Risk Aversion in Regulatory Capital Principles

Ruodu Wang

http://sas.uwaterloo.ca/~wang

Department of Statistics and Actuarial Science
University of Waterloo, Canada

Robinson College of Business, Georgia State University
Atlanta, Georgia November 11, 2016
Outline

1. Regulatory capital principles
2. Risk measures in financial decisions: an example
3. Consistent risk measures
4. Mathematical Characterization
5. Risk sharing
6. Discussions
7. References

Based on joint work with Tiantian Mao (USTC, China)
Risk measures as regulatory capital principles

A (regulatory) risk measure is a functional \(\rho : \mathcal{X} \to (-\infty, \infty] \) which calculates the amount of regulatory capital of a financial institution taking a risk (random loss) \(X \) in a fixed period.

- \((\Omega, \mathcal{F}, \mathbb{P}) \) is an atomless probability space
- \(\mathcal{X} \) is a convex cone of random variables
 - e.g. \(\mathcal{X} = L^q(\Omega, \mathcal{F}, \mathbb{P}), \; q \in [1, \infty] \)
- \(X \in \mathcal{X} \) represent loss/profit (discounted to present)

Very general question

What is a good risk measure to use?
Regulatory Capital Principles

<table>
<thead>
<tr>
<th></th>
<th>regulator</th>
<th>firm manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>usage</td>
<td>external regulation</td>
<td>internal management performance analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>capital allocation</td>
</tr>
<tr>
<td>interest</td>
<td>social welfare</td>
<td>shareholders</td>
</tr>
<tr>
<td>risk</td>
<td>systemic risk</td>
<td>risk of a single firm</td>
</tr>
<tr>
<td>role</td>
<td>designs a principle</td>
<td>reacts to a principle</td>
</tr>
<tr>
<td>goal</td>
<td>maintain enough capital</td>
<td>reduce regulatory capital</td>
</tr>
<tr>
<td>risk-averse</td>
<td>yes</td>
<td>not necessarily</td>
</tr>
</tbody>
</table>

Ruodu Wang (wang@uwaterloo.ca) Risk Aversion in Regulatory Capital Principles 4/41
Value-at-Risk and Expected Shortfall

Value-at-Risk (VaR) at level $p \in (0, 1)$

$$\text{VaR}_p : L^0 \to \mathbb{R},$$

$$\text{VaR}_p(X) = \inf\{x \in \mathbb{R} : \mathbb{P}(X \leq x) \geq p\}.$$

Expected Shortfall (ES/TVaR/CVaR/AVaR) at level $p \in (0, 1)$

$$\text{ES}_\beta : L^1 \to \mathbb{R},$$

$$\text{ES}_p(X) = \frac{1}{1 - p} \int_p^1 \text{VaR}_q(X) dq, \quad p \in (0, 1).$$
The ongoing debate on “VaR versus ES”:

- Basel III (mixed; in transition from VaR to ES as standard metric for market risk\(^1\))
- Solvency II (VaR based)
- Swiss Solvency Test (ES based)

\(^1\)e.g. **Basel Committee on Banking Supervision**: Standards, January 2016, Minimum capital requirements for Market Risk.
Value-at-Risk and Expected Shortfall

Many perspectives

- regulator’s versus firms’ standpoints
- economic interpretation
- statistical issues: estimation, robustness, backtesting, model uncertainty
- computation, simulation and optimization
- systemic risk

There is no single “perfect” risk measure

Some academic references

- Embrechts et al. (2014)
We provide a new perspective: incorporating risk aversion to the above issue on risk measures.
Standard Properties of Risk Measures

Some standard properties of risk measures

(M) Monotonicity: $\rho(X) \leq \rho(Y)$ for $X, Y \in \mathcal{X}$, $X \leq Y$ almost surely;

(TI) Translation-invariance: $\rho(X - m) = \rho(X) - m$ for all $m \in \mathbb{R}$ and $X \in \mathcal{X}$.

(LI) Law-invariance: $\rho(X) = \rho(Y)$ if $X, Y \in \mathcal{X}$ and $X \overset{d}{=} Y$.

Definition 1

A monetary risk measure is a functional on \mathcal{X} satisfying (M) and (TI).

- VaR and ES are monetary and law-invariant.
Progress of the Talk

1. Regulatory capital principles

2. Risk measures in financial decisions: an example

3. Consistent risk measures

4. Mathematical Characterization

5. Risk sharing

6. Discussions

7. References
A simplified example:

- Ω = {ω₁, ω₂, ω₃}: future (e.g. one-year) economic states
 - ω₁: a normal economic state
 - ω₂: an adverse economic state
 - ω₃: an extreme scenario
- P(ω₁) = 0.99, P(ω₂) = 0.0099 and P(ω₃) = 0.0001
- A financial institution has to choose between two risks (decisions)
Simple Example

Risks X and Y (in millions of USD):

$$X = \begin{cases}
-1 & \omega = \omega_1, \\
10 & \omega = \omega_2, \\
20 & \omega = \omega_3,
\end{cases} \quad Y = \begin{cases}
-1.1 & \omega = \omega_1, \\
9.9 & \omega = \omega_2, \\
2,000 & \omega = \omega_3.
\end{cases}$$

Possible interpretations:

- X is benchmark - Y is X plus an bet against event ω_3
 (e.g. AAA bond with high leverage)
- Y is benchmark - X is Y plus a hedge against event ω_3
 (e.g. insurance contract)

$\mathbb{P}(Y < X) = 99.99\%$
Simple Example

- Assume that the financial institution has 10M (economic) capital
 - \(\text{VaR}_{0.999}(X) = 10, \text{VaR}_{0.999}(Y) = 9.9 \)

- Which risk would the financial institution prefer?
 - The manager of the financial institution is not necessarily risk averse
 - Limited liability
 - \(\mathbb{P}(\omega_3) \) is too small to notice or accurately model

- Which risk would a regulator prefer?
 - A regulator cares about loss to the society
 - What if all firms in the system are doing this? ... Aggregation!
Question

How can the regulator leads/encourages the financial institution to choose X over Y?

Idea:

(1) A firm has incentives to reduce its regulatory capital
 - Firms are “effectively risk averse” because holding capital is costly

(2) View a regulatory risk measure ρ as a decision principle for the firm

(3) Choose a properly designed ρ
A regulator uses ρ to calculate regulatory capital

- Formally, assume that for two decisions X and Y, if $\rho(X) \ll \rho(Y)$, then a firm has the incentive to choose X (smaller capital) over Y (larger capital).
- If the regulator prefers X to Y, then she should design ρ such that $\rho(X) < \rho(Y)$.
- In the previous example

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>VaR$_{0.999}$</td>
<td>10</td>
<td>9.9</td>
</tr>
<tr>
<td>ES$_{0.999}$</td>
<td>11</td>
<td>208.91</td>
</tr>
<tr>
<td>StDev</td>
<td>1.109</td>
<td>20.039</td>
</tr>
</tbody>
</table>
Financial Decisions and Risk Preference

What is a suitable preference for the regulator?

- very complicated question
- for the interest of the society
- decision theory \leftrightarrow regulatory risk measures
Progress of the Talk

1. Regulatory capital principles
2. Risk measures in financial decisions: an example
3. **Consistent risk measures**
4. Mathematical Characterization
5. Risk sharing
6. Discussions
7. References
Expected Loss to the Society

A company has capital K and decides between two risks $X, Y \in \mathcal{X} \subset L^1$.

- If $\mathbb{E}[(X - K)_+] \leq \mathbb{E}[(Y - K)_+]$ then taking X has less expected loss to the society.

- If $\mathbb{E}[(X - K)_+] \leq \mathbb{E}[(Y - K)_+]$ holds for all K, then it is reasonable that X requires a smaller capital.

Formally, define the property

(EL) Consistency with expected loss to the society: for $X, Y \in \mathcal{X}$,

$$\rho(X) \leq \rho(Y) \text{ if } \mathbb{E}[(X - K)_+] \leq \mathbb{E}[(Y - K)_+] \text{ for all } K \in \mathbb{R}.$$

(EL) is equivalent to the consistency with respect to second-order stochastic dominance (SSD).
Definition 2 (Second-order stochastic dominance)

For $X, Y \in L^1$, X has second-order stochastic dominance (SSD) over Y, denoted as $X \prec_{sd} Y$, if $\mathbb{E}[f(X)] \leq \mathbb{E}[f(Y)]$ for all increasing convex functions f such that the expectations exist.

- Also known as increasing convex order or stop-loss order
- $X \prec_{sd} Y$ in the previous three-state example

(SC) SSD consistency: $\rho(X) \leq \rho(Y)$ if $X \prec_{sd} Y$, $X, Y \in \mathcal{X}$.

- (SC) is called strong risk aversion in decision theory
- (SC) \iff (EL)
Assume $\mathcal{X} \subset L^1$ in the following.

Definition 3 (Consistent risk measures)

A risk measure is a **consistent risk measure** if it satisfies (SC) and (TI).

- Consistent risk measures are monetary
- Interpretation: the regulator penalizes more risky financial decisions (ones that have higher expected social impact)
Consistent Risk Measures

Some examples

- An Expected Shortfall ES_p, $p \in (0, 1)$ is consistent
- The mean $\mathbb{E}[\cdot]$ on L^1 is consistent
- Any law-invariant convex risk measure on L^∞ is consistent
- Any finite law-invariant convex risk measure on L^q, $q \geq 1$ is consistent
- Any Value-at-Risk VaR_p, $p \in (0, 1)$ is not consistent

Is a consistent risk measure necessarily convex?
Properties

Similar properties for risk measures

(CC) Convex order consistency: \(\rho(X) \leq \rho(Y) \) if \(X \prec_{\text{cx}} Y \), \(X, Y \in \mathcal{X} \).

(DM) Dilatation monotonicity: \(\rho(X) \leq \rho(Y) \) if \((X, Y) \in \mathcal{X}^2 \) is a martingale.

(DC) Diversification consistency: \(\rho(X + Y) \leq \rho(X^c + Y^c) \) if \(X, Y, X^c, Y^c \in \mathcal{X} \), \(X \overset{d}{=} X^c \), \(Y \overset{d}{=} Y^c \), and \((X^c, Y^c) \) is comonotonic.
Proposition 4

For a monetary risk measure on L^∞, (SC), (EL), (CC), (DM), (DC) are equivalent. Moreover, each of them implies (LI).
Progress of the Talk

1. Regulatory capital principles
2. Risk measures in financial decisions: an example
3. Consistent risk measures
4. Mathematical Characterization
5. Risk sharing
6. Discussions
7. References
The next question is a characterization of all consistent risk measures.

- We assume $\mathcal{X} = L^\infty$ for simplicity
- All results hold for $\mathcal{X} = L^q$, $q \geq 1$
Characterization Theorem

Theorem 5

A risk measure ρ on L^{∞} is consistent if and only if there exists a set \mathcal{G} of functions mapping $(0,1)$ to $(-\infty, \infty]$ such that

$$\rho(X) = \inf_{g \in \mathcal{G}} \sup_{p \in (0,1)} \left\{ ES_p(X) - g(p) \right\}, \quad X \in L^{\infty}. \quad (1)$$

- Example: If ρ is $ES_p \ (p \in (0,1))$, then one can take $\mathcal{G} = \{g_p\}$ where $g_p(p) = 0$ and $g_p(x) = \infty$ for $x \in (0,1) \setminus p$.

- \mathcal{G} in (1) is not unique. It may be chosen as the adjustment set of ρ

$$\mathcal{G} = \{g_Y : \ Y \in \mathcal{X}, \ \rho(Y) \leq 0\},$$

where $g_Y : (0,1) \to \mathbb{R}, \ p \mapsto ES_p(Y)$.

Ruodu Wang \ (wang@uwaterloo.ca) \ Risk Aversion in Regulatory Capital Principles 26/41
Characterization Theorem

On the representation:

\[\rho(X) = \inf_{g \in G} \sup_{p \in (0,1)} \{ \text{ES}_p(X) - g(p) \}, \quad X \in L^\infty. \]

- \(g \in G \) are benchmarks: if for some \(g \in G \), \(\text{ES}(X) \leq g(\cdot) \), then \(\rho(X) \leq 0 \) (an accepted risk without extra capital); otherwise \(\rho(X) > 0 \) (or \(\geq 0 \)).

- Any risk-averse regulator or risk manager is essentially using a collection of Expected Shortfalls up to some adjustments.
Relation to Classic Risk Measures

Classic properties in the theory of monetary risk measures

(PH) Positive homogeneity: \(\rho(\lambda X) = \lambda \rho(X) \) for all \(\lambda \in (0, \infty) \) and \(X \in \mathcal{X} \);

(CX) Convexity: \(\rho(\lambda X + (1 - \lambda) Y) \leq \lambda \rho(X) + (1 - \lambda) \rho(Y) \) for all \(\lambda \in [0, 1] \) and \(X, Y \in \mathcal{X} \);

(CA) Comonotonic additivity: \(\rho(X + Y) = \rho(X) + \rho(Y) \) if \((X, Y) \in \mathcal{X}^2 \) is comonotonic.

Definition 6

A risk measure is called a **convex risk measure** if it satisfies (M), (TI) and (CX). A risk measure is called a **coherent risk measure** if it satisfies (M), (TI), (PH) and (CX).

Consistent risk measures are closely related to law-invariant convex risk measures.

Theorem 7

A risk measure ρ on L^∞ is consistent if and only if there exists a set C of law-invariant convex risk measures such that

$$\rho(X) = \inf_{\tau \in C} \tau(X), \quad X \in L^\infty.$$
Yet we obtain a new characterization of convex (coherent) risk measures.

Proposition 8

A law-invariant risk measure ρ on L^∞ is a convex (resp. coherent) risk measure if and only if there exists a convex set (resp. convex cone) \mathcal{G} of functions mapping $(0,1)$ to $(-\infty,\infty]$ such that

$$\rho(X) = \inf_{g \in \mathcal{G}} \sup_{p \in (0,1)} \{ \text{ES}_p(X) - g(p) \}, \quad X \in L^\infty.$$
Consistency vs Convexity

Consistency versus convexity:

(SC) Consistency: \(\rho(X) \leq \rho(Y) \) if \(X \prec_{sd} Y, X, Y \in \mathcal{X} \).

(CX) Convexity: \(\rho(\lambda X + (1 - \lambda) Y) \leq \lambda \rho(X) + (1 - \lambda) \rho(Y) \) for all \(\lambda \in [0, 1] \) and \(X, Y \in \mathcal{X} \).

(i) Consistency compares between risks (decisions) while convexity does not

(ii) For risk-types other than market risk, portfolio diversification is not appropriate

(iii) There is no direct reason why a regulator would favour diversification in a single company, unless some social benefit could be expected (cf. Ibragimov-Jaffee-Walden 2011)
Kusuoka Representations

Let \mathcal{P} be the set of all probability measures on $[0, 1]$ and \mathcal{U} be the set of all functions mapping \mathcal{P} to \mathbb{R}.

A law-invariant coherent risk measure ρ on L^∞ has the following representation

$$\rho = \sup_{h \in \mathcal{R}} \left\{ \int_0^1 ES_p h(p) \right\} \quad \text{for some } \mathcal{R} \subset \mathcal{P}. $$

A law-invariant convex risk measure ρ on L^∞ has the following representation

$$\rho = \sup_{h \in \mathcal{P}} \left\{ \int_0^1 ES_p h(p) - \alpha(h) \right\} \quad \text{for some } \alpha \in \mathcal{U}. $$

(Kusuoka 2001, Frittelli-Rosazza Gianin 2005)
Kusuoka Representations

Grand summary: for a risk measure on L^∞,

$$(\text{TI})+(\text{SC}) = \inf_{\alpha \in \mathcal{V}} \sup_{h \in \mathcal{P}} \left\{ \int_0^1 ES_p \, dh(p) - \alpha(h) \right\} \quad \text{for some } \mathcal{V} \subset \mathcal{U}$$

$$(\text{CX}) \quad \sup_{h \in \mathcal{P}} \left\{ \int_0^1 ES_p \, dh(p) - \alpha(h) \right\} \quad \text{for some } \alpha \in \mathcal{U}$$

$$(\text{PH}) \quad \sup_{h \in \mathcal{R}} \left\{ \int_0^1 ES_p \, dh(p) \right\} \quad \text{for some } \mathcal{R} \subset \mathcal{P}$$

$$(\text{CA}) \quad \int_0^1 ES_p \, dh(p) \quad \text{for some } h \in \mathcal{P}.$$

Remark: $(\text{TI})+(\text{SC})+(\text{CA})$ is sufficient for the last representation.
Progress of the Talk

1. Regulatory capital principles
2. Risk measures in financial decisions: an example
3. Consistent risk measures
4. Mathematical Characterization
5. Risk sharing
6. Discussions
7. References
Risk Sharing

General setup

- n agents sharing a total risk $X \in \mathcal{X}$
- ρ_1, \ldots, ρ_n: underlying risk measures

Target: for $X \in \mathcal{X}$, find a Pareto-optimal solution of X to minimize

$$\rho_1(X_1), \ldots, \rho_n(X_n)$$

over the set of all allocations:

$$\mathbb{A}_n(X) = \left\{ (X_1, \ldots, X_n) \in \mathcal{X}^n : \sum_{i=1}^{n} X_i = X \right\}.$$
Theorem 9

Suppose that ρ_1, \ldots, ρ_n are consistent risk measures on $\mathcal{X} = L^q$, $q \in [1, \infty]$ with adjustment sets G_1, \ldots, G_n, respectively. An allocation $(X_1, \ldots, X_n) \in A_n(X)$ is Pareto-optimal if and only if

$$\sum_{i=1}^{n} \rho_i(X_i) = \rho^*(X),$$

where ρ^* is a consistent risk measure with adjustment set $\sum_{i=1}^{n} G_i$.

In particular,

$$\rho^*(X) = \inf_{g \in G_1 + \cdots + G_n} \sup_{\alpha \in [0,1]} \{ \text{ES}_\alpha(X) - g(\alpha) \}, \quad X \in \mathcal{X}.$$
Progress of the Talk

1. Regulatory capital principles
2. Risk measures in financial decisions: an example
3. Consistent risk measures
4. Mathematical Characterization
5. Risk sharing
6. Discussions
7. References
Suitable risk measures for regulation

On the current debates regarding the desirability of VaR and ES:

- A suitable risk measure applied in regulatory practice should encourage **prudent** and **socially responsible** financial decisions
 - Financial institutions are not necessarily risk-averse or socially responsible for their own interest; a regulator should push them towards risk-aversion

- ES is the basis for any consistent risk measure - supporting the transition **from VaR to ES** in the recent Basel documents

- ES is the **only candidate** which **preserves consistency** and also has **simple form** and **clear economic interpretation**
Further remarks:

- Consistency is more *natural* than convexity for a regulator
- One can construct *non-convex* consistent risk measures
 - As far as we are aware of, there are no non-convex consistent risk measures in simple analytical forms other than a minimum
- Criteria for a desirable risk measure used in banking and insurance regulation may vary
- Bring more in decision theory to risk measures and regulation
References

Thank you for your kind attendance

The manuscript can be downloaded at
http://ssrn.com/abstract=2658669