An axiomatic theory for anonymized risk sharing

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science University of Waterloo

INFORMS Annual Meeting, Indianapolis, USA Oct 15-19, 2022

イロト イボト イヨト イヨト

Risk sharing	Axioms	Characterization	An example
000	0000000	00000	00000
Δ			

3 Main characterization result

4 An example

Based on joint work with Zhanyi Jiao (Waterloo), Steven Kou (Boston) and Yang Liu (Stanford)

э.

Risk sharing	Axioms	Characterization	An example
●00	0000000	00000	00000
Risk sharing			

- ▶ *n* agents with initial risks $X_1, ..., X_n \in \mathcal{X}$ (a set of rvs)
- total risk (or asset) $S = \sum_{i=1}^{n} X_i$

The set of allocations of S:

$$\mathbb{A}_n(S) = \left\{ (Y_1, \ldots, Y_n) \in \mathcal{X}^n : \sum_{i=1}^n Y_i = S \right\}$$

Two settings

- Collaborative risk sharing: Pareto equilibrium, impossible to strictly improve
- Competitive risk sharing: competitive equilibrium, each agent optimizes their objectives individually

< ロ > < 同 > < 三 > < 三 > 、

Risk sharing	Axioms	Characterization	An example
0●0	0000000	00000	00000
Risk sharing			

To derive an equilibrium

- Collective: requires a central planner who knows preferences of all agents
- Competitive: requires a trading mechanism (e.g., a market) and individual preferences

Preference models: Expected utility, mean-variance, dual utility, RDU, CPT, quantiles, robust/variational preferences, ...

- Difficult to elicit or test
- Allocation to agent *i* depends on preferences of other agents
- Supplying fake preferences may be rewarding

イロト イヨト イヨト イヨト

Risk sharing		Axioms	Characterization	An example
000		000000	00000	00000

Anonymized risk sharing

Anonymized risk sharing mechanisms

- no central planner involved
- no information on preferences revealed
- no identity revealed
- no actual loss/gain revealed
- no irrelevant operations revealed

Examples

founders stock; Bitcoin mining pool; tontines; P2P insurance; revenue sharing, ...

We take an axiomatic approach

Risk sharing	Axioms	Characterization	An example
000	●000000	00000	00000

Setup and axioms

Risk sharing	Axioms	Characterization	An example
000	●000000	00000	00000
C .	1 · · ·		

Setup and axioms

Setup

- $(\Omega, \mathcal{F}, \mathbb{P})$: a probability space
- X: a set of rvs
- $n \ge 3$; **X** = $(X_1, ..., X_n)$; $S^{\mathbf{X}} = \sum_{i=1}^n X_i$

Risk sharing rules

A risk sharing rule is a mapping $\mathbf{A}: \mathcal{X}^n \to \mathcal{X}^n$ satisfying

$$\mathbf{A}^{\mathbf{X}} = (A_1^{\mathbf{X}}, \dots, A_n^{\mathbf{X}}) \in \mathbb{A}_n(S^{\mathbf{X}})$$

for each $\mathbf{X} \in \mathcal{X}^n$.

- Mappings from $\mathcal{X}^n \to \mathcal{X}^n$ are complicated objects
- Risk measures are $\mathcal{X} \to \mathbb{R}$, $\mathcal{X}^n \to \mathbb{R}$ or $\mathcal{X}^n \to \mathbb{R}^n$

Risk sharing 000	Axioms o●ooooo	Char 000	acterization 00	An example 00000
Examples				

(i) The identity risk sharing rule

$$\mathbf{A}_{\mathrm{id}}^{\mathbf{X}} = \mathbf{X} \quad \text{for } \mathbf{X} \in \mathcal{X}^{n}.$$

(ii) The all-in-one risk sharing rule

$$\mathbf{A}_{ ext{all}}^{\mathbf{X}} = ig(\mathcal{S}^{\mathbf{X}}, 0, \dots, 0 ig) \quad ext{for } \mathbf{X} \in \mathcal{X}^n.$$

(iii) The uniform risk sharing rule

$$\mathbf{A}_{ ext{unif}}^{\mathbf{X}} = S^{\mathbf{X}}\left(rac{1}{n}, \dots, rac{1}{n}
ight) \quad ext{for } \mathbf{X} \in \mathcal{X}^n$$

Risk sharing	Axioms	Characterization	An example
000	oo●oooo	00000	00000
Examples			

(iv) The conditional mean risk sharing rule (CMRS)

$$\mathbf{A}^{\mathbf{X}}_{ ext{cm}} = \mathbb{E}\left[\mathbf{X}|S^{\mathbf{X}}
ight] \quad ext{for } \mathbf{X} \in \mathcal{X}^n \subseteq (L^1)^n.$$

(v) The mean proportional risk sharing rule

$$\mathbf{A}^{\mathbf{X}}_{ ext{prop}} = rac{S^{\mathbf{X}}}{\mathbb{E}[S^{\mathbf{X}}]} \mathbb{E}[\mathbf{X}] \quad ext{for } \mathbf{X} \in \mathcal{X}^n \subseteq (L^1_+)^n.$$

(vi) The covariance risk sharing rule

$$\mathbf{A}^{\mathbf{X}}_{ ext{cov}} = rac{S^{\mathbf{X}} - \mathbb{E}[S^{\mathbf{X}}]}{ ext{var}(S^{\mathbf{X}})} ext{cov}(\mathbf{X}, S^{\mathbf{X}}) + \mathbb{E}[\mathbf{X}] \quad ext{for } \mathbf{X} \in \mathcal{X}^n \subseteq (L^2)^n.$$

< ロ > < 同 > < 三 > < 三 > 、

Risk sharing		Axioms	Characterization	An example
		0000000		

Actuarial fairness

Axiom AF (Actuarial fairness)

The expected value of each agent's allocation coincides with the expected value of the initial risk, that is,

$$\mathbb{E}[\mathbf{A}^{\mathbf{X}}] = \mathbb{E}[\mathbf{X}] \quad \text{for} \quad \mathbf{X} \in \mathcal{X}^n.$$

- with no information on preferences, actuarial fairness is the most natural requirement
- dates back to at least the 16th century

Risk sharing	Axioms	Characterization	An example
000	oooo●oo	00000	00000
Risk fairness			

Axiom RF (Risk fairness)

The allocation to each agent should not exceed their maximum possible loss. That is, for $\mathbf{X} \in \mathcal{X}^n$ and $i \in [n]$, it holds that

 $A_i^{\mathbf{X}} \leq \sup X_i$.

- Pure surplus $(X_i \leq 0)$ leads to pure surplus allocation
- AF + RF \implies $X_i = c$ is a constant, then $A_i^{\mathbf{X}} = c$

•
$$A_1^{(X,0,...,0)} = X$$
 and $A_j^{(X,0,...,0)} = 0$ for $j \neq 1$.

• RF can be alternatively formulated by $A_i^{\mathbf{X}} \ge \inf X_i$

(4 回) トイヨト イヨト

Risk sharing	Axioms	Characterization	An example
000	ooooo●o	00000	00000
Risk anonymity			

Axiom RA (Risk anonymity)

The realized value of the allocation to each agent is determined by that of the total risk. That is, for $\mathbf{X} \in \mathcal{X}^n$,

 $\mathbf{A}^{\mathbf{X}}$ is $\sigma(S^{\mathbf{X}})$ -measurable.

- The knowledge of X is only used for design but not for settlement
 - once pooled, only the pooled risk matters
- Agents do not need to disclose actual gains/losses
 - e.g., Bitcoin mining pool
- ► RA holds if **A**^X is always comonotonic

イロト イヨト イヨト イヨト

Risk sharing		Axioms	Characterization	An example
		000000		
~				

Operational anonymity

Axiom OA (Operational anonymity)

The allocation to one agent is not affected if risks of two other agents merge. That is,

$$\mathbf{Y} = \mathbf{X} + X_j \mathbf{e}_i - X_j \mathbf{e}_j \implies A_k^{\mathbf{Y}} = A_k^{\mathbf{X}}$$
 for $k \neq i, j,$

where \mathbf{e}_k is the unit vector along the *k*-th axis.

- Merging or splitting the risks of some agents will not affect allocation of uninvolved agents
 - Such an operation does not need to be disclosed
 - Two agents may be two accounts of same person or family

Risk sharing	Axioms	Characterization	An example
		00000	

Axiomatic characterization of CMRS

Э

Risk sharing	Axioms	Characterization	An example
000	0000000	●0000	00000

Axiomatic characterization of CMRS

Theorem 1

Assume $\mathcal{X} = L^1$ or L^1_+ . A risk sharing rule satisfies Axioms AF, RF, RA and OA if and only if it is CMRS.

- First result of axiomatic characterization of risk sharing rules
- First axiomatic foundation of CMRS
 - CMRS is popular in many contexts: Landsberger/Meilijson'94; Denuit/Dhaene'12; Denuit/Robert'21; Feng/Liu/Zhang'22, ...

Risk sharing	Axioms	Characterization	An example
000	0000000	○●○○○	00000

A new characterization of conditional expectation

Theorem 2

For a random variable S on $(\Omega, \mathcal{F}, \mathbb{P})$ and $\mathcal{G} = \sigma(S)$, let $\phi : L^1(\Omega, \mathcal{F}, \mathbb{P}) \to L^1(\Omega, \mathcal{G}, \mathbb{P})$. The equality $\phi(X) = \mathbb{E}[X|S]$ holds for all $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$ if and only if ϕ satisfies the following properties:

< ロ > < 同 > < 三 > < 三 > 、

Risk sharing	Axioms	Characterization	An example
000	0000000	00●00	00000

Independence of axioms

Proposition 1

Axioms AF, RF, RA and OA are independent.

- ▶ RF, RA and OA, but not AF: $\mathbf{A}_{Q-cm}^{\mathbf{X}} = \mathbb{E}^{Q}[\mathbf{X}|S^{\mathbf{X}}]$ for $Q \neq \mathbb{P}$
- ► AF, RA and OA, but not RF:

$$\mathbf{A}_{\mathrm{ma}}^{\mathbf{X}} = \left(S^{\mathbf{X}} - \mathbb{E}[S^{\mathbf{X}}], 0, \dots, 0\right) + \mathbb{E}[\mathbf{X}]$$

- ► AF, RF and OA, but not RA: $\mathbf{A}_{id}^{\mathbf{X}} = \mathbf{X}$
- ► AF, RF and RA, but not OA:

 $\bm{A}^{\bm{X}}=\bm{A}_{\rm all}^{\bm{X}}$ if \bm{X} is standard Gaussian and $\bm{A}^{\bm{X}}=\bm{A}_{\rm cm}^{\bm{X}}$ otherwise

周 ト イ ヨ ト イ ヨ ト

Universal imp	rovement		
Risk sharing	Axioms	Characterization	An example
000	0000000	000€0	00000

• Convex order $X \leq_{cx} Y$: $\mathbb{E}[u(X)] \leq \mathbb{E}[u(Y)]$ for all convex u

Property UI (Universal improvement)

The allocation improves the initial risk in convex order. That is, $A_i^{\mathbf{X}} \leq_{cx} X_i$ for all $i \in [n]$ and $\mathbf{X} \in \mathcal{X}^n$.

Proposition 2

Property UI implies Axioms RF and AF.

Corollary 1

Assume $\mathcal{X} = L^1$ or L^1_+ . A risk sharing rule satisfies Axioms RA and OA and Property UI if and only if it is CMRS.

Э

< ロ > < 同 > < 三 > < 三 > 、

Risk sharing	Axioms	Characterization	An example
		00000	

Comonotonicity

Properties CM, CP and ZP

- CM (Comonotonicity): For $\mathbf{X} \in \mathcal{X}^n$, $\mathbf{A}^{\mathbf{X}}$ is comonotonic.
- ► CP (Constant preserving): For $\mathbf{X} \in \mathcal{X}^n$ and $i \in [n]$, if $X_i = c \in \mathbb{R}$, then $A_i^{\mathbf{X}} = c$.
- ▶ ZP (Zero preserving): For $\mathbf{X} \in \mathcal{X}^n$ and $i \in [n]$, if $X_i = 0$, then $A_i^{\mathbf{X}} = 0$.

$$\mathsf{UI} \Longrightarrow \mathsf{AF} + \mathsf{RF} \Longrightarrow \mathsf{CP} \Longrightarrow \mathsf{ZP}; \qquad \mathsf{CM} \Longrightarrow \mathsf{RA}.$$

Proposition 3

Assume $\mathcal{X} = L^1$. There is no risk sharing rule satisfying Axiom OA and Properties CM and ZP.

Risk sharing	Axioms	Characterization	An example
000	0000000	00000	●0000

An example: Bitcoin mining pool

Risk sharing	Axioms	Characterization	An example
000	0000000	00000	●0000

An example: Bitcoin mining pool

Bitcoin mining pool for one block

- *n* miners in a mining pool
- P > 0: (random) monetary value of the next block
- ► Initial risk vector X = P(1_{D1},..., 1_{Dn}) representing contributions
 - D_i: the event that miner *i* issues the block
 - D_1, \ldots, D_n are disjoint; $D = \bigcup_{i=1}^n D_i$
 - P(D_i): the contribution (hashes tried) of miner *i* divided by
 that of all miners in the world

•
$$\mathcal{B}_n = \{ P(\mathbb{1}_{D_1}, \dots, \mathbb{1}_{D_n}) : D_1, \dots, D_n \subseteq \Omega \text{ disjoint and } \perp P \}$$

イロト イヨト イヨト イヨト

Bitcoin mini	ng nool		
Risk sharing	Axioms	Characterization	An example
000	0000000	00000	o●ooo

A reward sharing rule is a mapping $\mathbf{A}: \mathcal{B}_n \to \mathcal{X}^n$ satisfying

•
$$\mathbf{A}^{\mathbf{X}} = \mathbb{A}_n(S^{\mathbf{X}})$$
 for each $\mathbf{X} \in \mathcal{B}_n$

•
$$A_i^{\mathbf{X}} = A_j^{\mathbf{X}}$$
 for $i, j \in [n]$ with $\mathbb{P}(D_i) = \mathbb{P}(D_j)$

 The computational contributions P(D₁),..., P(D_n) of each miner are used instead of the random events D₁,..., D_n

Interpretation of the axioms

- AF: no miner gets less (or more) than initial contribution in expectation
- RF: no negative reward $(A_i^{\mathbf{X}} \ge \inf X_i = 0)$
- RA: reward does not depend on who solved the block
- OA: safe against merging/Sybel attacks

・ ロット (雪) (雪) (日)

Devenueling	and a second second		
Risk sharing	Axioms	Characterization	An example
000	0000000	00000	00●00

Rewarding sharing rule

Proposition 3

Assume $P \in \mathcal{X} = L^1$ and P > 0. A reward sharing rule

 $\mathbf{A}: \mathcal{B}_n \to \mathcal{X}^n$ satisfies Axioms RA, RF, AF and OA if and only if it is specified by

$$egin{aligned} &\mathcal{A}_i^{\mathbf{X}} = rac{\mathbb{P}(D_i)}{\mathbb{P}(D)} P \mathbb{1}_D, \quad i \in [n], \; \mathbf{X} = P(\mathbb{1}_{D_1}, \dots, \mathbb{1}_{D_n}) \in \mathcal{B}_n, \end{aligned}$$

which is CMRS (because $\mathbb{E}[P\mathbb{1}_{D_i}|P\mathbb{1}_D] = P\mathbb{1}_D\mathbb{P}(D_i)/\mathbb{P}(D)).$

- The axiomatic theory of Leshno/Strack'20 rationalizes the proportional (in probability) reward rule for home miners
- Our theory rationalizes the proportional (in monetary value) reward rule for pooled miners

Risk sharing	Axioms	Characterization	An example
000	0000000	00000	000●0

An example: A pool of three miner

Figure: Purple: miner 1's payoff as a home miner; orange: miner 1's payoff in a pool of 3 miners

Risk	h	а	İ	n	g

Axioms 0000000 Characterization 00000

An example 0000●

Thank you

Thank you for your kind attention

https://arxiv.org/abs/2208.07533

(日)