

► In the DU framework

convexity of $\phi \iff$ strong risk aversion

 $\phi \leq \text{identity} \iff \text{weak risk aversion}$

• Generally: strong \implies weak; the converse is not true

(b) a (B) b (a) (B) b

 Background 00000
 Insurance propensity
 Risk-insurance equivalence
 Choice under dependence
 Risk measures
 Conclusion

What is risk aversion?

æ

Background Insurance propensity Risl

Risk-insurance equivalence 00000000000000 Choice under dependence

Risk measures Conclus

Insurance propensity

Э

メロト メポト メヨト メヨト

Background	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures	Conclusion
00000	•000000	0000000000000	000000000000	000000000000	

A merchant is about to ship commodities with a vessel

The merchant earns a > 0 if the vessel reaches destination (state ω₁), otherwise (state ω₂) loses b > 0

The uncertain wealth of the merchant is denoted by

$$w = (a, -b)$$

• Assume that ω_1 and ω_2 are known to be equally likely

Background	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures	Conclusion
	000000				

• Let c, d > 0. An insurance against the shipping failure

$$f=(-c,d)$$

• Another act g with $g \stackrel{d}{=} f$ is

$$g = (d, -c)$$

(a gamble on the shipping success)

A choice seems natural:

$$w + f \gtrsim w + g$$

Can this say anything about the risk attitude?

10/57

Background	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures	Conclusion
	000000				

Basic framework

- (S, Σ, P) : probability space, nonatomic or uniform on finite S
- \mathcal{F} : all Σ -measurable bounded real-valued functions
 - All results work also on the set M[∞] of all measurable functions with all finite moments (e.g., normal)
- ▶ Two random payoffs f and g are equally distributed, written $f \stackrel{d}{=} g$, if $P \circ f^{-1} = P \circ g^{-1}$
- ► A binary relation ≿ on F is a risk preference when it is a preorder such that

$$f \stackrel{\mathrm{d}}{=} g \Longrightarrow f \sim g$$

Classic notions of risk attitude

A preference \succsim is

- (i) strongly risk averse if, for all $f, g \in \mathcal{F}$, $f \geq_{cv} g \Longrightarrow f \succeq g$;
- (ii) strongly risk propense if, for all $f, g \in \mathcal{F}$, $f \geq_{cv} g \Longrightarrow g \succeq f$;
- (iii) risk neutral if, for all $f \in \mathcal{F}$, $\mathbb{E}(f) \sim f$;
- (iv) weakly risk averse if, for all $f \in \mathcal{F}$, $\mathbb{E}(f) \succeq f$;
- (v) weakly risk propense if, for all $f \in \mathcal{F}$, $f \succeq \mathbb{E}(f)$.

Risk neutrality \iff strong risk aversion + strong risk propension (also holds for the weak versions)

3

00000	0000000		OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	000
Incura	nco propop	city		

Given any initial wealth w, a random payoff f is:

(i) a full insurance for w, written $f \in \mathcal{I}^{\mathrm{fi}}(w)$, when

$$f = -w - \pi$$

for some premium $\pi \in \mathbb{R}$;

(ii) a proportional insurance for w, written $f \in \mathcal{I}^{\mathrm{pr}}(w)$, when

$$f=-\left(1-arepsilon
ight)$$
 w $-\pi$

for some premium $\pi \in \mathbb{R}$ and percentage excess $\varepsilon \in [0, 1)$; (iii) a deductible-limit insurance for w, written $f \in \mathcal{I}^{dl}(w)$, when

$$f = (-w - \delta)^+ \wedge \lambda - \pi$$

for some premium $\pi \in \mathbb{R}$, deductible $\delta \in \mathbb{R}$ and limit $\lambda \geq 0$.

Background	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures	Conclusion
	0000000				

Figure: Proportional insurance (in red) and deductible-limit insurance (in blue) for loss -w

Background 00000	Insurance propensity 0000000	Risk-insurance equivalence	Choice under dependence	Risk measures 0000000000000	Conclusion

A risk preference \succeq is:

(i) propense to full insurance when, for all $w, f, g \in \mathcal{F}$ with $g \stackrel{d}{=} f$, $f \in \mathcal{I}^{\text{fi}}(w) \implies w + f \succeq w + g$;

(ii) propense to proportional insurance when, for all $w, f, g \in \mathcal{F}$ with $g \stackrel{d}{=} f$,

$$f \in \mathcal{I}^{\mathrm{pr}}(w) \implies w + f \succeq w + g;$$

(iii) propense to deductible-limit insurance when, for all $w, f, g \in \mathcal{F}$ with $g \stackrel{d}{=} f$, $f \in \mathcal{I}^{\mathrm{dl}}(w) \implies w + f \succeq w + g$. Background 00000

surance propensity 000000 Risk-insurance equivalence

Choice under dependence

Risk measures Conclus

Risk-insurance equivalence

Ruodu Wang (wang@uwaterloo.ca) Risk Aversion and Insurance

Э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Background	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures	Conclusion
00000	0000000	●000000000000	000000000000	000000000000	

Risk-insurance equivalence

Propension to full insurance:

$$-\pi = w + f \succeq w + g$$
 where $g \stackrel{\mathrm{d}}{=} f = -w - \pi$

Theorem 1

The following properties are equivalent for a risk preference:

(i) weak risk aversion;

(ii) propension to full insurance.

- (i)⇒(ii) is simple
- ► To show (ii)⇒(i), one needs to show $\mathbb{E}(f) \succeq f$ for all f from $-\pi \succeq w + g$ for all $g \stackrel{d}{=} -w \pi$

For each f, need to find $g' \stackrel{d}{=} g - \mathbb{E}(f)$ such that $f \stackrel{d}{=} g - g'$

Background Insurance propensity Risk-insurance equivalence Choice under dependence Risk mea

Risk measures Conclusion

A key step to prove Theorem 1

Denote the essential supremum and the essential infimum of f by

 $u_f = \inf \{ x \in \mathbb{R} : P(f \ge x) \ge 1 \}, \ \ell_f = \inf \{ x \in \mathbb{R} : P(f \ge x) > 0 \}$

Theorem 2

Let $k \ge 1$ and $f \in L^k$. Then $\mathbb{E}(f) = 0$ if and only if there exist $g, g' \in L^{k-1}$ such that $g \stackrel{d}{=} g'$ and $g - g' \stackrel{d}{=} f$. If, in addition, $f \in L^{\infty}$, then we can take $g, g' \in L^{\infty}$ satisfying $\ell_f \le g, g' \le u_f$.

Simple version: For $f \in L^{\infty}$,

 $\mathbb{E}(f) = 0 \iff f \stackrel{\mathrm{d}}{=} g - g' \text{ for some } g, g' \in L^{\infty} \text{ with } g \stackrel{\mathrm{d}}{=} g'$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Risk-insurance equivalence

Choice under dependence

Risk measures Conclusion

Some mathematics

<u>Proof sketch.</u> \Leftarrow :

Use this

The Annals of Probability 1977, Vol. 5, No. 1, 157-158

AN UNEXPECTED EXPECTATION

BY GORDON SIMONS¹

University of North Carolina

It is shown that, while the value of the expectation E(X + Y) always depends on the random variables X and Y only through their marginal distributions, the same kind of statement cannot be made for E(X + Y + Z).

•
$$\mathbb{E}(f) = \mathbb{E}(g - g') = \mathbb{E}(g - g^*)$$
 for $g^* \stackrel{\mathrm{d}}{=} g'$

► Take g^{*} = g

(日)

Background 00000	Insurance propensity 0000000	Risk-insurance equivalence	Choice under dependence	Risk measures 0000000000000	Conclusion 000

Some mathematics

Proof sketch (continued). \Rightarrow : for a finite uniform space:

• Let f have mean 0 and write $x_i = f(\omega_i)$

	ω_1	ω_2	•••	ω_{n-1}	ω_n
f	<i>x</i> ₁	<i>x</i> ₂	•••	x_{n-1}	Xn
g	<i>x</i> ₁	$x_1 + x_2$	• • •	$\sum_{i=1}^{n-1} x_i$	$\sum_{i=1}^{n} x_i$
g'	0	<i>x</i> ₁		$\sum_{i=1}^{n-2} x_i$	$\sum_{i=1}^{n-1} x_i$
0					

• $\sum_{i=1}^n x_i = 0$

- \blacktriangleright The range statement can be shown by rearranging ω
- In the general case, g has one less moment than f

Background 00000	Insurance propensity 0000000	Risk-insurance equivalence	Choice under dependence	Risk measures 0000000000000	Conclusion 000
_					

Expected utility

Example (EU).

- Suppose that \succeq is EU with (measurable) utility function u
- ▶ Take $a \in \mathbb{R}$, b > 0 and two events with probability 1/2 each
- Let w = (a, a + b), f = (a, a b) and g = (a b, a)
- f is full insurance for w; $f \stackrel{d}{=} g$
- Propension to full insurance implies

$$\mathbb{E}[u(w+f)] \geq \mathbb{E}[u(w+g)]$$

which is

$$u(2a) \geq \frac{1}{2}u(2a-b) + \frac{1}{2}u(2a+b)$$

Since a, b are arbitrary this implies concavity of u

 \blacktriangleright \gtrsim is risk averse

• • = • • = •

Background 00000 surance propensity 000000 Risk-insurance equivalence

Choice under dependence

Risk measures Conclusion

Risk-insurance equivalence

Theorem 3

The following properties are equivalent for a continuous risk preference:

- (i) strong risk aversion;
- (ii) propension to proportional insurance;

(iii) propension to deductible-limit insurance.

• (i) \Rightarrow (ii) and (iii) in the literature

Lorentz'53 AMM

< ロ > < 同 > < 回 > < 回 > < 回 > <

see Tchen'80 AOP; Rüschendorf'80 PTRF; Puccetti/W.'15 STS

Background 00000	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures 000000000000	Conclusion

More insurances

Given any initial wealth w, a random payoff f is:

(iv) an indemnity-schedule insurance for w, written $f \in \mathcal{I}^{is}(w)$, when

$$f=I\left(-w\right)$$

for some real-valued (weakly) increasing map *I*;

(v) a contingency-schedule insurance for w, written $f \in \mathcal{I}^{cs}(w)$, when

$$-w\left(s
ight)>-w\left(s'
ight)\implies f\left(s
ight)\geq f\left(s'
ight)$$

for almost all states s and s'.

counter-monotonicity

Relation

$$\mathcal{I}^{\mathrm{pr}}\left(w
ight)\cup\mathcal{I}^{\mathrm{dl}}\left(w
ight)\subset\mathcal{I}^{\mathrm{is}}\left(w
ight)\subset\mathcal{I}^{\mathrm{cs}}\left(w
ight)$$

Background 00000	Insurance propensity 0000000	Risk-insurance equivalence	Choice under dependence	Risk measures 0000000000000	Conclusion 000
More	nsurances				

(vi) Given any initial wealth w, a random payoff f is a better hedge for w than a random payoff g, written $f \ge_w g$, when $f \stackrel{d}{=} g$ and

$$P(f \leq t; w \leq l) \leq P(g \leq t; w \leq l)$$

for all payouts $t \in \mathbb{R}$ and wealth levels $l \in \mathbb{R}$.

- Copulas are ordered
- Equivalent condition:

$$P(f \leq t \mid w \leq l) \leq P(g \leq t \mid w \leq l)$$

• • = • • = •

Background 00000	Insurance propensity 0000000	Risk-insurance equivalence	Choice under dependence	Risk measures	Conclusion 000

More insurances

A risk preference \succeq is:

(iv) propense to indemnity-schedule insurance when, for all $w, f, g \in \mathcal{F}$ with $g \stackrel{d}{=} f$,

$$f \in \mathcal{I}^{\mathrm{is}}(w) \implies w + f \succeq w + g;$$

(v) propense to contingency-schedule insurance when, for all $w, f, g \in \mathcal{F}$ with $g \stackrel{d}{=} f$,

$$f \in \mathcal{I}^{\mathrm{cs}}(w) \implies w + f \succeq w + g;$$

(vi) propense to hedging when, for all $w, f, g \in \mathcal{F}$ with $g \stackrel{d}{=} f$,

$$f \geq_w g \implies w+f \succeq w+g.$$

Background	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures	Conclusion
		00000000000000			

More insurances

Theorem 4

The following conditions are equivalent for a continuous risk preference:

- (i) strong risk aversion;
- (ii) propension to proportional insurance;
- (iii) propension to deductible-limit insurance;
- (iv) propension to indemnity-schedule insurance;
- (v) propension to contingency-schedule insurance;
- (vi) propension to hedging.

Background 00000	Insurance propensity 0000000	Risk-insurance equivalence 00000000000000	Choice under dependence	Risk measures 0000000000000	Conclusion

Comparative attitudes

A risk preference \succeq is secular when, for all $f, g \in \mathcal{F}$, there exists $\rho \in \mathbb{R}$, denoted by $\rho(f, g)$, such that

$$\mathsf{g}\sim\mathsf{f}-
ho$$

- Consider two agents Ann (A) and Bob (B) with $ho_{\rm A}$ and $ho_{\rm B}$
- \blacktriangleright B is weakly more risk averse than A when $$Y_{aari}'_{69}\ JET$$

$$f = \mathbb{E}\left[g
ight] \implies
ho_{\mathrm{B}}\left(g,f
ight) \geq
ho_{\mathrm{A}}\left(g,f
ight)$$

 \blacktriangleright B is strongly more risk averse than A when $$\mathsf{Ross'81}\xspace$ Ross'81 ECMA

$$f \geq_{\mathrm{cv}} g \implies
ho_{\mathrm{B}}(g, f) \geq
ho_{\mathrm{A}}(g, f)$$

Background 00000	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures 0000000000000	Conclusion

Comparative attitudes

Let \succsim_A and \succsim_B be monotone and secular risk preferences

▶ B is more propense to full insurance than A when, for all w, f, g ∈ F with g ^d = f,

$$f \in \mathcal{I}^{\mathrm{fi}}(w) \implies
ho_{\mathrm{B}}(w+g,w+f) \geq
ho_{\mathrm{A}}(w+g,w+f)$$

- Partial insurance: \mathcal{I}^{fi} is replaced by other sets of insurance
- B is more propense to hedging than A when, for all w, f, g ∈ F with g ^d = f,

$$f \ge_w g \implies \rho_{\mathrm{B}}(w+g,w+f) \ge \rho_{\mathrm{A}}(w+g,w+f)$$

Risk-insurance equivalence

Choice under dependence

Risk measures Conclusion

Summary

Figure: Summary of absolute attitudes, where superscript $\rm pi$ is any one of $\rm dl, pr, is, cs$

Background Insurance propensity Risk-insura

Risk-insurance equivalence

Choice under dependence

Risk measures Conclusion

Summary

COMPARATIVE ATTITUDES

Figure: Summary of comparative attitudes, where superscript $\rm pi$ is any one of $\rm dl, pr, is, cs$

Background 00000 surance propensity 000000 Risk-insurance equivalence

Choice under dependence

Risk measures Conclusion Conclusion

Choice under dependence

Ruodu Wang (wang@uwaterloo.ca) Risk Aversion and Insurance

Э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Background 00000 Risk-insurance equivalence

Choice under dependence •00000000000 Risk measures Conclusion

Choice under dependence

Definition 1

Two acts f and g are comonotonic, written $f/\!/g$, when

$$ig(f(s)-f(s')ig)ig(g(s)-g(s')ig)\geq 0$$

for all states s and s'. When \leq is in place of \geq , we say that the two acts are counter-monotonic, written f || g.

- Comonotonicity \implies no hedge
- Counter-monotonicity => maximum hedge

Background 00000	Insurance propensity	Risk-insurance equivalence	Choice under dependence o●oooooooooooo	Risk measures 0000000000000	Conclusion 000		
Choice	Choice under dependence						

A set $\mathcal{D}\subseteq \mathcal{F}^2$ is dependence shell if it satisfies

$$(f,g)\in \mathcal{D} ext{ and } (f',g')\stackrel{\mathrm{d}}{=} (f,g) \implies (f',g')\in \mathcal{D}$$

- \mathcal{D} describes a binary relation on joint distributions
- D is rich if for any (f, h), there exists g such that f ^d = g and (g, h) ∈ D

The following dependence shells are rich:

(i)
$$\mathcal{D}_{CM} = \{(f,g) \in \mathcal{F}^2 : f//g\}$$
(comonotonicity)(ii) $\mathcal{D}_{CT} = \{(f,g) \in \mathcal{F}^2 : f \setminus g\}$ (counter-comonotonicity)(iii) $\mathcal{D}_{AL} = \mathcal{F}^2$ (all)

Background 00000	Insurance propensity 0000000	Risk-insurance equivalence	Choice under dependence	Risk measures 0000000000000	Conclusion
<u> </u>	1 1	1			

Choice under dependence

Richness depends on the probability space:¹

(iv)
$$\mathcal{D}_{IN} = \{(f,g) \in \mathcal{F}^2 : f \perp g\}$$
 (independence)

Not rich:

(v)
$$\mathcal{D}_{PL} = \{(f,g) \in \mathcal{F}^2 : f = ag + b \text{ for some } a > 0 \text{ and } b \in \mathbb{R}\}$$

(positive linear dependence)

(vi)
$$\mathcal{D}_{\mathrm{NL}} = \{(f,g) \in \mathcal{F}^2 : f = ag + b \text{ for some } a < 0 \text{ and } b \in \mathbb{R}\}$$

(negative linear dependence)

(vii)
$$\mathcal{D}_{\mathrm{CS}} = \{(f,g) \in \mathcal{F}^2 : f + g = \mathbb{E}(f+g)\}$$
 (constant sum)

• $\mathcal{D}_{\rm CS}$ is also called JM dependence

Wang/W.'16 MOR

¹In an atomless probability space, richness of \mathcal{D}_{IN} means that for all $f \in \mathcal{F}$ there exists a continuously distributed random variable independent of $f_{\mathbb{T}} \mapsto f_{\mathbb{T}} \mapsto f_{\mathbb{T}} \mapsto f_{\mathbb{T}}$

Choice under dependence

Definition 2

Let \mathcal{D} be a dependence shell. A preference \succeq is \mathcal{D} -averse if for all acts f, g, w,

$$f \stackrel{\mathrm{d}}{=} g \text{ and } (g, w) \in \mathcal{D} \implies w + f \succeq w + g.$$

A preference \succeq is \mathcal{D} -propense if for all acts f, g, w,

$$f \stackrel{\mathrm{d}}{=} g \text{ and } (f, w) \in \mathcal{D} \implies w + f \succeq w + g.$$

A preference \succeq is \mathcal{D} -neutral if it is both \mathcal{D} -averse and \mathcal{D} -propense.

• Example: propension to full insurance is \mathcal{D}_{CS} -propension

< ロ > < 同 > < 回 > < 回 > :

33/57

Background Insurance propension

pensity Risk-insuran 0000000 Choice under dependence

Risk measures Conclusion

Characterizing risk neutrality

 $\mathcal{D}_{\rm AL}\text{-neutrality:}$

$$f \stackrel{\mathrm{d}}{=} g \implies w + f \sim w + g.$$

Theorem 5

For a binary transitive relation \succeq , the following are equivalent:

- (i) \succeq satisfies \mathcal{D}_{AL} -neutrality;
- (ii) \succeq is risk neutral.
 - A fundamental connection between risk attitude and dependence

Background 00000 isk-insurance equivalence

Choice under dependence

Risk measures Conclusion

Some mathematics

Proof of Theorem 5.

• Taking w = 0 yields

$$f \stackrel{\mathrm{d}}{=} g \implies f \sim g$$

For any $f \in L^1$, by Theorem 2,

$$f\stackrel{\mathrm{d}}{=}g-g'+\mathbb{E}(f)\sim g-g+\mathbb{E}(f)=\mathbb{E}(f)$$

• $f \sim \mathbb{E}(f)$

lackground	Insurance propensity	F

isk-insurance equivalence

Choice under dependence

Risk measures Conclusion

Another equivalence

Proposition 1

Let $\mathcal{F} = \mathcal{M}^{\infty}$ and P be nonatomic. The following conditions are equivalent for a monotone risk preference \succeq : (i) for all $f, g \in \mathcal{F}$, $f \succeq g \iff \mathbb{E}[f] > \mathbb{E}[g]$; (ii) for all $w, f, g \in \mathcal{F}$, (this paper) $f \geq_{\text{fsd}} g \implies w + f \succeq w + g;$ (iii) for all $w, f, g \in \mathcal{F}$, (de Finetti'31) $f \succeq g \implies w + f \succeq w + g;$ (iv) \succeq is complete and (Pomatto/Strack/Tamuz'20 JPE) $f \succ g \Longrightarrow w + f >_{\text{fsd}} w + g$ for some $w \in \mathcal{F}$ independent of both f and g (if possible).

Risk-insurance equivalence

Choice under dependence

Risk measures Conclusion

Choice under dependence and risk aversion

Theorem 6

For a continuous risk preference \succeq , the following conditions are equivalent.

- (i) \succsim is $\mathcal{D}_{\mathrm{CT}}$ -propense;
- (ii) \succeq is $\mathcal{D}_{\mathrm{CM}}$ -averse;
- (iii) \succeq is $\mathcal{D}_{\mathrm{NL}}$ -propense;
- (iv) \succeq is $\mathcal{D}_{\mathrm{PL}}$ -averse;
- (v) \succeq is strongly risk averse.

Choice under dependence

Risk measures Conclusion

Choice under dependence and risk aversion

Example (EU).

- Suppose that \succeq is EU with (measurable) utility function u
- ▶ Take $a \in \mathbb{R}$, b > 0 and two events with probability 1/2 each
- Let w = (a, a + b), f = (a, a b) and g = (a b, a)
- $f \stackrel{d}{=} g$; f, w counter-monotonic; g, w comonotonic
- \blacktriangleright either $\mathcal{D}_{\rm CT}\text{-}{\sf propension}$ or $\mathcal{D}_{\rm CM}\text{-}{\sf aversion}$ implies

$$\mathbb{E}[u(w+f)] \geq \mathbb{E}[u(w+g)]$$

which is

$$u(2a) \geq \frac{1}{2}u(2a-b) + \frac{1}{2}u(2a+b)$$

Since a, b are arbitrary this implies concavity of u

 \blacktriangleright \gtrsim is strongly risk averse

BackgroundInsurance propensityRisk-insura0000000000000000000

Choice under dependence

Risk measures Conclusion

Choice under dependence and risk aversion

 $\mathsf{Risk} \ \mathsf{aversion} \Longrightarrow \mathcal{D}_{\mathrm{CM}} \text{-} \mathsf{aversion} / \mathcal{D}_{\mathrm{CT}} \text{-} \mathsf{propension} \qquad (\mathsf{classic})$

see Tchen'80 AOP; Rüschendorf'80 PTRF; Puccetti/W.'15 STS

Reverse direction (more important for us):

Ceteris paribus, risk aversion can be inferred by,

 \star a demand for insurance, or

 \star a dislike of gambling

The chain

$$\mathcal{D}_{\mathrm{CS}} \subseteq \mathcal{D}_{\mathrm{CT}} \subseteq \mathcal{D}_{\mathrm{AL}}$$

corresponds to the following chain

weak risk aversion \iff strong risk aversion \iff risk neutrality

Background 00000 surance propensity

Risk-insurance equivalence

Choice under dependence

Risk measures Conclusion

Is Antonio risk averse?

ACT 1, SCENE 1

ANTONIO:

Believe me, no. I thank my fortune for it, My ventures are not in one bottom trusted, Nor to one place; nor is my whole estate Upon the fortune of this present year: Therefore my merchandise makes me not sad.

(in response to SALARINO and SOLANIO)

< ロ > < 同 > < 三 > < 三 >

\implies This is a choice under dependence

Background	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures	Conclusion
			000000000000000000000000000000000000000		

Is Antonio risk averse?

- Suppose that Antonio has two sets of commodities to deliver
- The first has payoff h
- The second has payoff f if it is on another boat
- The second has payoff g if it is on the same boat
- Two boats have the same subjective probability to return
- $f \stackrel{\mathrm{d}}{=} g$ and g, h comonotonic

Antonio says that commodities not in one boat makes him not sad \implies in one boat makes him sad $\implies h + f \succeq h + g$

Background 00000 surance propensity 000000 Risk-insurance equivalence

Choice under dependence

Risk measures Conclusion

Is Antonio risk averse?

Later Antonio takes a gamble with Shylock, but there was no comparable alternative presented => not a choice under dependence

ACT 1, SCENE 3

ANTONIO: Come on: in this there can be no dismay;

My ships come home a month before the day.

Background 00000	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures ●000000000000	Conclusion 000

Risk measures

Background 00000	Insurance propensity 0000000	Risk-insurance equivalence	Choice under dependence	Risk measures ●000000000000	Conclusion
Risk m	neasures				

- Fix an atomless probability space (S, Σ, \mathbb{P})
- \mathcal{X} : the space of bounded random variables, representing losses
- A preference \succeq is represented by a risk measure $\rho : \mathcal{X} \to \mathbb{R}$

$$X \succeq Y \iff \rho(X) \le \rho(Y)$$

• $\rho(X)$ is the amount of regulatory capital for a risk model X

(日) ト イ ヨ ト イ ヨ ト

Background 00000	Insurance propensity 0000000	Risk-insurance equivalence	Choice under dependence	Risk measures 000000000000	Conclusion	

VaR and ES

Value-at-Risk (VaR), $p \in (0,1)$	Expected Shortfall (ES), $p \in (0, 1)$
$\operatorname{VaR}_{p}: L^{0} \to \mathbb{R},$	$\mathrm{ES}_p: L^1 o \mathbb{R},$
$\operatorname{VaR}_p(X) = F_X^{-1}(p)$ = $\inf\{x \in \mathbb{R} : \mathbb{P}(X \le x) \ge p\}.$	$\mathrm{ES}_p(X) = rac{1}{1-p} \int_p^1 \mathrm{VaR}_q(X) \mathrm{d}q$
(left-quantile)	(also: TVaR/CVaR/AVaR)

Some recent work on VaR and ES

- Axiomatic characterizations
 - VaR: Kou/Peng' 16 OR; He/Peng' 18 OR; Liu/W.'21 MOR
 - ES: W./Zitikis'21 MS; Embrechts/Mao/Wang/W.'21 MF
- Risk sharing
 - Embrechts/Liu/W.'18 OR; Embrechts/Liu/Mao/W.'20 MP
- Robustness
 - Embrechts/Wang/W.15 FS; Emberchts/Schied/W.'22 OR
- Calibrating levels between VaR and ES
 - Li/W.'23 JE
- Forecasting and backtesting
 - Fissler/Ziegel'16 AOS; Nolde/Ziegel'17 AOAS; Du/Escanciano'17 MS

Background 00000	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures 000000000000	Conclusion

Basic axioms

Basic axioms

- **M.** (Monotonicity) $\rho(X) \leq \rho(Y)$ whenever $X \leq Y$.
- **TI.** (Translation invariance) $\rho(X + m) = \rho(X) + m$ for $X \in \mathcal{X}$ and $m \in \mathbb{R}$.
- **PH.** (Positive homogeneity) $\rho(\lambda X) = \lambda \rho(X)$ for $X \in \mathcal{X}$ and $\lambda > 0$.
 - **LI.** (Law-invariance) $\rho(X) = \rho(Y)$ whenever $X \stackrel{d}{=} Y$.
 - **P.** (Prudence) $\liminf_{n} \rho(\xi_n) \ge \rho(X)$ whenever $\xi_n \to X$.
 - M and TI: monetary risk measures Föllmer/Schied'02 FS
 P: the loss is modeled truthfully (e.g., consistent estimators) ⇒ estimated risk ≥ true risk asymptotically W./Zitikis'21 MS
 For p ∈ (0, 1), both ES_p and VaR_p satisfy all above

Background 00000	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures 000000000000	Conclusion 000

Choice under dependence

Choice under dependence (\mathcal{D} -aversion):

or, equivalently
$$p(X + Y) \leq \rho(X + Z)$$
, with $Y \stackrel{d}{=} Z$
 $\rho(X + Y) \leq \rho(X + Z)$, with $Y \stackrel{d}{=} Z$

for (X, Z) in some dependence shell \mathcal{D} (undesirable)

How do we formulate undesirable dependence for portfolio risks?

- $\blacktriangleright \text{ No condition on dependence} \Longrightarrow \text{ the mean} \qquad \qquad \text{Theorem 5}$
- ► Comonotonicity ⇒ risk aversion Theorem 6; Mao/W.'20 SIFIN
- Something less restrictive than comonotonicity?

Risk-insurance equivalence

Choice under dependence

Risk measures Conclusion

Concentrated risks

Definition 3 (Tail events)

A tail event of X is $A \in \Sigma$ such that

a)
$$0 < \mathbb{P}(A) < 1$$

b)
$$X(\omega) \geq X(\omega')$$

for a.e. all $\omega \in A$ and $\omega' \in A^c$

Undesirable dependence

concentrated portfolio ↔ severe losses occur simultaneously on a stress event specified by the regulator

(日)

Background Insurance propensity 00000 0000000 Risk-insurance equivalence

Choice under dependence

Risk measures Conclusio

Risk concentration in 2009

S&P 500, NASDAQ and Dow Jones daily returns, Jan 2, 2009 - Dec 31, 2009

イロト イボト イヨト イヨト

Background Insurance proper

Risk-insurance equivalence

Choice under dependence

Risk measures Conclusio

Risk concentration in 2019 - 2020

S&P 500, NASDAQ and Dow Jones daily returns, Jul 1, 2019 - Jun 30, 2020

Э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Risk-insurance equivalence

Choice under dependence

Risk measures Conclusion

Choice under dependence and ES

Concentration aversion

CA. (Concentration aversion) There exists an event $A \in \Sigma$ with $\mathbb{P}(A) \in (0,1)$ such that $\rho(X + Y) \leq \rho(X + Z)$ if $Y \stackrel{d}{=} Z$ and X and Z share the tail event A.

(non-concentrated)
$$X + Y \succeq X + Z$$
 (concentrated) with $Y \stackrel{d}{=} Z$

Theorem 7 (Han/Wang/W./Wu'23 MF)

A functional $\rho : \mathcal{X} \to \mathbb{R}$ with $\rho(0) = 0$ satisfies Axioms M, LI, TI, P and CA if and only if it is ES_p for some $p \in (0, 1)$.

▶ ρ satisfies M, LI and CA $\iff \rho = f(ES_p, \mathbb{E})$ for increasing f

Background 00000	Insurance propensity 0000000	Risk-insurance equivalence	Choice under dependence	Risk measures 000000000000000	Conclusion 000

Expectiles

For $\alpha \in (0,1)$ and $X \in \mathcal{X}$, the α -expectile $e_{\alpha}(X)$ is the unique number y such that

$$\alpha \mathbb{E}\left[(X - y)_+ \right] = (1 - \alpha) \mathbb{E}\left[(y - X)_+ \right]$$

Expectiles are

introduced in asymmetric least squares Newey/Powell'87 ECMA

$$e_{lpha}(X) = rgmin_{y \in \mathbb{R}} \mathbb{E} \left[lpha(X - y)_{+}^{2} + (1 - lpha)(y - X)_{+}^{2}
ight]$$

- coherent if $lpha \geq 1/2$ Bellini/Klar/Müller/Rosazza Gianin'14 IME
- elicitable

Ziegel'16 MF

A B + A B +

• the mean if $\alpha = 1/2$

3

イロト イヨト イヨト ・ ヨト

Risk-insurance equivalence

Choice under dependence

Risk measures Conclusion

Choice under dependence and expectiles

Co-losses

Random variables X and Z are co-losses if $\{X > 0\} = \{Z > 0\}$.

Co-loss dependence aversion

CLA. (Co-loss aversion) $\rho(X + Y) \le \rho(X + Z)$ if $Y \stackrel{d}{=} Z \sim 0$, and X and Z are co-losses.

(no co-loss) $X + Y \succeq X + Z$ (co-loss) with $Y \stackrel{\mathrm{d}}{=} Z \sim 0$

Theorem 8 (Bellini/Mao/W./Wu'23)

A functional $\rho : \mathcal{X} \to \mathbb{R}$ with $\rho(0) = 0$ satisfies Axioms M, TI, PH and CLA if and only if it is e_{α} for some $\alpha \in [1/2, 1)$.

Background 00000	Insurance propensity	Risk-insurance equivalence	Choice under dependence	Risk measures 0000000000000	Conclusion ●00

Conclusion

Choices under dependence

- characterizes and explains
 - risk neutrality: \mathcal{D}_{AL} -propension/aversion/neutrality
 - weak risk aversion: $\mathcal{D}_{\mathrm{CS}}$ -propension
 - strong risk aversion: $\mathcal{D}_{\rm CT}\text{-}{\sf propension}/\mathcal{D}_{\rm CM}\text{-}{\sf aversion}$
- characterizes risk measures
 - arbitrary dependence: mean
 - concentration via tail events: ES
 - co-loss dependence: expectiles
- can be used to infer risk attitudes
- leads to new mathematics

<u>с</u> 1					
Background 00000	Insurance propensity 0000000	Risk-insurance equivalence	Choice under dependence	Risk measures 0000000000000	Conclusion ○●○

Conclusion

Future directions on choice under dependence

- Other dependence concepts lead to different risk measures
 - VaR?
- Ambiguity preferences; multidimensional (systemic) risks
 - What is a notion of comparability similar to $\stackrel{d}{=}$ for ambiguity?
- Can we model more delicate risk attitudes?
 - higher order, fractional order, loss aversion, wealth effect, ...
- How can we quantitatively infer risk aversion from observed portfolio strategies?
- What new notions of risk attitudes and risk measures can come out of this new framework?

Background 00000 surance propensity

Risk-insurance equivalence

Choice under dependence

Risk measures Conclusion

Thank you

Thank you for your attention

