Risk Aggregation with Dependence Uncertainty

Ruodu Wang

Department of Statistics and Actuarial Science
University of Waterloo, Canada

Seminar at ETH Zurich
November 5, 2013

Based on a series of joint work
Contents

1 Introduction
2 Dependence Uncertainty
3 Extreme Scenarios
4 Asymptotic Behavior
5 Challenges
Risk and uncertainty:

- **Risk**: familiar; able to quantify; under control; quick response.

- **Uncertainty**: unfamiliar; difficult or impossible to quantify; beyond control; delayed response.
Part I - Introduction

Risk and uncertainty:

- **Risk**: familiar; able to quantify; under control; quick response.

- **Uncertainty**: unfamiliar; difficult or impossible to quantify; beyond control; delayed response.

Model risk: the risk of inappropriate modelling and misused quantitative tools.

- You think it is a risk but it is actually an uncertainty!
Risk aggregation

- X_1, \cdots, X_n are random variables representing individual risks (one-period losses or profits).
- Aggregate position $S(X)$ associated with a risk vector $X = (X_1, \cdots, X_n)$.
- The most commonly used aggregation function is $S = X_1 + \cdots + X_n$.
Challenges in dependence

- There is never perfect information. Statistical modelling and inference are needed.

<table>
<thead>
<tr>
<th></th>
<th>data</th>
<th>accuracy</th>
<th>modelling</th>
<th>calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>marginal</td>
<td>rich</td>
<td>good</td>
<td>mature</td>
<td>easy</td>
</tr>
<tr>
<td>dependence</td>
<td>limited</td>
<td>poor</td>
<td>limited</td>
<td>heavy</td>
</tr>
</tbody>
</table>

Marginal → risk; dependence → uncertainty.

The logic of using parameters, such as covariance matrices, Spearman's rho and tail dependence coefficients, to model dependence in risk management is questionable.
Challenges in dependence

- There is never perfect information. Statistical modelling and inference are needed.

<table>
<thead>
<tr>
<th></th>
<th>data</th>
<th>accuracy</th>
<th>modelling</th>
<th>calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>marginal</td>
<td>rich</td>
<td>good</td>
<td>mature</td>
<td>easy</td>
</tr>
<tr>
<td>dependence</td>
<td>limited</td>
<td>poor</td>
<td>limited</td>
<td>heavy</td>
</tr>
</tbody>
</table>

- Marginal \rightarrow risk; dependence \rightarrow uncertainty.
Challenges in dependence

- There is never perfect information. Statistical modelling and inference are needed.

<table>
<thead>
<tr>
<th></th>
<th>data</th>
<th>accuracy</th>
<th>modelling</th>
<th>calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>marginal dependence</td>
<td>rich</td>
<td>good</td>
<td>mature</td>
<td>easy</td>
</tr>
<tr>
<td>limited</td>
<td>poor</td>
<td>limited</td>
<td>heavy</td>
<td></td>
</tr>
</tbody>
</table>

- Marginal \rightarrow risk; dependence \rightarrow uncertainty.

- The logic of using parameters, such as covariance matrices, Spearman’s rho and tail dependence coefficients, to model dependence in risk management is questionable.
Examples of model risk of dependence

Possibly misused modeling tools:

- Gaussian model.
- Conditional independence.
- Micro correlation.
- Independent increments.
- Behavior modeling.
April 23, 2013, S&P 500 index

What happened during those 10 minutes (1:07pm-1:16pm)?

Source: Yahoo finance
We seek a more general and mathematically tractable framework.
Part II - Dependence Uncertainty

We seek a more general and mathematically tractable framework.

- $S = X_1 + \cdots + X_n$.
- The marginal distributions of X_1, \cdots, X_n: known.
- The joint structure of X_1, \cdots, X_n: unknown.
- This setting is very practical.
Part II - Dependence Uncertainty

We seek a more general and mathematically tractable framework.

- \(S = X_1 + \cdots + X_n \).
- The marginal distributions of \(X_1, \cdots, X_n \): known.
- The joint structure of \(X_1, \cdots, X_n \): unknown.
- This setting is very practical.

Target: probabilistic behavior of \(S \) and/or risk measures of \(S \).
Admissible risk class with uncertainty

For given univariate distributions F_1, \cdots, F_n, the admissible risk class (of marginals F_1, \cdots, F_n) is defined as

$$\mathcal{G}_n(F_1, \cdots, F_n) = \{ X_1 + \cdots + X_n : X_i \sim F_i, \ i = 1, \cdots, n \}. $$

Each $S \in \mathcal{G}_n(F_1, \cdots, F_n)$ is called an admissible risk (of marginals F_1, \cdots, F_n).
A few remarks

- \(\mathcal{G}_n(F) \) is the set of all possible aggregate risks when the marginal distributions are accurately obtained but the joint distribution is unknown.
A few remarks

- $\mathcal{S}_n(F)$ is the set of all possible aggregate risks when the marginal distributions are accurately obtained but the joint distribution is unknown.

- The distribution of $S \in \mathcal{S}_n(F)$ is determined by the copula of X_1, \cdots, X_n.
A few remarks

- $\mathcal{S}_n(F)$ is the set of all possible aggregate risks when the marginal distributions are accurately obtained but the joint distribution is unknown.

- The distribution of $S \in \mathcal{S}_n(F)$ is determined by the copula of X_1, \cdots, X_n.

- This admissible risk class has some nice theoretical properties, such as convexity w.r.t. distribution, permutation/affine/law-invariance, completeness, robustness.
A few remarks

- In practice, people may have partial information about the joint structure, such as
 - individual risks are positively quadratic dependent;
 - individual risks are conditional independent;
 - some information on the copula of X;
 - the covariance matrix is estimated accurately.

In those cases, the possible aggregate risks are in a subset of $\mathcal{G}_n(F)$.
Remark on Fréchet classes

A Fréchet class:

\[\mathcal{F}_n(F) := \{ (X_1, \cdots, X_n) : X_i \sim F_i, \ i = 1, \cdots, n \}. \]

The difference between \(S_n(F) \) and \(\mathcal{F}_n(F) \):

- The structure of \(\mathcal{F}_n(F) \) is marginal-independent, but \(S_n(F) \) is marginal-dependent.

- The information contained in \(\mathcal{F}_n(F) \) is redundant.
Questions on admissible risk classes

- Probabilistically, what exactly are in the set $\mathcal{G}_n(F)$?
 - For S with a given distribution F, is S in $\mathcal{G}_n(F)$? Is there a viable characterization?
 - What is the boundary (in some sense) of $\mathcal{G}_n(F)$?
Questions on admissible risk classes

- Probabilistically, what exactly are in the set $\mathcal{S}_n(F)$?
 - For S with a given distribution F, is S in $\mathcal{S}_n(F)$? Is there a viable characterization?
 - What is the boundary (in some sense) of $\mathcal{S}_n(F)$?

- Statistically, how can we conduct inference from data?
 - Traditional method: copula estimation - inaccurate, costly, provides information that are of no interest.
 - Direct estimation techniques: waste of marginal information.
Questions on admissible risk classes

- Probabilistically, what exactly are in the set $\mathcal{S}_n(F)$?
 - For S with a given distribution F, is S in $\mathcal{S}_n(F)$? Is there a viable characterization?
 - What is the boundary (in some sense) of $\mathcal{S}_n(F)$?
- Statistically, how can we conduct inference from data?
 - Traditional method: copula estimation - inaccurate, costly, provides information that are of no interest.
 - Direct estimation techniques: waste of marginal information.
- How can we use $\mathcal{S}_n(F)$ to manage risks?
 - Assign a measure on $\mathcal{S}_n(F)$? Risk \Leftrightarrow uncertainty.
 - Extreme scenarios analysis?
 - Limited data regulation principles?
Part III - Extreme Scenarios

Extreme scenario questions for dependence uncertainty:

- Is a constant admissible?
- Convex ordering on admissible risks?
- Bounds for the distribution function of an admissible risk?
Part III - Extreme Scenarios

Extreme scenario questions for dependence uncertainty:

- Is a constant admissible?
- Convex ordering on admissible risks?
- Bounds for the distribution function of an admissible risk?

These three questions turn out to be closely connected, via the concept of completely mixable distributions.
A few remarks

- Extreme scenarios \rightarrow coherent measure of model uncertainty defined in Cont (2006):

$$
\mu_Q(\rho) = \sup_{Q \in \mathcal{Q}} \rho^Q(S) - \inf_{Q \in \mathcal{Q}} \rho^Q(S).
$$

- Research from the point of theoretical probability via a connection to mass-transportation can be found since early 80s, e.g. Rüschendorf (1982).

- A comprehensive overview on those topics can be found in the recent book Rüschendorf (2013).
Is a constant admissible?

- Basic observation: $\mathbb{E}[S]$ is a constant if F_1, \cdots, F_n are L_1.
- Question: is a constant K, typically chosen as $\mathbb{E}[S]$, in $\mathcal{G}_n(F)$?
Joint Mixability

Joint mixable distributions (W., Peng and Yang, 2013)

We say the univariate distributions F_1, \cdots, F_n are jointly mixable (JM) if there exists $X_i \sim F_i$, $i = 1, \cdots, n$ such that $X_1 + \cdots + X_n$ is a constant. Equivalently,

$$\mathcal{S}_n(F_1, \cdots, F_n) \cap \mathbb{R} \neq \emptyset.$$
Completely mixable distributions (Wang and W., 2011)

We say the univariate distribution F is \textit{n-completely mixable} (CM) if there exists $X_1, \cdots, X_n \sim F$ such that $X_1 + \cdots + X_n$ is a constant. Equivalently,

$$\mathcal{E}_n(F, \cdots, F) \cap \mathbb{R} \neq \emptyset.$$
Interpretation of CM and JM:

- CM or JM scenarios represent a perfectly hedged portfolio.
- It is an ideal case of negative correlation. It is a natural generalization of the counter-comonotonicity ($n = 2$).
Interpretation of CM and JM:

- CM or JM scenarios represent a perfectly hedged portfolio.
- It is an ideal case of negative correlation. It is a natural generalization of the counter-comonotonicity \((n = 2)\).

An open research area:

what distributions are CM/JM?
Most relevant results for CM:

- If F supported on $[a, b]$ with mean μ is n-CM, then the mean condition is necessary:

$$a + (b - a)/n \leq \mu \leq b - (b - a)/n.$$
Most relevant results for CM:

- If F supported on $[a, b]$ with mean μ is n-CM, then the mean condition is necessary:

 $$ a + (b - a)/n \leq \mu \leq b - (b - a)/n. $$

- The mean condition is sufficient for monotone densities.

- $\text{U}[0,1]$ is n-CM for $n \geq 2.$
Some fully characterized families:

- **Analytical proofs:**

- **Combinatorial proofs:**
Existing results for JM:

- **Generalized mean condition.**

- **Second order condition:** If F_1, \cdots, F_n are JM with finite variance $\sigma_1^2, \cdots, \sigma_n^2$, then

 $$\max_{i \in \{1, \cdots, n\}} \sigma_i \leq \frac{1}{2} \sum_{i=1}^{n} \sigma_i.$$

- **W., Peng and Yang (2013):** the variance condition is sufficient for normal.

- **Wang and W. (2013a, preprint):** the variance condition is sufficient for uniform; elliptical; and unimodal-symmetric densities.
Mysteries of CM (JM)

- Uniqueness of the center?
- Unimodal densities and other types?
- Characterization?
- Asymptotic behavior \((n \to \infty)\)?
Convex ordering bounds

- We assume the individual risks are on \mathbb{R}_+ and are L_1 (finite mean).
- Since $\mathbb{E}[S]$ is fixed, the most interesting property is the convex order of $\mathcal{G}_n(F)$:

 For $X, Y \in L_1$, if $\mathbb{E}[g(X)] \leq \mathbb{E}[g(Y)]$ holds for all convex functions $g : \mathbb{R} \rightarrow \mathbb{R}$, then we say $X \prec_{cx} Y$.

- In economics, the term second order stochastic dominance is more often used.
Why consider convex order?
Why consider convex order?

- Risk preference.
Why consider convex order?

- Risk preference.
- Coherent and convex risk measures.
Why consider convex order?

- Risk preference.
- Coherent and convex risk measures.
- $\mathbb{E}[g(S)]$:
 - expected utility;
 - the variance of aggregation, European basket option prices, realized variance options;
 - stop-loss premiums, losses with limits/deductibles.
Why consider convex order?

- Risk preference.
- Coherent and convex risk measures.
- \(\mathbb{E}[g(S)] \):
 - expected utility;
 - the variance of aggregation, European basket option prices, realized variance options;
 - stop-loss premiums, losses with limits/deductibles.
- Directly connects to bounds on the Value-at-Risk and optimal mass transportation problems.
Why consider convex order?

- Risk preference.
- Coherent and convex risk measures.
- $\mathbb{E}[g(S)]$:
 - expected utility;
 - the variance of aggregation, European basket option prices, realized variance options;
 - stop-loss premiums, losses with limits/deductibles.
- Directly connects to bounds on the Value-at-Risk and optimal mass transportation problems.
- Mathematically nice and tractable.
Well-known results on this question (late 70s):

- The convex order upper bound is obtained by the **comonotonic scenario**: for \(S \in \mathcal{G}_n(F) \),

\[
S \prec_{cx} F_1^{-1}(U) + \cdots + F_n^{-1}(U)
\]

where \(U \) has a uniform distribution on \([0, 1] \).
Well-known results on this question (late 70s):

- The convex order upper bound is obtained by the **comonotonic scenario**: for $S \in \mathcal{G}_n(F)$,

$$S \preceq_{cx} F_1^{-1}(U) + \cdots + F_n^{-1}(U)$$

where U has a uniform distribution on $[0, 1]$.

- The infimum:
 - Known for $n = 2$: **counter-monotonic scenario** for $S \in \mathcal{G}_2(F_1, F_2)$:

$$S \succeq_{cx} F_1^{-1}(U) + F_2^{-1}(1 - U).$$
Well-known results on this question (late 70s):

- The convex order upper bound is obtained by the **comonotonic scenario**: for $S \in \mathcal{G}_n(F)$,

$$S \prec_{cx} F_1^{-1}(U) + \cdots + F_n^{-1}(U)$$

where U has a uniform distribution on $[0,1]$.

- The infimum:
 - Known for $n = 2$: **counter-monotonic scenario** for $S \in \mathcal{G}_2(F_1,F_2)$:

$$S \succ_{cx} F_1^{-1}(U) + F_2^{-1}(1-U).$$

- Mysterious for $n \geq 3$ in general.
Well-known results on this question (late 70s):

- The convex order upper bound is obtained by the **comonotonic scenario**: for $S \in \mathcal{G}_n(F)$,

 $S \prec_{\text{cx}} F_1^{-1}(U) + \cdots + F_n^{-1}(U)$

 where U has a uniform distribution on $[0, 1]$.

- The infimum:
 - Known for $n = 2$: **counter-monotonic scenario** for $S \in \mathcal{G}_2(F_1, F_2)$:

 $S \succ_{\text{cx}} F_1^{-1}(U) + F_2^{-1}(1 - U)$.

 - Mysterious for $n \geq 3$ in general.

- All the above results are **marginal-independent**.
Connection between CM/JM distribution and convex ordering lower bound for $n \geq 3$:

- If F_1, \cdots, F_n are JM, then $\mathbb{E}[S]$ is in $\mathcal{S}_n(F_1, \cdots, F_n)$, and thus it is the convex minimal element.

- CM/JM scenario is a natural generalization of the counter-cmonotonicity.

- Please note that the optimal structure is **marginal-dependent**. (I believe it is the reason why major progresses on this problem were delayed till recently.)
A surprising fact: for $n \geq 3$, the set $\mathcal{G}_n(F)$ may not contain a convex ordering minimal element.
CM/JM is not possible for unbounded positive risks. We seek for more general results for the purpose of risk management:

CM/JM is not possible for unbounded positive risks. We seek for more general results for the purpose of risk management:

CM/JM is not possible for unbounded positive risks. We seek for more general results for the purpose of risk management:

- To obtain a convex minimal element, we try to enhance a density concentration (make S as close to a constant as possible).

- Optimal structure for homogeneous marginals: tails - mutual exclusivity; body - complete mixability.
Analytical formulas for the lower bound on $\text{TVaR}_p(S)$ and $\mathbb{E}[g(S)]$ are available.

Lower bounds for heterogeneous marginals are obtained:

- not sharp in general, but quite accurate according to numerical results;
- the fact $\mathcal{G}_n(F_1, \cdots , F_n) \subset \mathcal{G}_n(F, \cdots , F)$ is used, where $F = \frac{1}{n} \sum_{i=1}^{n} F_i$.

Bounds on the distribution function

Given marginal distributions, what is the maximum possible distribution function of S (a special case of a question raised by A. N. Kolmogorov)?
Given marginal distributions, what is the maximum possible distribution function of S (a special case of a question raised by A. N. Kolmogorov)?

The question: given F_1, \cdots, F_n and $s \in \mathbb{R}$, find

$$\sup_{S \in \mathcal{S}_n(F_1, \cdots, F_n)} \mathbb{P}(S \leq s) \quad \text{and} \quad \inf_{S \in \mathcal{S}_n(F_1, \cdots, F_n)} \mathbb{P}(S \leq s).$$
Equivalent question in risk management:

- Given F_1, \cdots, F_n and $\alpha \in (0,1)$, find

\[
\sup_{S \in \mathcal{G}_n(F_1, \cdots, F_n)} \text{VaR}_\alpha(S) \quad \text{and} \quad \inf_{S \in \mathcal{G}_n(F_1, \cdots, F_n)} \text{VaR}_\alpha(S).
\]
Equivalent question in risk management:

- Given F_1, \cdots, F_n and $\alpha \in (0, 1)$, find

 \[
 \sup_{S \in \mathcal{S}_n(F_1, \cdots, F_n)} \text{VaR}_\alpha(S) \quad \text{and} \quad \inf_{S \in \mathcal{S}_n(F_1, \cdots, F_n)} \text{VaR}_\alpha(S).
 \]

- It is the best/worst scenario risk measure with confidence in marginal information.
Equivalent question in risk management:

- Given \(F_1, \cdots, F_n \) and \(\alpha \in (0, 1) \), find

\[
\sup_{S \in \mathcal{S}_n(F_1, \cdots, F_n)} \text{VaR}_\alpha(S) \quad \text{and} \quad \inf_{S \in \mathcal{S}_n(F_1, \cdots, F_n)} \text{VaR}_\alpha(S).
\]

- It is the best/worst scenario risk measure with confidence in marginal information.
- The usage of VaR in risk management is debatable for incoherence (non-subadditivity in particular) but still quite widely used.
Equivalent question in risk management:

- Given F_1, \cdots, F_n and $\alpha \in (0, 1)$, find

 $$ \sup_{S \in \mathcal{S}_n(F_1,\cdots,F_n)} \text{VaR}_{\alpha}(S) \quad \text{and} \quad \inf_{S \in \mathcal{S}_n(F_1,\cdots,F_n)} \text{VaR}_{\alpha}(S). $$

- It is the best/worst scenario risk measure with confidence in marginal information.

- The usage of VaR in risk management is debatable for incoherence (non-subadditivity in particular) but still quite widely used.

- Very hard to solve analytically.
Equivalent question in risk management:

- Given F_1, \cdots, F_n and $\alpha \in (0, 1)$, find

$$\sup_{S \in \mathcal{S}_n(F_1, \cdots, F_n)} \text{VaR}_\alpha(S) \quad \text{and} \quad \inf_{S \in \mathcal{S}_n(F_1, \cdots, F_n)} \text{VaR}_\alpha(S).$$

- It is the best/worst scenario risk measure with confidence in marginal information.
- The usage of VaR in risk management is debatable for incoherence (non-subadditivity in particular) but still quite widely used.
- Very hard to solve analytically.
- What is done in the practice of operational risk: model marginal, add them up, and discount to 70%-90% due to *unjustified* diversification benefit.
Some literature

- Makarov (1981): \(n = 2 \).
- Rüschendorf (1982): independently solved \(n = 2 \).
- Identical marginals:
 - Rüschendorf (1982): dual representation; uniform and binomial cases.
 - W., Peng and Yang (2013): sharp bounds for homogeneous tail monotone densities based on CM.
 - Puccetti and Rüschendorf (2013): sharpness of dual bounds, equivalent to a CM condition.
Between VaR and convex ordering bounds

Suppose F_1, \ldots, F_n are continuous distributions.

- $F_{i,a}$ for $a \in (0, 1)$ is the conditional distribution of F_i on $[F_i^{-1}(a), \infty)$;
- F_i^a for $a \in (0, 1)$ is the conditional distribution of F_i on $(-\infty, F_i^{-1}(a))$.
Theorem 1 (Bernard, Jiang and W. (2013))

(a) Suppose S_a is a convex ordering minimum element in $\mathcal{G}_n(F_{1,a}, \cdots, F_{n,a})$ for $a \in (0, 1)$, then
$$\sup_{S \in \mathcal{G}_n(F_1, \cdots, F_n)} \text{VaR}_a(S) = \text{ess inf } S_a.$$

(b) Suppose S_a is a convex ordering minimum element in $\mathcal{G}_n(F^a_1, \cdots, F^a_n)$ for $a \in (0, 1)$, then
$$\inf_{S \in \mathcal{G}_n(F_1, \cdots, F_n)} \text{VaR}_a(S) = \text{ess sup } S_a.$$
A few remarks:

- Finding convex ordering minimal element implies worst and best elements for VaR.
- The worst VaR only depends on the tail behavior, hence extra information on convariance/correlation may or may not affect its value.

Ruodu Wang
Part IV - Asymptotic Behavior

- Look at $S_n \in \mathcal{G}_n(F)$, $F = (F, \cdots, F)$, F having mean μ.
- When F has finite second moment, we have looked at

 $$V_n = \text{Var}(S_n) \text{ and } \overline{V_n} = \inf_{S_n \in \mathcal{G}_n(F)} \text{Var}(S_n).$$

- What if $n \to \infty$?
Look at $S_n \in \mathcal{S}_n(F), F = (F, \cdots, F)$, F having mean μ.

When F has finite second moment, we have looked at

$$V_n = \text{Var}(S_n) \quad \text{and} \quad \underline{V}_n = \inf_{S_n \in \mathcal{S}_n(F)} \text{Var}(S_n).$$

What if $n \to \infty$?

- iid case: $V_n = O(n)$.
- comonotonic case: $V_n = O(n^2)$.
- what about most negative correlated case \underline{V}_n?
Variance reduction

Theorem 2 (Wang and W. (2013b, preprint))

Suppose F has finite third moment then \(V_n = O(1) \).
Variance reduction

Suppose F has finite third moment then $V_n = O(1)$.

- A stronger result: there exists a sequence $X_i, \ i \in \mathbb{N}$ from F such that $|S_n - n\mu| \leq Z$ a.s. for some Z which does not depend on n.

Suppose F has finite third moment then $V_n = O(1)$.

- A stronger result: there exists a sequence $X_i, i \in \mathbb{N}$ from F such that $|S_n - n\mu| \leq Z$ a.s. for some Z which does not depend on n.
- For some F this $O(1)$ is sharp, i.e. $V_n \not\to 0$.
Asymptotic CM

Suppose F is supported in a finite interval with a strictly positive density function, then there exists $N \in \mathbb{N}$ such that F is n-CM for all $n \geq N$.

Asymptotically every distribution is (almost) CM.
Asymptotic equivalence

Theorem 4

Under some conditions on F, for all $a \in (0, 1)$

\[
\frac{\sup_{S \in \mathcal{G}_n(F, \ldots, F)} \text{VaR}_a(S)}{\sup_{S \in \mathcal{G}_n(F, \ldots, F)} \text{TVaR}_a(S)} \to 1.
\]

Worst VaR and worst TVaR (ES) are asymptotically equivalent.
• Puccetti and Rüschendorf (2013): F is continuous, satisfies a conditional CM condition.

• Puccetti, Wang and W. (2013): F is continuous and has strictly positive density based on CM.

Puccetti and Rüschendorf (2013): F is continuous, satisfies a conditional CM condition.

Puccetti, Wang and W. (2013): F is continuous and has strictly positive density based on CM.

The same asymptotic equivalence holds for inhomogeneous marginals with very weak conditions on the marginal distributions.
Table: Values (rounded) for best- and worst VaR and ES for a homogeneous portfolio with d Pareto(2) risks; $\alpha = 0.999$.

<table>
<thead>
<tr>
<th></th>
<th>$d = 8$</th>
<th>$d = 56$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best VaR</td>
<td>31</td>
<td>53</td>
</tr>
<tr>
<td>Best TVaR</td>
<td>145</td>
<td>472</td>
</tr>
<tr>
<td>Coomonotonic VaR</td>
<td>245</td>
<td>1715</td>
</tr>
<tr>
<td>Worst VaR</td>
<td>465</td>
<td>3454</td>
</tr>
<tr>
<td>Worst TVaR</td>
<td>498</td>
<td>3486</td>
</tr>
</tbody>
</table>

In practice some people would use about $\text{VaR}_{\alpha}(S) \approx 200$ for $d = 8$ as the *conservative* capital reserve.
Question. Let F, G be any two univariate distributions. Can you find random variables $X_i, i \in \mathbb{N}$ from F such that $(S_n - a_n)/b_n \xrightarrow{d} G$ for some real sequences a_n, b_n?
Shape problem

Question. Let F, G be any two univariate distributions. Can you find random variables $X_i, i \in \mathbb{N}$ from F such that $(S_n - a_n)/b_n \overset{d}{\to} G$ for some real sequences a_n, b_n?

I think the answer is positive. The message is:

The marginal constraint is weak compared to the dependence uncertainty. If you only assume known marginals, you can end up with **anything**.
Part V - Challenges

- Theoretical results are basically unavailable for heterogeneous marginal distributions.
- Many unsolved mathematical problems.
- Applications in quantitative risk management.
Mathematical challenges

- Develop more classes of CM/JM distributions.
- Find sharp convex bounds for non-identical marginal distributions.
- Sufficient conditions for the existence of convex ordering minimal element in an admissible risk class?
- Improve numerical algorithms such as the Rearrangement Algorithm in Embrechts, Puccetti and Rüschendorf (2013).
Final remarks

- Practical risk management?
- Dynamic process?
- I expect connection with statistics and data science.
 - Modelling aggregate risks via estimating dependence structure may not be the best idea to study risk aggregation.
- Rather immature ideas; discussions are very much welcome.
References I

References II

References III

References IV

References V

Thank you for your attention
Thank you for your attention

or pretending

If you know what I mean