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Abstract

The notion of an e-value has been recently proposed as a possible alternative
to critical regions and p-values in statistical hypothesis testing. In this paper
we consider testing the nonparametric hypothesis of symmetry, introduce ana-
logues for e-values of three popular nonparametric tests, define an analogue for
e-values of Pitman’s asymptotic relative efficiency, and apply it to the three non-
parametric tests. We discuss limitations of our simple definition of asymptotic
relative efficiency and list directions of further research.
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1 Introduction

The study of the efficiency of nonparametric tests that started in the late 1940s is
often regarded as a success story in statistics. Some nonparametric tests, such
as Wilcoxon’s signed-rank and rank-sum tests, are highly efficient even when
used in the framework of popular parametric models, such as the Gaussian
model. Theoretical results mostly concern asymptotic efficiency of those tests,
but there is also empirical evidence for their finite-sample efficiency. While some
nonparametric tests (such as Wilcoxon’s) became very popular after their high
efficiency had been discovered, others (such as Wald and Wolfowitz’s run test)
were gradually discarded from the statistical literature after their low efficiency
had been demonstrated [16, Introduction].

The usual approach to hypothesis testing is based on critical regions or p-
values, but in this paper we replace them with their alternative, e-values (see,
e.g., [23, 20, 7]). We show that some of the old results about the efficiency
of nonparametric tests carry over to hypothesis testing based on e-values. To
distinguish our notions of power, tests, etc., from the standard notions, we add
the prefix “e-”. (The prefix “p-” is sometimes added to signify standard notions
based on p-values, but in this paper we rarely need it since the key notion that
we are interested in, Pitman’s asymptotic relative efficiency, is defined in terms
of critical regions rather than p-values.)

We explain basics of e-testing in Sect. 2, and in particular, we state an
analogue of the Neyman–Pearson lemma in e-testing. In the following section,
Sect. 3, we give a simple example of a parametric e-test, one for testing the null
hypothesis N(0, 1) against an alternative N(θ, 1) in an IID situation.

In Sect. 4 we give the first, and in some sense most powerful, of the three
examples of nonparametric e-tests that we discuss in this paper. It was intro-
duced by Fisher in his 1935 book [5]. Our nonparametric null hypothesis is that
of symmetry around 0 (and for simplicity we consider independent observations
coming from a continuous distribution).

The material of Sects. 2–4 is standard. After that (Sect. 5) we define the
asymptotic relative efficiency of e-tests in the spirit of Pitman’s definition [17].
We regard our definition of asymptotic relative efficiency as a direct transla-
tion of the classical definition. Then in Sect. 6 we compute the Pitman-type
asymptotic relative efficiency of the Fisher-type test discussed in Sect. 4. This is
complemented by similar computations for e-versions of the sign test in Sect. 7
and Wilcoxon’s signed-rank test in Sect. 8. Our results for all three tests agree
perfectly with the classical results. This is just a first step, and in Sect. 9 we
discuss limitations of our approach (which are considerable) and list natural
directions of further research.

2 General principles of e-testing

Let P be a given probability measure on a sample space Ω (a measurable space).
Our null hypothesis is {P}; it is simple in the sense of containing a single
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probability measure. (We will sometimes also refer to P as our null hypothesis.)
We observe ω ∈ Ω and are interested in whether ω was generated from P .

An e-variable for testing P is an [0,∞]-valued random variable E such that∫
E dP ≤ 1. In order to be used for testing, we need to choose E before we

observe ω. By Markov’s inequality, E can be large only with a small probability
(for any threshold c > 1, P (E ≥ c) ≤ 1/c); therefore, observing a large E casts
doubt on ω being generated from P .

In the classical Neyman–Pearson approach to hypothesis testing, in addition
to P we also have an alternative hypothesis Q. The e-power of an e-variable E
is then defined as

∫
logE dQ. This is an analogue of the usual notion of power,

but it only works in regular cases. One of such regular cases will be discussed
in the next section. The following lemma is very well known (see, e.g., [20,
Sect. 2.2.1] and the references therein), and we provide a simple proof.

Lemma 2.1. For given null and alternative hypotheses P and Q, respectively,
such that Q ≪ P , the largest e-power is attained by the likelihood ratio dQ/dP :
for any e-variable E, ∫

logE dQ ≤
∫

log
dQ

dP
dQ. (1)

And if Q ≪ P is violated, the largest e-power is ∞.

The likelihood ratio dQ/dP in Lemma 2.1 is understood to be the Radon–
Nikodym derivative of Q w.r. to P .

Proof of Lemma 2.1. If Q ≪ P is violated, there is an event A ⊆ Ω such that
P (A) = 0 and Q(A) > 0. Then the e-power of the e-variable

E(ω) :=

{
∞ if ω ∈ A

1 otherwise

is ∞.
It remains to consider the case Q ≪ P . In this case, let q be a probability

density function of Q w.r. to P . In terms of q, we can rewrite (1) as∫
q logE dP ≤

∫
q log q dP, i.e.,

∫
q log

E

q
dP ≤ 0.

The last inequality follows from log x ≤ x− 1.

According to Lemma 2.1, which is an analogue for e-values of the Neyman–
Pearson lemma, the optimal e-variable for testing a null hypothesis P against
an alternative Q ≪ P is the likelihood ratio dQ/dP . The maximum e-power is

KL(Q ∥ P ) :=

∫
log

dQ

dP
dQ
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(cf. [20, Sect. 2.3] and [7, Theorem 1]). This is simply the Kullback–Leibler
divergence [12] of the alternative Q from the null hypothesis P ; we will call it
the optimal e-power.

We will sometimes refer to logE as the observed e-power of E; the e-power
is then the expectation of the observed e-power w.r. to the alternative hypoth-
esis Q.

The notion of e-power is very close to Shafer’s [20] implied target, the main
difference being that the implied target only depends on the null hypothesis P
and the e-variable E.

As a short detour, let us check that our notion of e-power enjoys a natural
property in testing with multiple e-values. Denote by ΠQ the function

ΠQ : E 7→
∫

logE dQ (2)

that maps an e-variable to its e-power. Independent e-variables E1, . . . , EK can
be combined into one e-variable using a merging function, the most common
choices being convex mixtures of the product functions

FM : (e1, . . . , eK) 7→
∏
k∈M

ek,

where M is a subset of {1, . . . ,K}, with F∅ set to 1. Denote by M the con-
vex hull of all functions FM . Useful elements of the class M are U-statistics,
symmetric merging functions discussed in [23, Sect. 4].

Proposition 2.2. Let E = (E1, . . . , EK) be a vector of independent e-variables.

(i) For all F ∈ M, F (E) is an e-variable.

(ii) If ΠQ(Ek) > 0 for each k = 1, . . . ,K, then ΠQ(F (E)) > 0 for all F ∈
M \ {F∅}.

(iii) If ΠQ(Ek) ≥ 0 for each k = 1, . . . ,K, then ΠQ(F (E)) ≥ 0 for all F ∈ M.

Proof. Part (i) follows from the fact that the product of independent e-variables
is an e-variable, and a convex mixture of e-variables is an e-variable. Next we
prove (ii). For all M other than M = ∅, we have

ΠQ(FM (E)) =
∑
k∈M

ΠQ(Ek) > 0,

and ΠQ(F∅(E)) = 0. Note that the mapping (2) is concave on the set of
nonnegative random variables. Since F (E) is a convex mixture of FM (E) for
M ⊆ {1, . . . ,K}, we get ΠQ(F (E)) ≥ 0, and the inequality is strict unless
F = F∅. This proves (ii). The case (iii) is similar to (ii).

Proposition 2.2 shows that e-power remains positive when combining inde-
pendent e-values with positive e-power using a large class of merging functions.
As a special case of Proposition 2.2 applied to only one e-variable, if ΠQ(E) > 0,
then ΠQ(1 − λ + λE) > 0 for all λ ∈ (0, 1]. The operation of changing E to
1− λ+ λE is common in building e-processes; see, e.g., [24].
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3 A parametric e-test

We start our discussion of specific e-tests from a very simple parametric case,
that of the Gaussian statistical model Qθ := N(θ, 1), θ ∈ R, with the variance
known to be 1. We observe realizations of independent Z1, . . . , Zn ∼ N(θ, 1).
The null hypothesis P is N(0, 1), and we are interested in the alternatives
Q = Qθ = N(θ, 1) for θ ̸= 0.

For observations z1, . . . , zn and a given alternative N(θ, 1), the likelihood
ratio of the alternative to the null hypothesis is

Eθ(z1, . . . , zn) :=
exp

(
− 1

2

∑n
i=1(zi − θ)2

)
exp

(
− 1

2

∑n
i=1 z

2
i

) = exp

(
θ

n∑
i=1

zi −
1

2
nθ2

)
. (3)

The corresponding optimal e-power is∫
logEθ dQθ = θnθ − 1

2
nθ2 =

1

2
nθ2. (4)

The interpretation of the optimal e-power (4) usually depends on the law of
large numbers and its refinements (such as the central limit theorem and large
deviation inequalities). The presence of log in the definition

∫
logE dQ of the

e-power of E under the alternative Q reflects the fact that a typical e-value is
obtained by multiplying components coming from the individual observations zi.
This can be seen from (3) (and also expressions (9), (15), and (19) below, which
are typical). Taking the logarithm leads to a much more regular distribution,
which is, e.g., approximately Gaussian under standard regularity conditions. In
the case of (3), the key component of the logarithm is

∑n
i=1 zi, and we can apply,

e.g., the central limit theorem to see that the observed e-power is between the
narrow limits 1

2nθ
2 ± c

√
nθ with probability close (in this particular case, even

exactly equal) to Φ(c) − Φ(−c), where c > 0 and Φ is the standard Gaussian
cumulative distribution function.

Remark 3.1. To get the full idea of the power of E under Q, we need the
whole distribution of the observed e-power logE under Q, and replacing it by
its expectation is a crude step. (The next step might be, e.g., complementing
the expectation with the standard deviation of logE under Q.) We leave such
more realistic notions of power for future research.

We regard the family (3) of e-variables as a test (an e-test) of the null
hypothesis N(0, 1). While for several important statistical models there are
uniformly most powerful p-tests (see, e.g., [14, Chap. 3]), this is not the case for
e-tests, and the e-tests considered in this paper are always families of e-variables.

The fact that the e-variable (3) depends on the unknown alternative param-
eter θ is a disadvantage. A natural way out is to integrate it under the prior
distribution N(0, 1) over θ, which gives us the e-variable

1√
2π

∫
exp

(
θ

n∑
i=1

zi −
1

2
nθ2 − 1

2
θ2

)
dθ
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=

√
1

n+ 1
exp

 1

2n+ 2

(
n∑

i=1

zi

)2
 (5)

(cf. Remark 3.2 below). Notice that the operation of integration makes the e-
variable “two-sided”: while (3) is monotone in

∑
i zi, (5) is monotone in |

∑
i zi|.

The remaining disadvantage of the e-variable (5) is that it is valid only under
the simple Gaussian null hypothesis N(0, 1). In the following sections we will
replace this simple null hypothesis with a composite nonparametric one.

Remark 3.2. In our computations in this paper we often use the formula∫
exp

(
−Ax2 +Bx

)
dx =

√
π

A
exp

(
B2

4A

)
,

where A > 0 and B ∈ R. Equations (3) and (5) are simple calculations, and
they appear in the context of mixture martingales, which date back to, at least,
the work of Robbins (e.g., [19]); see also the more recent [10] and the references
therein.

4 Fisher-type nonparametric e-test of symme-
try

Let Z1, . . . , Zn be continuous IID random variables. We are interested in the null
hypothesis that their distribution is symmetric around 0. This is an example of
a nonparametric hypothesis, since the distribution of Z1, . . . , Zn is not described
in a natural way by finitely many real-valued parameters. Intuitively, we are
interested in two alternatives: the one-sided alternative that Zi, even though
IID, are not symmetric but shifted to the right; and the two-sided alternative
that Zi are shifted to the right or to the left.

A typical case in applications is where Zi := Yi −Xi, Xi is a pre-treatment
measurement, and Yi is a post-treatment measurement, and we are interested
in whether the treatment has any effect. Assuming that raising Xi is desirable,
the one-sided alternative is that the treatment is beneficial.

We will formalize our null hypothesis in a way similar to repetitive and one-
off structures [22, Sects. 11.2.4 and 11.2.5]. However, we will not need general
definitions and will adapt them to our special case.

The symmetry model for a sample size n is the pair (t, b), where t : Rn → Σ
is the mapping

t : (z1, . . . , zn) 7→ (|z1| , . . . , |zn|)

from the sample space Rn to the summary space [0,∞)n, and b is the Markov
kernel that maps each summary (z1, . . . , zn) ∈ [0,∞)n to the uniform probability
measure on the set

t−1(z1, . . . , zn) = {(j1z1, . . . , jnzn) | (j1, . . . , jn) ∈ {−1, 1}n} . (6)
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An e-variable for testing the null hypothesis of symmetry is a function E : Rn →
[0,∞] such that

∫
E db(t(z1, . . . , zn)) ≤ 1 for all z1, . . . , zn. It is admissible if ≤

holds as = for all z1, . . . , zn; in other words, if it ceases to be an e-variable (w.r.
to the symmetry model) as soon as its value is increased at any point.

Remark 4.1. The definition of admissibility that we give is adapted to our
current context; see [18, Sect. 9] for a more general discussion.

In this section we define the first of our three e-tests for testing symmetry.
We are interested in the e-variables of the form

Eλ(z1, . . . , zn) := exp (λS(z1, . . . , zn)− C) , (7)

where S(z1, . . . , zn) :=
∑n

i=1 zi, λ > 0 is a positive parameter, and C is chosen
to make E an admissible e-variable, i.e.,

C = C(λ, t(z1, . . . , zn)) := log

∫
exp(λS)db(t(z1, . . . , zn))

(in other words, C := logE exp(λS), the expectation being under the null hy-
pothesis, i.e., under the symmetry model). Lemma 4.2 will give a convenient
formula for computing C.

The form (7) for our e-variables can be justified by the analogy with the
e-variable (3) that we obtained in the Gaussian case. The expression for the
normalizing constant C will, however, be different and will be derived momen-
tarily.

The justification of the symmetry model from the point of view of stan-
dard statistical modelling is that, under the null hypothesis of symmetry, t is a
sufficient statistic giving rise to b as conditional distribution.

For simplicity, we will assume that z1, . . . , zn are all different (under our as-
sumption that the random variables Z1, . . . , Zn are continuous, the realizations
will be all different almost surely).

Lemma 4.2. The value of C in (7) is given by

C =

n∑
i=1

log
eλzi + e−λzi

2
. (8)

Proof. We find

eC = 2−n
1∑

j1=0

· · ·
1∑

jn=0

eλj1z1+···+λjnzn = 2−n
n∏

i=1

(
eλzi + e−λzi

)
.

(Alternatively, we can see straight away that the average of (9) below w.r. to
b(t(z1, . . . , zn)) is 1.)

Plugging (8) into (7) gives the e-variable

Eλ(z1, . . . , zn) = e−C
n∏

i=1

eλzi =

n∏
i=1

eλzi

1
2 (e

λzi + e−λzi)
. (9)
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This is an e-version of Fisher’s permutation test, which he introduced and
applied to Charles Darwin’s data [3, Chap. 1] in his 1935 book [5, Sects. 21
and 21.1] on experimental design.

Again, since there is no uniformly most powerful e-test, we consider a family
of e-variables. The e-variable (9) is, of course, admissible.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.0

0.1

0.2

0.3

0.4

0.5 log((ex + e x)/2)
x2/2

Figure 1: The inequality (11) on the log scale

The e-variable (9) dominates

E′
λ(z1, . . . , zn) :=

n∏
i=1

eλzi−λ2z2
i /2, (10)

in the sense E′ ≤ E. Therefore, E′ is also an e-variable, albeit inadmissible in
general. To check the inequality E′ ≤ E, it suffices to check that

1

2

(
ex + e−x

)
≤ ex

2/2. (11)

Expanding both sides into Taylor’s series shows that this inequality indeed holds
for all x. The inequality is not excessively loose, especially for small values of x
(which will be the case that we will be interested in when computing the Pitman
efficiencies): cf. Figure 1.

Remark 4.3. The fact that (10) is an e-variable was established by de la Peña
[4, Lemma 6.1]. Ramdas et al. [18, Sect. 10] point out that it is inadmissible,
and they define several natural admissible alternatives to (9). Investigating the
asymptotic relative efficiency of those admissible alternatives is an interesting
direction of further research.
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49 23 56
−67 28 24
8 41 75
16 14 60
6 29 −48

Table 1: Differences in eighths of an inch between cross- and self-fertilised plants
of the same pair (Table 3 in [5, Sect. 17])

In order to get rid of the dependence of (9) or (10) on λ, we can integrate
these expression over a prior distribution on λ. This can be easily done explicitly
(see Remark 3.2) in the case of (10) and the prior distribution N(0, 1) on λ:

1√
2π

∫ n∏
i=1

eλzi−λ2z2
i /2−λ2/2 dλ =

√
1

1 +
∑n

i=1 z
2
i

exp

(
(
∑n

i=1 zi)
2

2 + 2
∑n

i=1 z
2
i

)
. (12)

The right-hand side of (12) is close to the right-hand side of (5) under
N(0, 1) as the null hypothesis: this follows from

∑n
i=1 z

2
i ≈ n (for large n and

with high probability). However (as noticed in [4]), this relatively small change
drastically changes the property of validity of the e-test: while the right-hand
side of (5) is an e-test of N(0, 1) only, the right-hand side of (12) is an e-test of
the nonparametric hypothesis of symmetry.

Results for Charles Darwin’s data

In this subsection we will compute Fisher-type nonparametric e-values for data
used by Darwin [3, Chap. 1] to test whether cross-fertilization of plants was
advantageous to the progeny as compared with self-fertilization. This was an
important question from the evolutionary point of view, and Darwin’s prelimi-
nary work had convinced him that cross-fertilization was indeed advantageous;
in particular, nature went to great lengths to prevent self-fertilization [2].

Table 1 reports results for a small subset of Darwin’s data, those for maize.
This subset was analyzed for Darwin by Francis Galton (as Darwin describes
in detail in [3, Chap. 1]) and was reanalyzed by Fisher in [5, Chap. 3]. Fisher
offered both parametric analysis (assuming the Gaussian distribution) and novel
nonparametric analysis, and his finding was that Student’s t-test and Fisher’s
nonparametric test produce remarkably similar results.

Table 1 lists the differences in height between 15 pairs of matched plants,
with a cross- and self-fertilized plant in each pair (meaning a plant grown from a
cross- or self-fertilized seed, respectively). A positive difference means that the
cross-fertilized plant is taller, which we a priori expect to happen more often.
Fisher was interested in two alternatives to the null hypothesis of symmetry: the
one-sided alternative of positive observations being more common than negative
ones and the two-sided alternative of asymmetry (with positive observations
being either more or less common than negative ones).
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Fisher’s p-value for testing the one-sided hypothesis is 2.634%, and his p-
value for testing the two-sided hypothesis is twice as large, 5.267%. Therefore,
the one-sided p-value is significant but not highly significant, whereas the two-
sided p-value is not even significant.

0.0 0.2 0.4 0.6 0.8 1.0
parameter [0, 1]

0

1

2

3

4

5

6

7

8

e-
va

lu
e

admissible
simplified

Figure 2: Results for the Fisher-type e-test applied to Darwin’s data

Figure 2 plots the Fisher-type admissible e-values (9) (in blue) and the sim-
plified e-values (10) (in red) for the parameter λ in the range [0, 1]. The meaning
of λ depends on the scale of the numbers z1, . . . , z15 in Table 1, and in order
to make λ less arbitrary we normalize z1, . . . , z15 by dividing them by the stan-
dard deviation of these 15 numbers. Jeffreys’s [11, Appendix B] rule of thumb
is to consider an e-value of 10 as being analogous to a p-value of 1% and to
consider an e-value of

√
10 ≈ 3.162 as being analogous to a p-value of 5%. (See

[23, Sect. 2] for a more detailed discussion of relations between e-values and
p-values.) This makes Figure 2 roughly comparable to Fisher’s p-values, espe-
cially if we ignore the inadmissible simplified e-values. If we guess in advance
that λ := 0.5 is a good parameter value, we will get an e-value of 7.651. More
realistically, averaging the e-values for λ ∈ [0, 1] will give the one-sided e-value
5.149. Replacing λ ∈ [0, 1] by λ ∈ [−1, 1] gives the two-sided e-value 2.633 not
reaching the threshold of

√
10.

5 Pitman-type asymptotic relative efficiency

The following definition is in the spirit of Pitman’s definition, which can be
found in, e.g., [21, Sect. 14.3]. Let (Qθ | θ ∈ Θ) be a statistical model, i.e., a set
of probability measures on the real line R, with the observations generated from
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one of those probability measures in the IID fashion. We assume, for simplicity,
that Θ = R and regard Q0 as the null hypothesis; informally, the alternative is
either one-sided, θ > 0, or two-sided, θ ̸= 0 (for specific e-tests, we will have the
same results for one-sided and two-sided Pitman efficiency). By an e-variable
we mean an e-variable w.r. to Qn

0 . In our asymptotic framework we consider
sequences of parameter values θν that depend on the “difficulty” ν = 1, 2, . . . of
our testing problem; in the one-sided case we will assume θν ↓ 0 (the sequence is
strictly decreasing and converges to 0), and in the two-sided case we will assume
θν → 0.

Let En
1 and En

2 be families of e-variables on Rn; we are interested in the case
where En

1 is a family of interest to us (a nonparametric e-test such as (9) above,
or (16) or (17) below) and En

2 is the baseline family of all e-variables on Rn.
The asymptotic relative efficiency of En

1 w.r. to En
2 is c if, for any β > 0 and

any θν ↓ 0 (one-sided case) or θν → 0 (two-sided case), we have nν,2/nν,1 → c,
where nν,j , j = 1, 2, is the minimal number of observations n such that

∃E ∈ En
j :

∫
logE dQn

θν ≥ β.

For example, if the asymptotic relative efficiency is 0.5, the best e-test in (En
1 )

requires twice as many observations n as the best test in (En
2 ) to achieve the

same e-power (if the best e-tests exist).
The idea of using an auxiliary parametric statistical model (Qθ), such as the

Gaussian model, to assay the efficiency of nonparametric e-tests is illustrated
in Figure 3. We are testing a nonparametric null hypothesis (the hypothesis
of symmetry in this paper), but we are afraid that for a popular parametric
model (the Gaussian model Qθ := N(θ, 1) in this paper, which plays the role
of an assay statistical model) our testing method loses a lot. We are interested
in the case where the intersection between the nonparametric null hypothesis
and the assay model contains only one probability measure; we refer to this
intersection as the parametric null hypothesis in Figure 3 (in this paper, it is
{N(0, 1)}). For a given simple alternative hypothesis Q = Qθ in the assay model
(shown as the red dot in Figure 3), we are hoping to show that the best e-power
achieved for testing the simple parametric null hypothesis vs Q is not much
better than the best e-power achieved for testing the composite (and usually
massive) nonparametric null hypothesis. Or, if Pitman-type notion of efficiency
is to be used (as in this paper), that the same e-power is attained for numbers
of observations that are not wildly different.

Our use of the Gaussian model with variance 1 as assay model motivates
using (7) with S(z1, . . . , zn) := z1+ · · ·+zn as a nonparametric e-test. The sign
and Wilcoxon versions will be natural modifications (corresponding to relaxing
the symmetry assumption, as explained in Remark 7.1 below).

For all three nonparametric e-tests considered in this paper (Sects. 6–8 be-
low) we will need the number nν,2 of observations required by our baseline, which
is, by Lemma 2.1, the likelihood ratio dN(θν , 1)/dN(0, 1). By (4), achieving an
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nonparametric
null hypothesis

assay parametric
model

parametric null
hypothesis

   ARE Page 1    

Figure 3: Assaying a non-parametric e-test

e-power of β requires approximately

2βθ−2
ν (13)

observations (namely, ⌈2βθ−2
ν ⌉ observations).

Remark 5.1. In the context of regular statistical models such as Gaussian, it is
natural to set θν := cν−1/2. In this case the “difficulty” ν (referred to as “time”
in [21, Sect. 14.3]) becomes proportional to the number of observations required
to achieve a given e-power.

6 Asymptotic efficiency of the Fisher-type e-test

In the classical case, the relative efficiency of Fisher’s test is 1 [6, Chapter 7,
Example 4.1], as first shown by Hoeffding [9] (according to Mood [15]). Let us
check that this remains true for the e-version as well.

First we find informally a suitable e-variable in the family (9) and then
show that it requires the optimal number (13) of observations to achieve an
e-power of β. Under the symmetry model, each observation zi is split into its
magnitude mi := |zi| and sign si := sign(zi). Given the magnitudes, the signs
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are independent and P(si = 1) = 1/2 under the null hypothesis N(0, 1) and

P(si = 1) =
exp

(
− 1

2 (mi − θν)
2
)

exp
(
− 1

2 (mi − θν)2
)
+ exp

(
− 1

2 (−mi − θν)2
)

=
exp (θνmi)

exp (θνmi) + exp (−θνmi)

under the alternative hypothesis N(θν , 1). The conditional likelihood ratio for
the signs is

n∏
i=1

2 exp (θνzi)

exp (θνmi) + exp (−θνmi)
=

n∏
i=1

exp (θνzi)

1 + θ2νm
2
i /2 + o(θ2νm

2
i )
.

This is Fisher’s e-test (9) corresponding to λ := θν . Its observed e-power is

n∑
i=1

(
θνzi − θ2νm

2
i /2 + o(θ2νm

2
i )
)
= θν

n∑
i=1

zi − (1 + o(1))
θ2ν
2

n∑
i=1

m2
i .

Since, under the alternative hypothesis N(θν , 1),

E
n∑

i=1

zi = nθν

and

E
n∑

i=1

m2
i = E

n∑
i=1

z2i = n+ nθ2ν = (1 + o(1))n,

the e-power is

nθ2ν − (1 + o(1))
θ2ν
2
n ∼ 1

2
nθ2ν .

We obtain the optimal e-power (4) with θ = θν , and so the asymptotic relative
efficiency of Fisher’s e-test is 1.

7 Sign e-test

In this and following sections we use (7) for different statistics S, and with C
still chosen to make Eλ an admissible e-variable. In this section we make the
simplest choice of S(z1, . . . , zn) in (7), which is the number k of positive zi
among z1, . . . , zn. This gives the sign e-test with parameter λ > 0. The use of
the signs for hypothesis testing goes back to [1].

To obtain a useful alternative representation of the sign e-test, let p ∈ (0, 1)
be defined by the equation

p

1− p
= eλ

12



(so that λ becomes the log-odds ratio). The e-variable (7) then becomes

Eλ(z1, . . . , zn) = eλk−C = pk(1− p)−ke−C =
pk(1− p)n−k

2−n
. (14)

The last expression is the likelihood ratio of an alternative to the null hypothesis,
and so is an admissible e-variable. This gives us the representation

Ep(z1, . . . , zn) :=
pk(1− p)n−k

2−n
(15)

of the sign e-test.
The equality between the last two terms in (14) gives an explicit expression

for C,

C = −n log(2(1− p)) = n log
1 + eλ

2
,

which in turn gives the alternative representation

Eλ(z1, . . . , zn) = eλk
(

2

1 + eλ

)n

(16)

of the sign e-test.
In view of our informal alternative hypothesis, we are often interested in

λ > 0, i.e., p > 1/2.

Remark 7.1. Notice that in this section we are actually testing a wider null
hypothesis than the symmetry model, since the magnitudes of zi do not matter.
Namely, the sign e-test is valid for testing the hypothesis that the signs of
Z1, . . . , Zn are ±1 independently. A similar remark can also be made about the
nonparametric e-test discussed in the following section, which in fact tests an
intermediate null hypothesis.

As before, we have a dependence of the sign e-test (15) on a parameter, p. To
get rid of this dependence, we can, e.g., integrate (15) over p ∈ [0, 1], obtaining

E(z1, . . . , zn) := 2nB(k + 1, n− k + 1),

where B is the beta function. For testing the one-sided hypothesis we can
integrate (15) over the uniform probability measure on [0.5, 1], which gives

E(z1, . . . , zn) := 2n+1
(
B(k + 1, n− k + 1)− B(0.5; k + 1, n− k + 1)

)
,

where the second entry of B stands for the incomplete beta function.

Efficiency of the sign test

In this and next sections we consider the same assay parametric model and
still assume that the null hypothesis is N(0, 1) and the alternative is N(θν , 1).
Suppose we only observe the signs si of zi, which is sufficient when testing the

13



null hypothesis with the sign e-test. By Lemma 2.1 the largest e-power for an
e-variable of this kind will be achieved by the likelihood ratio for the signs.

The sign of Zi is 1 with probability 1/2 under the null hypothesis and
1/2 + θ̃ν/

√
2π under the alternative for θ̃ν ∼ θν , due to the first-order Tay-

lor approximation of the standard Gaussian cumulative distribution function Φ.
With k being the number of positive zi, the likelihood ratio for the signs is(

1
2 + θ̃ν√

2π

)k (
1
2 − θ̃ν√

2π

)n−k

(1/2)
n =

(
1 +

√
2

π
θ̃ν

)k(
1−

√
2

π
θ̃ν

)n−k

.

This is an instance of the sign e-test (15), corresponding to p = 1/2 + θ̃ν/
√
2π.

The observed e-power of this e-test is

k log

(
1 +

√
2

π
θ̃ν

)
+ (n− k) log

(
1−

√
2

π
θ̃ν

)

= (2k − n)

√
2

π
θ̃ν − 1

π
nθ̃2ν + o(nθ̃2ν)

(we have used the second-order Taylor approximation). This gives the e-power(
2

(
1

2
+

θ̃ν√
2π

)
n− n

)√
2

π
θ̃ν − 1

π
nθ̃2ν + o(nθ̃2ν) =

1

π
nθ̃2ν + o(nθ̃2ν) ∼

1

π
nθ2ν .

To achieve an e-power of β, the sign e-test needs ∼ πβθ−2
ν observations. There-

fore, the asymptotic efficiency of the sign e-test is 2/π ≈ 0.64, exactly the same
as in the standard case [6, Example 3.1]. (In the standard case the sign test is
usually compared with the t-test, but in this paper we use an even more basic
assay parametric model; namely, we assume that the variance is known to be
1.)

Since the asymptotic efficiency is approximately 2/3, we can say that the
sign test wastes every third observation in our Gaussian setting. This is the
least efficient of the three nonparametric e-tests considered in this paper when
efficiency is measured using the Gaussian assay model as yardstick.

Sign test for Darwin’s data

It is interesting that the sign test gives the one-sided p-value of 0.00369 and the
two-sided p-value of 0.00739. In contrast with Fisher’s p-test, both p-values are
highly significant, the reason being that the two negative numbers in Table 1
are so large in absolute value.

Figure 4 is an analogue of Figure 2 for the sign test. The attainable e-
values are now much larger, and the average over all p ∈ [0, 1] is 19.310. To
use Jeffreys’s [11, Appendix B] expressions, we have strong evidence against
the null hypothesis of cross- and self-fertilization being equally efficient. The
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Figure 4: Results for the sign e-test applied to Darwin’s data

corresponding one-sided e-value, found as the average over all p ∈ [0.5, 1], is
38.544, and in Jeffreys’s terminology it provides very strong evidence (for cross-
fertilization tending to produce taller plants, in this context).

Table 1 comprises only small part of the overwhelming evidence in favour
of cross-fertilization collected by Darwin over 11 years. Darwin chose maize
to illustrate his and Galton’s statistical methods in [3, Chap. 1], but in [3,
Chaps. 2–6] he has 99 similar tables (with our Table 1 corresponding to Darwin’s
Table 97). With this amount of evidence, statistics is hardly needed to see that
the evidence is really overwhelming.

8 Wilcoxon’s signed-rank e-tests

Wilcoxon’s signed-rank test [25] is based on arranging the magnitudes |zi| of
the observations in the ascending order and assigning to each its rank, which
is a number in the range {1, . . . , n}: the observation zi with the smallest |zi|
gets rank 1, the one with the second smallest |zi| gets rank 2, etc. Notice that
the symmetry model (i.e., the uniform probability measure on (6)) implies that
for any set A ⊆ {1, . . . , n}, the probability is 2−n that the observations with
the ranks in A will be positive and all other observations will be negative. This
determines the distribution (conditional on the magnitudes |zi|) of Wilcoxon’s
statistic Vn defined as the sum of the ranks of the positive observations.

We will be interested in the nonparametric e-test (7) with S := Vn, i.e.,

Eλ(z1, . . . , zn) := exp (λVn − C) . (17)
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The following lemma gives a convenient formula for computing C.

Lemma 8.1. The value of C in (17) is given by

C =

n∑
i=1

log
1 + eλi

2
. (18)

Proof. Using Fisher’s conditional distribution (the uniform probability measure
on (6)), we can write C in the form

C = log

2−n
∑

A⊆{1,...,n}

exp(λ sum(A))

 ,

where sum(A) is the sum of all elements of A. Setting

Σi :=
∑

A⊆{1,...,i}

Λsum(A),

where Λ := exp(λ), and using the recursion

Σi = Σi−1 + ΛiΣi−1

(obtained by splitting all subsets of {1, . . . , i} into those that do not contain i
and those that do), we obtain

Σn =

n∏
i=1

(1 + Λi).

Plugging (18) into (17), we obtain Wilcoxon’s signed-rank e-test

Eλ(z1, . . . , zn) := exp(λVn)

n∏
i=1

2

1 + eλi
. (19)

Efficiency of Wilcoxon’s signed-rank e-test

Our derivation in this subsection will follow [13, Example 3.3.6]. The statistic

Tn := Vn/

(
n

2

)
, (20)

Vn being Wilcoxon’s signed-rank statistic defined at the beginning of this sec-
tion, is asymptotically normal both under the null hypothesis N(0, 1),

Tn ∼ N

(
1

2
,
1

3n

)
, (21)

and under the alternative hypothesis N(θν , 1),

Tn ∼ N

(
1

2
+

θν√
π
,
1

3n

)
. (22)
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The mean value 1/2+θν/
√
π in (22) is found as the first-order approximation to

the probability of Z1+Z2 > 0, where Z1 and Z2 are independent and distributed
according to the alternative hypothesis N(θν , 1) (see [13, (3.3.40)]). Namely, it
is obtained from Z1 + Z2 ∼ N(2θν , 2) and from the standard Gaussian density
being 1/

√
2π at 0.

From (21) and (22) we obtain the asymptotic likelihood ratio

exp

(
− 1

2

(
Tn − 1

2 − θν√
π

)2
/ 1
3n

)
exp

(
− 1

2

(
Tn − 1

2

)2
/ 1
3n

) = exp

(
3n

(
Tn − 1

2

)
θν√
π
− 3n

2

θ2ν
π

)
(23)

(of the form (17); see below). The observed e-power is obtained by removing
the exp, and then the e-power is obtained by taking the expectation w.r. to Tn

distributed as (22). Therefore, the e-power is, asymptotically,

3n
θν√
π

θν√
π
− 3n

2

θ2ν
π

=
3n

2

θ2ν
π
.

The number of observations required for achieving an e-power of β is, asymp-
totically,

2π

3
βθ−2

ν .

Comparing this with the baseline (13) gives the asymptotic relative efficiency of
3/π ≈ 0.955, as in the classical case. Wilcoxon’s test wastes one observation out
of about 22 (under the Gaussian model as compared with the e-test optimized
for that model).

The approximate e-test used in this calculation (given by the right-hand side
of (23)) is of the form (17) with

λ :=
3nθν(
n
2

)√
π

(obtained by expressing (23) in terms of Vn using (20)). This, however, ignores
the definition of C in (17). In practical application we should use, of course,
the precise expression (19).

9 Directions of further research

In the previous sections we mentioned several limitations of our definitions. In
this concluding section we will add further details.

The notion of e-power as used in the definition of efficiency

Our notion of e-power for an e-variable E is crude in that it depends only on the
expectation of logE, as explained in Remark 3.1. This crudeness is inherited by
our definition of the asymptotic relative efficiency of e-tests. According to our
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definition in Sect. 5, the asymptotic relative efficiency is c if nν,2 ∼ cnν,1. This
statement will be particularly useful if, under the alternative hypothesis, the
full distribution of the original likelihood ratio, such as (3) for θ = θν and nν,2

observations, is close, in a suitable sense, to the full distribution of the e-test,
such as (9), (16), or (19) (with nν,1 observations and the corresponding value of
the parameter). Therefore, a fuller treatment of asymptotic relative efficiency
will not use e-power directly (which will make it more complicated).

Definition of efficiency in terms of mixtures

Our definition of Pitman-type efficiency is close to being a direct translation of
the classical one. It considers the alternatives N(0, θν) that approach the null
hypothesis N(0, 1) as the difficulty ν increases. In the classical case, this works
perfectly for many popular assay models because of the existence of a uniformly
most powerful test: the optimal size α critical region does not depend on ν
(assuming θν > 0). In the e-case, on the contrary, the optimal e-variable does
depend on ν.

A possible alternative definition would be to replace N(θν , 1) by a mixture∫
N(θ, 1)µν(dθ) of N(θ, 1) w.r. to a probability measure µν(dθ) that is increas-

ingly concentrated around θ = 0 as ν → ∞. In a sense, the assay statistical
model considered in this paper is “pure” in that it consists of pure Gaussian dis-
tributions. Considering mixtures

∫
N(θ, 1)µν(dθ) would make the results more

realistic but would also make the definitions more complicated.

Other assay models

In our efficiency results, the Gaussian model can be replaced by other statistical
models. It is particularly interesting to compare nonparametric e-tests with
the optimal e-tests under those models; nowadays, comparison with the t-test,
which was done in many of the classical papers (e.g., [8]), looks less convincing
for non-Gaussian assay models.

Our choice of the form (7) of the nonparametric e-tests considered in this
paper was motivated by the Gaussian assay model: see the likelihood ratio (3).
Using other assay models would lead to other nonparametric e-tests. Therefore,
varying the assay model may be a useful design tool for nonparametric e-tests.

Other notions of efficiency

The Pitman-type notion of efficiency is “local”, in the sense of being defined in
terms of progressively more difficult alternatives that tend to the null hypothesis
as ν → ∞. It is the most popular notion of efficiency for nonparametric tests,
but it would be interesting to develop e-versions of other, non-local, notions of
asymptotic relative efficiency (see, e.g., [16, Chap. 1]).
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