Merging p -values under arbitrary dependence

Econometrics and Optimal Transport
University of Washington, Seattle, USA, June 12-14, 2023

Agenda

(1) Merging p-values
(2) Admissibility
(3) Rejection regions
(4) Constructing admissible p-merging functions
(5) Simulation results and summary

Simple question

Suppose that we are testing the same hypothesis using $K \geqslant 2$ tests and obtain p-values p_{1}, \ldots, p_{K}. How can we combine them into a single p-value?

A question of a long history

- Tippett'31, Pearson'33, Fisher'48: assume independence
- The Bonferroni correction: minimum \times correction (K)
- We are interested in the case of no dependence assumption
- Can be used to test multiple hypotheses

Meta-analysis

A typical example from meta-analysis

TABLE 1
Data on 10 Studies of Sex Differences in Conformity Using the Fictitious Norm Group Paradigm

Study	Sample size		Effect size d	Student's t	Significance level p	$-2 \log p$	$\Phi^{-1}(p)$	$\log [p /(1-p)]$
	$\begin{gathered} \text { Control } \\ n^{\mathrm{c}} \end{gathered}$	$\underset{n^{\mathrm{E}}}{\text { Experimental }}$						
1	118	136	0.35	2.78	0.0029	11.682	-2.758	-5.838
2	40	40	0.37	1.65	0.0510	5.952	-1.635	-2.923
3	61	64	-0.06	-0.33	0.6310	0.921	0.335	0.537
4	77	114	-0.30	-2.03	0.9783	0.044	2.020	3.809
5	32	32	0.70	2.80	0.0034	11.367	-2.706	-5.680
6	45	45	0.40	1.90	0.0305	6.978	-1.873	-3.458
7	30	30	0.48	1.86	0.0341	6.760	-1.824	-3.345
8	10	10	0.85	1.90	0.0367	6.608	-1.790	-3.266
9	70	71	-0.33	-1.96	0.9740	0.053	1.942	3.622 -0.612
10	60	59	0.07	0.38	0.3517	2.090	-0.381	-0.612

The sex differences dataset, from p. 35 of Hedges/Olkin'85

The value of no assumption

Why no independence assumption?

- A set of p-values is only one vector: no hope to test/verify any dependence model among them
- Non-identifiability: are we rejecting independence or the scientific hypothesis?
- Efron'10, Large-scale Inference, p50-p51:
"independence among the p-values ... usually an unrealistic assumption. ... even PRD [positive regression dependence] is unlikely to hold in practice."

Merging functions

Let \mathcal{H} be a collection of atomless probability measures ...

Definition (p-variables and merging functions)

(i) A p-variable is a random variable P that satisfies

$$
\sup _{\mathbb{P} \in \mathcal{H}} \mathbb{P}(P \leqslant \varepsilon) \leqslant \varepsilon, \quad \varepsilon \in(0,1) .
$$

(ii) A p-merging function is an increasing Borel function $F:[0, \infty)^{K} \rightarrow[0, \infty)$ such that $F\left(P_{1}, \ldots, P_{K}\right)$ is a p-variable for all p-variables P_{1}, \ldots, P_{K}.

- Controlled type I error under arbitrary dependence

Merging functions

- \mathcal{U} : the set of all uniform $[0,1]$ random variables under \mathbb{P}

For an increasing Borel $F:[0, \infty)^{K} \rightarrow[0, \infty)$, equivalent are:

- F is a p-merging function w.r.t. some collection \mathcal{H}
- F is a p-merging function w.r.t. all collections \mathcal{H}
- fixing $\mathbb{P}, F(\mathbf{P})$ is a p-variable for all $\mathbf{P} \in \mathcal{U}^{K}$
- fixing \mathbb{P}, for all $\varepsilon \in(0,1), \overline{\mathbb{P}}(F \leqslant \varepsilon) \leqslant \varepsilon$, where

$$
\overline{\mathbb{P}}(F \leqslant \varepsilon)=\sup \left\{\mathbb{P}(F(\mathbf{P}) \leqslant \varepsilon): \mathbf{P} \in \mathcal{U}^{\mathcal{K}}\right\}
$$

It suffices to consider $\mathcal{H}=\{\mathbb{P}\}$ for a generic \mathbb{P} and \mathcal{U}^{K}

- Multi-marginal OT problem: $\sup \left\{\mathbb{E}\left[\mathbb{1}_{\{F(\mathbf{P}) \leqslant \varepsilon\}}\right]: \mathbf{P} \in \mathcal{U}^{K}\right\}$

Existing methods

Without any assumptions on the p -values p_{1}, \ldots, p_{K}

- $p_{(1)}, \ldots, p_{(K)}$ are the ascending order statistics
- The Bonferroni method

$$
F\left(p_{1}, \ldots, p_{K}\right)=K p_{(1)}
$$

- Order-family (O-family)

$$
G_{k, K}=\left(p_{1}, \ldots, p_{K}\right)=\frac{K}{k} p_{(k)}
$$

- Simes-Hommel

$$
H\left(p_{1}, \ldots, p_{K}\right)=\ell_{K} \bigwedge_{k=1}^{K} \frac{K}{k} p_{(k)} ; \quad \ell_{K}=\sum_{k=1}^{K} \frac{1}{k}
$$

Precise merging functions

Definition (precise merging functions)

A p-merging function F is precise if, for all $\varepsilon \in(0,1)$, $\overline{\mathbb{P}}(F \leqslant \varepsilon)=\varepsilon$.

The Bonferroni method $F\left(p_{1}, \ldots, p_{K}\right)=K p_{(1)}$

$$
\begin{aligned}
\mathbb{P}\left(\bigwedge_{k=1}^{K} p_{k} \leqslant \varepsilon / K\right) & =\mathbb{P}\left(\bigcup_{k=1}^{K}\left\{p_{k} \leqslant \varepsilon / K\right\}\right) \\
& \leqslant \sum_{k=1}^{K} \mathbb{P}\left(K p_{k} \leqslant \varepsilon\right)=\sum_{k=1}^{K} \frac{\varepsilon}{K}=\varepsilon .
\end{aligned}
$$

- Equality if $\left\{K p_{k} \leqslant \varepsilon\right\}, k \in[K]$ are mutually exclusive

Merging p-values via averaging

- Generalized mean

$$
M_{\phi, K}\left(p_{1}, \ldots, p_{K}\right)=\phi^{-1}\left(\frac{\phi\left(p_{1}\right)+\cdots+\phi\left(p_{K}\right)}{K}\right),
$$

where $\phi:[0,1] \rightarrow[-\infty, \infty]$ is continuous \& strictly monotone

- M-family: for $r \in \mathbb{R} \backslash\{0\}$,

$$
M_{r, K}\left(p_{1}, \ldots, p_{K}\right)=\left(\frac{p_{1}^{r}+\cdots+p_{K}^{r}}{K}\right)^{1 / r}
$$

- $\phi(x)=\tan \left(\left(x-\frac{1}{2}\right) \pi\right)$: Cauchy combination

Merging p-values via averaging

Special cases:

- Arithmetic: $M_{1, K}\left(p_{1}, \ldots, p_{K}\right)=\frac{1}{K} \sum_{k=1}^{K} p_{k}$
- Harmonic: $M_{-1, K}\left(p_{1}, \ldots, p_{K}\right)=\left(\frac{1}{K} \sum_{k=1}^{K} \frac{1}{p_{k}}\right)^{-1}$
- Quadratic: $M_{2, K}\left(p_{1}, \ldots, p_{K}\right)=\sqrt{\frac{1}{K} \sum_{k=1}^{K} p_{k}^{2}}$

Limiting cases:

- Geometric: $M_{0, K}\left(p_{1}, \ldots, p_{K}\right)=\left(\prod_{k=1}^{K} p_{k}\right)^{1 / K}$
- Maximum: $M_{\infty, K}\left(p_{1}, \ldots, p_{K}\right)=\max \left(p_{1}, \ldots, p_{K}\right)$
- Minimum: $M_{-\infty, K}\left(p_{1}, \ldots, p_{K}\right)=\min \left(p_{1}, \ldots, p_{K}\right)$

The cases $r \in\{-1,0,1\}$ are known as Platonic means.

Merging p-values via averaging

The arithmetic average $M_{1, K}\left(p_{1}, \ldots, p_{K}\right)=\frac{1}{K} \sum_{k=1}^{K} p_{k}$ is not a p -merging function

Rüschendorf' 82 , Meng' 93

$$
\overline{\mathbb{P}}\left(M_{1, K} \leqslant \varepsilon\right)=\min (2 \varepsilon, 1)
$$

- $\Rightarrow 2 M_{1, K}$ is a precise p -merging function

Task. Find $b_{r, K}>0$ such that (the M-family)

$$
F_{r, K}=b_{r, K} M_{r, K} \text { is precise }
$$

- $M_{r, K}$ increases in $r \Longrightarrow b_{r, K}$ should decrease in r.

Translation to a risk aggregation problem

For $\alpha \in(0,1]$ and a random variable X, define

$$
Q_{\alpha}(X)=\inf \{x \in \mathbb{R}: \mathbb{P}(X \leqslant x) \geqslant \alpha\}
$$

and for a function $F:[0,1]^{K} \rightarrow[0, \infty)$, define

$$
Q_{\alpha}(F)=\inf \left\{Q_{\alpha}(F(\mathbf{P})): \mathbf{P} \in \mathcal{U}^{K}\right\} .
$$

Translation to a risk aggregation problem

Lemma 1

For a>0,r $\quad[-\infty, \infty]$, and $F=a M_{r, K}$, equivalent are:
(i) F is a p-merging function, i.e., $\overline{\mathbb{P}}(F \leqslant \varepsilon) \leqslant \varepsilon$ for all $\varepsilon \in(0,1)$;
(ii) $\underline{Q}_{\varepsilon}(F) \geqslant \varepsilon$ for all $\varepsilon \in(0,1)$;
(iii) $\overline{\mathbb{P}}(F \leqslant \varepsilon) \leqslant \varepsilon$ for some $\varepsilon \in(0,1)$;
(iv) $\underline{Q}_{\varepsilon}(F) \geqslant \varepsilon$ for some $\varepsilon \in(0,1)$.

The same conclusion holds if all \leqslant and \geqslant are replaced by $=$.

- In statistical practice one only needs to have $\overline{\mathbb{P}}(F \leqslant \varepsilon) \leqslant \varepsilon$ for a specific ε, e.g. $0.05,0.01, \ldots$

Translation to a risk aggregation problem

It boils down to calculate $\underline{Q}_{\varepsilon}\left(M_{r, K}\right)$, or equivalently:
(i) for $r>0$, aggregation of Beta risks

$$
\left(\underline{Q_{\varepsilon}}\left(M_{r, K}\right)\right)^{r}=\inf _{U_{1}, \ldots, U_{K} \in \mathcal{U}}\left\{Q_{\varepsilon}\left(\frac{1}{K}\left(U_{1}^{r}+\cdots+U_{K}^{r}\right)\right)\right\}
$$

(ii) for $r=0$, aggregation of exponential risks

$$
\log \left(\underline{Q_{\varepsilon}}\left(M_{r, K}\right)\right)=\inf _{U_{1}, \ldots, U_{K} \in \mathcal{U}}\left\{Q_{\varepsilon}\left(\frac{1}{K}\left(\log U_{1}+\cdots+\log U_{K}\right)\right)\right\}
$$

(iii) for $r<0$, aggregation of Pareto risks

$$
\left(\underline{Q_{\varepsilon}}\left(M_{r, K}\right)\right)^{r}=\sup _{U_{1}, \ldots, U_{K} \in \mathcal{U}}\left\{Q_{1-\varepsilon}\left(\frac{1}{K}\left(U_{1}^{r}+\cdots+U_{K}^{r}\right)\right)\right\}
$$

Translation to a risk aggregation problem

Breakdown of $U^{r}($ or $\log U)$ for $r \in \mathbb{R}$

Main results summary

Constant multiplier in front of $M_{r, K}$

blue: precise; green: asymptotically precise; red: limit

(1) Merging p-values

(2) Admissibility
(3) Rejection regions

4 Constructing admissible p-merging functions
(5) Simulation results and summary

Admissible p-merging functions

For p-merging functions F and G :

- F is symmetric if $F(\mathbf{p})$ is invariant under permutation of \mathbf{p}
- F is homogeneous if $F(\lambda \mathbf{p})=\lambda F(\mathbf{p})$ for all $\lambda \in(0,1]$ and \mathbf{p} with $F(\mathbf{p}) \leqslant 1$
- F dominates G if $F \leqslant G$
- F is admissible if it is not dominated by any other one

Properties

- Admissible \Longrightarrow precise, lower semicontinuous, grounded
- Any p-merging function is dominated by an admissible one

Simes function

The Simes function

$$
S_{K}\left(p_{1}, \ldots, p_{K}\right)=\bigwedge_{k=1}^{K} \frac{K}{k} p_{(k)}
$$

Theorem 1

The Simes function S_{K} is the minimum over all symmetric p-merging functions.

- S_{K} is not valid p-merging (only valid under some assumptions)
- $H_{K}=\ell_{K} S_{K}$ is precise
- S_{K} is a lower bound for any symmetric improvement

Simes function

Proof sketch.

- Take any symmetric p -merging function F and $\mathbf{p}=\left(p_{1}, \ldots, p_{K}\right)$
- Let $\alpha:=S_{K}(\mathbf{p}) / K \Longrightarrow p_{(k)} \geqslant k \alpha$ for each k
- Symmetry and monotonicity of $F \Longrightarrow$

$$
F(\mathbf{p})=F\left(p_{(1)}, \ldots, p_{(K)}\right) \geqslant F(\alpha, 2 \alpha, \ldots, K \alpha)=: \beta
$$

- Let Π be the set of all permutations of $(\alpha, 2 \alpha, \ldots, K \alpha)$, and $\mu=\mathrm{U}(\Pi)$
- Take $\left(P_{1}, \ldots, P_{K}\right) \sim K \alpha \mu+(1-K \alpha) \delta_{(1, \ldots, 1)}$
- For each $k, P_{k} \sim \sum_{k=1}^{K} \alpha \delta_{k \alpha}+(1-K \alpha) \delta_{1} \Longrightarrow P_{k}$ is a p-variable
- F is a p-merging function \Longrightarrow

$$
\beta \geqslant \mathbb{P}\left(F\left(P_{1}, \ldots, P_{K}\right) \leqslant \beta\right) \geqslant \mathbb{P}\left(\left(P_{1}, \ldots, P_{K}\right) \in \Pi\right)=K \alpha
$$

- $F(\mathbf{p}) \geqslant K \alpha=S_{K}(\mathbf{p}) \Longrightarrow S_{K}$ dominates all symmetric \mathbf{p}-merging functions
- $S_{K}=\bigwedge_{k=1}^{K} G_{k, K}$

(1) Merging p-values

(2) Admissibility

(3) Rejection regions

4 Constructing admissible p-merging functions

(5) Simulation results and summary

Rejection regions of admissible p-merging functions

- The rejection region of a p-merging function F at level

$$
\varepsilon \in(0,1):
$$

$$
R_{\varepsilon}(F):=\left\{\mathbf{p} \in[0, \infty)^{K}: F(\mathbf{p}) \leqslant \varepsilon\right\}
$$

- A collection $\left\{R_{\varepsilon} \subseteq[0, \infty)^{K}: \varepsilon \in(0,1)\right\}$ of increasing Borel lower sets induces a function $F:[0, \infty)^{K} \rightarrow[0,1]$ via

$$
F(\mathbf{p})=\inf \left\{\varepsilon \in(0,1): \mathbf{p} \in R_{\varepsilon}\right\} \text { with } \inf \varnothing=1
$$

- F is p-merging $\Longleftrightarrow \mathbb{P}\left(\mathbf{P} \in R_{\varepsilon}\right) \leqslant \varepsilon$ for all $\varepsilon \in(0,1), \mathbf{P} \in \mathcal{U}^{K}$
- F is homogeneous $\Longrightarrow R_{\varepsilon}(F)=\varepsilon A$ for some $A \subseteq[0, \infty)^{K}$.

Rejection regions of admissible p-merging functions

Admissibility \Longleftrightarrow rejection region cannot be enlarged

- Precision of p-merging \Longleftrightarrow classic OT

$$
\text { Compute } \sup _{\mathbf{P} \in \mathcal{U}^{K}} \mathbb{E}\left[\mathbb{1}_{A}(\mathbf{P})\right]
$$

- Admissibility (or optimality) \Longleftrightarrow "reverse OT"

Given $\sup _{\mathbf{P} \in \mathcal{U}^{K}} \mathbb{E}\left[\mathbb{1}_{A}(\mathbf{P})\right] \leqslant \varepsilon$, find the largest $A \subseteq[0,1]^{K}$

- Such A needs to be nested
- Techniques in OT can be very helpful

Rejection regions of admissible p-merging functions

Using e-values

- A calibrator is a decreasing function $f:[0, \infty) \rightarrow[0, \infty]$ satisfying $f=0$ on $(1, \infty)$ and $\int_{0}^{1} f(x) \mathrm{d} x \leqslant 1$
- A calibrator f is admissible if it is upper semicontinuous, $f(0)=\infty$, and $\int_{0}^{1} f(x) \mathrm{d} x=1$

Representation theorems

Let Δ_{K} be the standard K-simplex and write $\mathbf{p}=\left(p_{1}, \ldots, p_{K}\right)$.

Theorem 2

For any admissible homogenous p-merging function F, there exist $\left(\lambda_{1}, \ldots, \lambda_{K}\right) \in \Delta_{K}$ and admissible calibrators f_{1}, \ldots, f_{K} such that

$$
\begin{equation*}
R_{\varepsilon}(F)=\varepsilon\left\{\mathbf{p} \in[0, \infty)^{K}: \sum_{k=1}^{K} \lambda_{k} f_{k}\left(p_{k}\right) \geqslant 1\right\} \text { for } \varepsilon \in(0,1) \tag{1}
\end{equation*}
$$

Conversely, for any $\left(\lambda_{1}, \ldots, \lambda_{K}\right) \in \Delta_{K}$ and calibrators f_{1}, \ldots, f_{K}, (1) induces a homogenous p-merging function.

Representation theorems

Proof sketch.

- For decreasing functions g_{1}, \ldots, g_{K} on $[0, \infty)$, denote by

$$
\left(\bigoplus_{k=1}^{K} g_{k}\right)\left(x_{1}, \ldots, x_{K}\right):=\sum_{k=1}^{K} g_{k}\left(x_{k}\right)
$$

- Classic duality ($R_{\varepsilon}(F)$ is closed and F is precise)

$$
\min \left\{\sum_{k=1}^{K} \int_{0}^{1} g_{k}(x) \mathrm{d} x: \bigoplus_{k=1}^{K} g_{k} \geqslant \mathbb{1}_{R_{\varepsilon}(F)}\right\}=\max _{\mathbf{P} \in \mathcal{U}} \mathbb{P}\left(\mathbf{P} \in R_{\varepsilon}(F)\right)=\varepsilon
$$

- Take $\left(g_{1}^{\varepsilon}, \ldots, g_{K}^{\varepsilon}\right)$ such that $\bigoplus_{k=1}^{K} g_{k}^{\varepsilon} \geqslant \mathbb{1}_{R_{\varepsilon}(F)}$ and $\sum_{k=1}^{K} \int_{0}^{1} g_{k}^{\varepsilon}(x) \mathrm{d} x=\varepsilon$
- Choose g_{k}^{ε} to be non-negative and left-continuous
- Monotonicity

$$
\max _{\mathbf{P} \in \mathcal{U}^{K}} \mathbb{P}\left(\mathbf{P} \in R_{\varepsilon}(F)\right)=\varepsilon \quad \Longrightarrow \quad \max _{\mathbf{P} \in \mathcal{U}^{K}} \mathbb{P}\left(\varepsilon \mathbf{P} \in R_{\varepsilon}(F)\right)=1
$$

Representation theorems

Proof sketch (continued).

- Using duality again

$$
\begin{aligned}
& \min \left\{\sum_{k=1}^{K} \frac{1}{\varepsilon} \int_{0}^{\varepsilon} g_{k}(x) \mathrm{d} x: \bigoplus_{k=1}^{K} g_{k} \geqslant \mathbb{1}_{R_{\varepsilon}(F)}\right\}=1 \\
& \Longrightarrow \sum_{k=1}^{K} \int_{0}^{\varepsilon} g_{k}^{\varepsilon}(x) \mathrm{d} x \geqslant \varepsilon \Longrightarrow g_{k}^{\varepsilon}(x)=0 \text { for } x>\varepsilon
\end{aligned}
$$

- Define the set $A_{\varepsilon}:=\left\{\mathbf{p} \in[0, \infty)^{K}: \sum_{k=1}^{K} g_{k}^{\varepsilon}\left(p_{k}\right) \geqslant 1\right\}$
- $\bigoplus_{k=1}^{K} g_{k}^{\varepsilon} \geqslant \mathbb{1}_{R_{\varepsilon}(F)} \Longrightarrow R_{\varepsilon}(F) \subseteq A_{\varepsilon}$
- By Markov's inequality,

$$
\sup _{\mathbf{P} \in \mathcal{U}^{K}} \mathbb{P}\left(\bigoplus_{k=1}^{K} g_{k}^{\varepsilon}(\mathbf{P}) \geqslant 1\right) \leqslant \sup _{P \in \mathcal{U}} \sum_{k=1}^{K} \mathbb{E}\left[g_{k}^{\varepsilon}(P)\right]=\varepsilon
$$

- Define a function F^{\prime} with rejection region $R_{\delta}\left(F^{\prime}\right)=\delta \varepsilon^{-1} A_{\varepsilon}$ for $\delta \in(0,1)$
- F^{\prime} is a valid homogeneous p -merging function and $F^{\prime} \leqslant F$

Representation theorems

Proof sketch (continued).

- Admissibility of $F \Longrightarrow F=F^{\prime}$, thus

$$
R_{\varepsilon}(F)=A_{\varepsilon}=\varepsilon\left\{\mathbf{p} \in[0, \infty)^{K}: \sum_{k=1}^{K} g_{k}^{\varepsilon}\left(\varepsilon p_{k}\right) \geqslant 1\right\} \quad \text { for each } \varepsilon \in(0,1)
$$

- $\varepsilon^{-1} R_{\varepsilon}(F)=\varepsilon^{-1} A_{\varepsilon}$ does not depend on $\varepsilon \in(0,1)$
- For a fixed $\varepsilon \in(0,1)$ and each k, let $\lambda_{k}:=\varepsilon^{-1} \int_{0}^{\varepsilon} g^{\varepsilon}(x) \mathrm{d} x$ and $f_{k}:(0, \infty) \rightarrow \mathbb{R}, x \mapsto g_{k}^{\varepsilon}(\varepsilon x) / \lambda_{k}$ (if $\lambda_{k}=0$, then let $f_{k}:=1$), and further set $f_{k}(0)=\infty$
- For each k with $\lambda_{k} \neq 0$,

$$
\int_{0}^{1} f_{k}(x) \mathrm{d} x=\frac{\int_{0}^{1} \varepsilon g_{k}^{\varepsilon}(\varepsilon x) \mathrm{d} x}{\int_{0}^{1} g_{k}^{\varepsilon}(x) \mathrm{d} x}=\frac{\int_{0}^{\varepsilon} g_{k}^{\varepsilon}(x) \mathrm{d} x}{\int_{0}^{1} g_{k}^{\varepsilon}(x) \mathrm{d} x}=1
$$

$\Longrightarrow f_{k}$ is an admissible calibrator

- Converse statement: Markov's inequality

Representation theorems

Theorem 3

For any F that is admissible within the family of homogenous symmetric p-merging functions, there exists an admissible calibrator f such that

$$
\begin{equation*}
R_{\varepsilon}(F)=\varepsilon\left\{\mathbf{p} \in[0, \infty)^{K}: \frac{1}{K} \sum_{k=1}^{K} f\left(p_{k}\right) \geqslant 1\right\} \text { for } \varepsilon \in(0,1) \tag{2}
\end{equation*}
$$

Conversely, for any calibrator f, (2) induces a homogenous symmetric p-merging function.

- We say f induces F if (2) holds
- Converse: not true; calibrator: not unique

Examples

Example 1

The p-merging function $F:=G_{k, K}, k \in\{1, \ldots, K\}$, is induced by the calibrator $f: x \mapsto(K / k) \mathbb{1}_{\{x \in[0, k / K]\}}$.

Example 2

In case $K=2$, the p -merging function
$F: \mathbf{p} \mapsto 2 M_{1,2}(\mathbf{p}) \mathbb{1}_{\{\min (\mathbf{p})>0\}}$ is induced by the admissible calibrator $f: x \mapsto(2-2 x)_{+}$on $(0, \infty)$ and $f(0)=\infty$.

- F is the zero-adjusted version of the arithmetic merging function
- F is not admissible (dominated by Bonferroni)

Connection to joint mixability

A necessary and sufficient condition for a calibrator f to induce a precise p-merging function via (1) is

$$
\begin{equation*}
\mathbb{P}\left(\frac{1}{K} \sum_{k=1}^{K} f\left(P_{k}\right)=1\right)=1 \quad \text { for some } P_{1}, \ldots, P_{K} \in \mathcal{U} \tag{3}
\end{equation*}
$$

- \Longrightarrow Joint mixability (f specifies the quantile) Wang/W.'11'16
- Difficult to check for a given f in general
- For a convex f, (3) holds if and only if $f \leqslant K$ on (0,1]
- Weaker than admissibility

Connection to e-tests

Connecting a p-test to an e-test: For a fixed $\varepsilon \in(0,1)$, and an admissible p-merging function F :

$$
\mathbf{p} \in R_{\varepsilon}(F) \Longleftrightarrow \sum_{k=1}^{K} \lambda_{k} f_{k}\left(\frac{p_{k}}{\varepsilon}\right) \geqslant 1 \Longleftrightarrow \sum_{k=1}^{K} \lambda_{k} f_{k}^{\prime}\left(p_{k}\right) \geqslant \frac{1}{\varepsilon},
$$

where $f_{k}^{\prime}(x):=f_{k}(x / \varepsilon) / \varepsilon$. Four steps:
(i) Calibrate all p -values to e-values via admissible calibrators $f_{1}^{\prime}, \ldots, f_{n}^{\prime}$
(ii) Merge the e-values via a weighted arithmetic average
(iii) Calibrate the merged e-value to a p -value via $e \mapsto 1 / e$
(iv) Use the resulting p-value and the threshold ε for the test

(1) Merging p-values

(2) Admissibility

(3) Rejection regions

4 Constructing admissible p-merging functions
(5) Simulation results and summary

Sufficient conditions for admissibility

Theorem 4

Suppose that an admissible calibrator f is strictly convex or strictly concave on $(0,1], f(0+) \in(K /(K-1), K]$, and $f(1)=0$. The p-merging function induced by f is admissible.

- Proof based on joint mixability
- Open question: can strict convexity be reduced to convexity?
- Conditions of this type are not necessary
- Admissibility holds true also for

$$
g: x \mapsto f\left(\frac{x-\eta}{1-K \eta}\right) \mathbb{1}_{\{x \in(\eta, 1-(K-1) \eta]\}}+K \mathbb{1}_{\{x \in[0, \eta]\}}
$$

Hommel's function

Define the Hommel* calibrator f by

$$
f: x \mapsto \frac{K \mathbb{1}_{\left\{\ell_{K} x \leqslant 1\right\}}}{\left\lceil K \ell_{K} x\right\rceil} .
$$

Hommel's function and the O-family

Theorem 5

The p-merging function $H_{K} \wedge 1$ is dominated (strictly if $K \geqslant 4$) by the p-merging function H_{K}^{*} induced by the Hommel* calibrator f,

$$
R_{\varepsilon}\left(H_{K}^{*}\right)=\varepsilon\left\{\mathbf{p} \in[0, \infty)^{K}: \frac{1}{K} \sum_{k=1}^{K} f\left(p_{k}\right) \geqslant 1\right\}, \quad \varepsilon \in(0,1)
$$

Moreover, H_{K}^{*} is always admissible among symmetric p-merging functions, and it is admissible if K is not a prime number.

- Primality appears in the proof due to factoring the set [K]
- H_{K}^{*} is not admissible for $K=2,3$ (we guess also 5)

Hommel's function and the O-family

- The Bonferroni method is admissible
- Members $G_{k, K}$ of the O-family are admissible after truncation at 1 except for $k=K$
- Members $F_{r, K}$ of the M-family are not admissible except for $r=-\infty$
- $F_{r, K}$ can be strictly improved to $F_{r, K}^{*}$
- $F_{r, K}^{*}$ are admissible unless $r=1 \Leftarrow$ non-strict convexity
- $F_{-1, K}^{*}$ is similar to H_{K}^{*}

(1) Merging p-values

(2) Admissibility

(3) Rejection regions

4 Constructing admissible p-merging functions
(5) Simulation results and summary

Simulation results

- Correlated z-tests
- $K=10^{6}$ observations from $\mathrm{N}(\mu, 1)$
- Pairwise correlation: 0.9
- Last observation: -0.9 correlation with all others
- $\mu=0$ for null and $\mu=-5$ for alternative
- K_{1} observations are drawn from the alternative; the rest from the null
- P-values are $\Phi(x)$
- $F_{-\infty, K}$ (Bonferroni); H_{K} (Hommel); $F_{-1, K}$ (harmonic);
$F_{-1, K}^{*}$ (harmonic*'); H_{K}^{*} (grid harmonic'); S_{K} (Simes),

Simulation results

 $K_{1}=10^{3}$ (left panel) and $K_{1}=10^{4}$ (right panel)

Simulation results

$K_{1}=10^{5}$ with correlation 0.5 (left panel) and 0 (right panel) in place of 0.9

Simulation results

- GWGS discovery matrix
- $\mathrm{DM}_{i, j}$: a p -value for testing "there are less than j true discoveries among the i rejected hypotheses"
- $\mathcal{N} \subseteq[K]$: nulls
- Jointly validity: for each $\alpha \in(0,1)$,

$$
\mathbb{P}\left(\exists(i, j) \in D_{\alpha}: \#\left(R_{i} \backslash \mathcal{N}\right)<j\right) \leqslant \alpha
$$

where R_{i} is the set of i hypotheses with smallest p-values and

$$
D_{\alpha}=\left\{(i, j): \mathrm{DM}_{i, j} \leqslant \alpha\right\}
$$

Simulation results

GWGS discovery matrices with correlation 0.9 and significance levels 1% and 5%

Simulation results

Summary

Unsolved mathematical questions

- Homogeneity assumption in the representation results
- Strict convexity of calibrator in the sufficient condition for admissibility and $F_{-1, K}^{*}$
- Whether H_{K}^{*} is inadmissible for all prime K

More applications of multi-marginal OT and reverse OT?

Thank you

Thank you for your kind attention

Vladimir Vovk (Royal Holloway)

Bin Wang (CAS Beijing)

- Vovk/W., Combining p-values via averaging

Biometrika, 2020

- Vovk/Wang/W., Admissible ways of merging p-values under arbitrary dependence

Annals of Statistics, 2022

Hommel's function and the O-family

Define the Hommel* calibrator f by

$$
f: x \mapsto \frac{K 1_{\left\{\ell_{K} x \leqslant 1\right\}}}{\left\lceil K \ell_{K} x\right\rceil} .
$$

Hommel's function and the O-family

Theorem 6

The p-merging function $H_{K} \wedge 1$ is dominated (strictly if $K \geqslant 4$) by the p-merging function H_{K}^{*} induced by the Hommel* calibrator f,

$$
R_{\varepsilon}\left(H_{K}^{*}\right)=\varepsilon\left\{\mathbf{p} \in[0, \infty)^{K}: \frac{1}{K} \sum_{k=1}^{K} f\left(p_{k}\right) \geqslant 1\right\}, \quad \varepsilon \in(0,1)
$$

Moreover, H_{K}^{*} is always admissible among symmetric p-merging functions, and it is admissible if K is not a prime number.

Hommel's function and the O-family

Proof sketch.

- Recall: $H_{K}(\mathbf{p})=\ell_{K} \bigwedge_{k=1}^{K} \frac{K}{k} p_{(k)}$ where $\ell_{K}=\sum_{i=1}^{K} \frac{1}{k}$.
- Induced by the calibrator $f \Longrightarrow H_{K}^{*}$ is a p-merging function.
- Verify $H_{K} \geqslant H_{K}^{*}: H_{K}(\mathbf{p}) \leqslant \varepsilon \Longrightarrow$ there exists m such that $K \ell_{K} P_{(m)} \leqslant \varepsilon$ $\Longrightarrow \#\left\{k: K \ell_{K} p_{k} / m \leqslant \varepsilon\right\} \geqslant m \Longrightarrow$

$$
\begin{aligned}
& \sum_{k=1}^{K} \frac{\mathbb{1}_{\left\{\ell_{K} p_{K} \leqslant \varepsilon\right\}}}{\left\lceil K \ell_{K} p_{i} / \varepsilon\right\rceil} \geqslant \sum_{k=1}^{K} \frac{1}{m} \mathbb{1}_{\left\{K \ell_{K} p_{k} / \varepsilon \leqslant m\right\}}=\frac{1}{m} \#\left\{k: K \ell_{K} p_{k} / m \leqslant \varepsilon\right\} \geqslant 1 \\
\Longrightarrow & R_{\varepsilon}\left(H_{K}\right) \subseteq R_{\varepsilon}\left(H_{K}^{*}\right) \Longrightarrow H_{K} \geqslant H_{K}^{*} .
\end{aligned}
$$

- Check $H_{K}=H_{K}^{*}$ if and only if $K \leqslant 3$.

Hommel's function and the O-family

Proof sketch (continued).

- Suppose H_{K}^{*} is not admissible among symmetric p-merging functions.
- There exists a calibrator g satisfying

$$
\left\{\mathbf{p} \in[0, \infty)^{K}: \frac{1}{K} \sum_{k=1}^{K} f\left(p_{k}\right) \geqslant 1\right\} \subsetneq\left\{\mathbf{p} \in[0, \infty)^{K}: \frac{1}{K} \sum_{k=1}^{K} g\left(p_{k}\right) \geqslant 1\right\}
$$

- Denote by $\tau:=1 /\left(K \ell_{K}\right)$. For $x \in(0, K \tau]$, set $p_{1}=\cdots=p_{m}=x$ and $p_{m+1}=\cdots=p_{K}>1$, where $m:=\lceil\tau x\rceil$.
- $f(x)=K / m \Longrightarrow \sum_{k=1}^{K} f\left(p_{k}\right)=K \Longrightarrow K \leqslant \sum_{k=1}^{K} g\left(p_{k}\right)=m g(x) \Longrightarrow$ $g(x) \geqslant K / m=f(x)$.
- $\int_{0}^{K \tau} g(x) \mathrm{d} x \geqslant \int_{0}^{K \tau} f(x) \mathrm{d} x=1 \Longrightarrow g=f$ almost everywhere on $[0,1]$.
- f is left-continuous $\Longrightarrow g \leqslant f$, a contradiction.
- The admissibility statement for non-prime K is much more complicated.

Hommel's function and the O-family

- $S_{K} \leqslant H_{K}^{*} \leqslant H_{K} \Longrightarrow 1 / \ell_{K} \leqslant H_{K}^{*} / H_{K} \leqslant 1$
- H_{K}^{*} may not be admissible for a prime K

Example 3

In case $K=2, H_{2}^{*}=H_{2}:\left(p_{1}, p_{2}\right) \mapsto\left(3 p_{(1)}\right) \wedge\left(\frac{3}{2} p_{(2)}\right)$ is strictly dominated by $F:\left(p_{1}, p_{2}\right) \mapsto\left(3 p_{1}\right) \wedge\left(\frac{3}{2} p_{2}\right)$, which is a (non-symmetric) p -merging function because

$$
\mathbb{P}\left(F\left(P_{1}, P_{2}\right) \leqslant \alpha\right) \leqslant \mathbb{P}\left(P_{1} \leqslant \frac{1}{3} \alpha\right)+\mathbb{P}\left(P_{2} \leqslant \frac{2}{3} \alpha\right) \leqslant \alpha .
$$

Hommel's function and the O-family

Theorem 7

The p-merging function $\mathbf{p} \mapsto G_{k, K}(\mathbf{p}) \wedge \mathbb{1}_{\{\min (\mathbf{p})>0\}}$ is admissible for $k=1, \ldots, K-1$, and it is admissible among symmetric p-merging functions for $k=K$.

The M-family

- $F_{r, K}=\left(b_{r, K} M_{r, K}\right) \wedge 1$
- For $r \neq\{-1,0\}$ and $r<1 /(K-1)$, denote by c_{r} the unique number $c \in(0,1 / K)$ solving the equation

$$
\frac{(K-1)(1-(K-1) c)^{r}+c^{r}}{K}=\frac{(1-(K-1) c)^{r+1}-c^{r+1}}{(r+1)(1-K c)}
$$

- c_{-1} and c_{0} are limits of c_{r}
- Set $c_{r}:=0$ for $r \geqslant 1 /(K-1)$
- Write $d_{r}:=1-(K-1) c_{r}$

The M-family

Proposition 1

For $K \geqslant 3$ and $r \in\left(-\infty, \frac{1}{K-1}\right)$,

$$
b_{r, K}=1 / M_{r, K}\left(c_{r}, d_{r}, \ldots, d_{r}\right) .
$$

- If $r<s$ and $r s>0$, then

$$
K^{1 / s-1 / r} b_{r, K} \leqslant b_{s, K} \leqslant b_{r, K}
$$

The M-family

For $r<0$:

- Rejection region

$$
\begin{aligned}
R_{\varepsilon}\left(F_{r, K}\right) & =\varepsilon\left\{\mathbf{p} \in[0, \infty)^{K}: \frac{\sum_{k=1}^{K} p_{k}^{r}}{c_{r}^{r}+(K-1) d_{r}^{r}} \geqslant 1\right\} \\
& =\varepsilon\left\{\mathbf{p} \in[0, \infty)^{K}: \sum_{k=1}^{K} \frac{p_{k}^{r}-d_{r}^{r}}{c_{r}^{r}-d_{r}^{r}} \geqslant 1\right\}
\end{aligned}
$$

- Define a calibrator

$$
f_{r}: x \mapsto K\left(\frac{x^{r}-d_{r}^{r}}{c_{r}^{r}-d_{r}^{r}} \wedge 1\right)_{+}
$$

- f_{r} is strictly convex on $\left[c_{r}, d_{r}\right]$.

The M-family

Let $F_{r, K}^{*}$ be the p-merging function induced by f_{r}, i.e.,

$$
R_{\varepsilon}\left(F_{r, K}^{*}\right)=\varepsilon\left\{\mathbf{p} \in[0, \infty)^{K}: \sum_{k=1}^{K}\left(\frac{p_{k}^{r}-d_{r}^{r}}{c_{r}^{r}-d_{r}^{r}}\right)_{+} \geqslant 1\right\}, \varepsilon \in(0,1)
$$

- $R_{\varepsilon}\left(F_{r, K}\right) \subset R_{\varepsilon}\left(F_{r, K}^{*}\right)$
- $F_{r, K}^{*}$ is admissible

The M-family

Theorem 8

For $K \geqslant 3$ and $r \in(-\infty, K-1), F_{r, K}$ is strictly dominated by the p-merging function $F_{r, K}^{*}$ defined via, for $\mathbf{p} \in(0, \infty)^{K}$ and $\varepsilon \in(0,1)$,

$$
F_{r, K}^{*}(\mathbf{p}) \leqslant \varepsilon \Longleftrightarrow F_{r, K}\left(\mathbf{p} \wedge\left(\varepsilon d_{r} \mathbf{1}\right)\right) \leqslant \varepsilon \text { or } \min (\mathbf{p})=0 .
$$

Moreover, $F_{r, K}^{*}$ is admissible unless $r=1$.

The M-family

Recall

$$
f_{-1}: x \mapsto K\left(\frac{x^{-1}-d_{-1}^{-1}}{c_{-1}^{-1}-d_{-1}^{-1}} \wedge 1\right)_{+}
$$

$$
f: x \mapsto \frac{K 1_{\left\{\ell_{K} x \leqslant 1\right\}}}{\left\lceil K \ell_{K} x\right\rceil} .
$$

- When taking values in $(0, K)$:

$$
f_{-1}(x)=a / x-b \quad \text { vs } \quad f(y)=a^{\prime} /\left\lceil b^{\prime} y\right\rceil
$$

The M-family

Proposition 2

For $K \geqslant 3$ and $\mathbf{p} \in[0, \infty)^{K}$, we have, if $r \in(-\infty, 1 /(K-1))$,

$$
F_{r, K}^{*}(\mathbf{p})=\left(\bigwedge_{m=1}^{K} \frac{M_{r, m}\left(p_{(1)}, \ldots, p_{(m)}\right)}{M_{r, m}\left(c_{r}, d_{r}, \ldots, d_{r}\right)}\right) \wedge 1,
$$

and, if $r \in[1 /(K-1), K-1)$, with the convention $\cdot / 0=\infty$,

$$
F_{r, K}^{*}(\mathbf{p})=\left(\bigwedge_{m=1}^{K} \frac{M_{r, m}\left(p_{(1)}, \ldots, p_{(m)}\right)}{\left(1-\frac{r K}{(r+1) m}\right)_{+}}\right) \wedge \mathbb{1}_{\left\{p_{(1)}>0\right\}} .
$$

The M-family

Proposition 3

For $r<s, K \geqslant 2$ and $a, b>0$, the following statements hold.
(i) $a M_{r, K} \leqslant b M_{s, K}$ if and only if $a \leqslant b$.
(ii) $b M_{s, K} \leqslant a M_{r, K}$ if and only if $r s>0$ and $a K^{-1 / r} \geqslant b K^{-1 / s}$.

Proposition 4

Suppose $r \neq s$. If $K=2, F_{r, K} \geqslant F_{s, K}$ if and only if $1 \leqslant r<s$ or $s<r \leqslant 1$. If $K \geqslant 3, F_{r, K} \geqslant F_{s, K}$ if and only if $K-1 \leqslant r<s$.

Magnitude of improvement

Proposition 5

For $K \geqslant 3$, we have
$\inf _{\mathbf{p}>0} \frac{F_{1, K}^{*}(\mathbf{p})}{F_{1, K}(\mathbf{p})}=\inf _{\mathbf{p}>0} \frac{F_{0, K}^{*}(\mathbf{p})}{F_{0, K}(\mathbf{p})}=0, \quad \inf _{\mathbf{p}>0} \frac{F_{-1, K}^{*}(\mathbf{p})}{F_{-1, K}(\mathbf{p})}=1-(K-1) c_{-1}$,
and

$$
\min _{\mathbf{p}>0} \frac{H_{K}^{*}(\mathbf{p})}{H_{K}(\mathbf{p})}=\min \left\{t>0: \sum_{k=1}^{K} \frac{\mathbb{1}_{\{t \geqslant k / K\}}}{\lceil k / t\rceil} \geqslant 1\right\}=: \gamma_{K} .
$$

Moreover, $c_{-1} \sim 1 /(K \log K)$ and $\gamma_{K} \sim 1 / \log K$ as $K \rightarrow \infty$.

Magnitude of improvement

- $F_{-1, K}^{*}$ improves $F_{-1, K}$ only by a factor $1-1 / \log K \sim 1$
- H_{K}^{*} can improve H_{K} by a significant factor of $1 / \log K$
- $H_{K}^{*}(\mathbf{p}) / H_{K}(\mathbf{p})=\gamma_{K}$ is attained by $\mathbf{p}=(\alpha, 2 \alpha, \cdots, K \alpha)$ for $\alpha \in\left(0,1 / K \ell_{K}\right]$.
- Since $H_{K}=\ell_{K} S_{K}$ and

$$
\gamma_{K} \sim 1 / \log K \sim 1 / \ell_{K},
$$

H_{K}^{*} performs similarly to the Simes function S_{K} for some values of \mathbf{p} above

