

Zigzag Expanded Navigation Plots in R: The R Package zenplots

Marius Hofert
University of Waterloo

Wayne Oldford
University of Waterloo

Abstract

We describe the features and implementation of the R package package zenplots $=$ zigzag expanded navigation plots for displaying high-dimensional data according to the recently proposed zenplots. By default, zenplots lay out alternating one- and two-dimensional plots in a zigzag-like pattern where adjacent axes share the same variate. Zenplots are especially useful when subsets of pairs can be identified as of particular interest by some measure, or as not meaningfully comparable, or when pairs of variates can be ordered in terms of potential interest to view, or the number of pairs is too large for more traditional layouts such as a scatterplot matrix. They also allow an essentially arbitrary layout of plots. Highdimensional space can be explored in a zenplot (zenplot()) by navigating through lower dimensional subspaces along a zenpath (zenpath()) which orders the dimensions (i.e., variates) visited according to some measure of interestingness; see Hofert and Oldford (2017) for an application to S\&P 500 constituent data.

The R package zenplots provides compact displays for high-dimensional data via the notion of zenplots, grouping of variates, and customizable displays of zigzag layouts. It accommodates different graphical systems including the base graphics package of R Core Team (2017b), the package grid of R Core Team (2017a) (and hence packages like ggplot2 of Wickham and Chang (2016)), and the interactive graphical package loon of Waddell and Oldford (2017). zenplots handles groups of variates, partial and fully missing data, and more. One important feature is that zenplot () and its auxiliary functions in zenplots distinguish layout from plotting which allows one to freely choose and create one- and twodimensional plot functions; predefined functions are exported for all graphical systems.

All R plots in this paper are reproducible with the vignette selected_features (available in zenplots $\geq 0.0-2$).

Keywords: R, data visualization, data analysis, graphics, grid, loon.

1. Introduction

Upper triangle scatterplot matrices for visualizing high-dimensional data through pairwise projections first appeared in Hartigan (1975). Tukey and Tukey (1981b) called them "generalized draftsman's views", the name "scatterplot matrix" (or, in short, "splom") is introduced in Tukey and Tukey (1983). The inherent limitations of scatterplot matrices for high-dimensional data were recognized soon thereafter:
"For data in several dimensions we can make triangular arrays of two-coordinates-at-a-time scatter plots. However, as the dimensionality of the data increases, two problems arise, one minor, the other more serious. First, the plots must be made smaller and smaller if they are to fit on a single page; second, and more importantly, they become less and less representative of the totality of all possible views. With increasing dimensionality the need for good methods of selection becomes ever more pressing"
Tukey and Tukey (1981b, p. 210)
In Tukey and Tukey (1981b, Table 10.2, p. 195), "several dimensions" meant six to ten; "many" meant 11-20, "lots of" meant 21-40, and "high-dimensional" was reserved for $d \geq 41$ dimensions. The scatterplot matrix works well for "data in several dimensions".
In our experience, beyond $d=30$ to $d=50$ dimensions, each cell in the scatterplot matrix becomes so small that, even after employing such tricks as sampling and alpha transparency, it can be challenging to extract useful information from this display; see, e.g., Hofert and Mächler (2014) or Hofert and Oldford (2017, Figure 3) (the latter only being able to show $\binom{22}{2}=231$ out of $\binom{465}{2}=107,880$ different pairs under consideration, so about $\left.0.2 \%\right)$. In the extreme case, each cell might even be reduced to the size of a single pixel essentially rendering the scatterplot matrix as a pixel array. This (and other) limitations of scatterplot matrices have recently motivated the use of zenplots, see Hofert and Oldford (2017), for investigating high-dimensional data.
The R package zenplots presented here provides an implementation of zenplots (and accompanying tools) to help addressing both problems raised by Tukey and Tukey (1981b); see the quotation above.
First, by providing a more compact layout, a zenplot will either accommodate many more (different) "two-coordinates-at-a-time", or " 2 d ", plots in the same space, or, equivalently, give each individual 2 d plot more relative space within any fixed size layout. Unlike scatterplot matrices, zenplots can also be easily broken over pages.
A zenplot accomplishes this by relaxing the common coordinate feature across columns (and rows) forced by the square (or triangular) layout of a scatterplot matrix (or generalized draftsman's display). With a zenplot, comparisons across a common coordinate are still available between any two 2d plots in the layout provided they have a single coordinate, or " 1 d ", plot appearing between them. To effect this, a zenplot follows a rectilinear "zigzag" path over the display region alternating between 1 d and 2 d plots, all the while ensuring that neighbours along this (zen)path share a one-coordinate-at-a-time boundary.
When the objective is to visually search for plots that contain interesting patterns, the zenplot thus accommodates many more (or larger) plots and, by following the zenpath through the display, still preserves plot to plot comparisons. Moreover, the zenpath can be constrained to include only those pairs, or plot to plot comparisons, that are of interest.

The second problem raised by Tukey and Tukey (1981b) is that there are many more possible views of a high-dimensional data cloud than simply those chosen from all possible pairs of coordinates. For example, any two randomly chosen direction vectors on the ($d-1$)-dimensional unit sphere in \mathbb{R}^{d} define a projection plane which might reveal interesting structure in the data and that structure might be hidden from every one of the $\binom{d}{2} 2 \mathrm{~d}$ plots defined by any two original coordinates. Moreover, there are exponentially many more of these planes than those defined only by pairs of coordinates (see Tukey and Tukey (1981a)).
Zenplots address this problem in two important ways.
First, it is surprising how many "two-coordinates-at-a-time" plots can now actually be examined with modern computer displays. As a proof of concept, in a visual analysis of pairwise dependence for $d=465$ dimensional data as defined by constituents of the S\&P 500 stock prices, Hofert and Oldford (2017) examined all $\binom{465}{2}=107,880$ distinct 2d scatterplots via 164 zenplots (one per page) as a single PDF document in only 30 minutes.
Second, and more importantly, zenpaths may be constructed so that only the most interesting, or meaningful, plots are produced. Following Hurley and Oldford (2010, 2011), imagine a graph $G=(V, E)$ whose vertex set V is the set of all coordinates (variates) in the data and whose edge set E is the set of all meaningfully paired coordinates (variates) - typically this is a complete graph, but need not be. Weights could be attached to each edge which measure the "interestingness" of the respective two coordinates. For example, such measures were proposed as "cognostics" (for computer guided diagnostics) or "scagnostics" (scatterplot diagnostics) by Tukey and Tukey (1985) and formalized more recently by Wilkinson, Anand, and Grossman (2005). No matter how each node determines a coordinate (e.g., an original variate, some randomly or purposely chosen linear combination of original variates, or any other real-valued function of the variates), and however the weights on the edges between pairs of coordinates might be determined (e.g., statistical or scagnostic measures on that pair), a zenpath is any path on G, often it is one selected according to the weights along its edges.
In this way, following a selected zenpath provides a means to construct an interesting sequence of coordinates to be displayed within the corresponding zenplot. For example, a path of maximum (minimum) total weight would correspond to a solution to the "travelling salesman problem"; following the resulting path would display all coordinates exactly once each yet show the most interesting 2d displays. The idea of a zenpath is to find those paths whose zenplot display reveals interesting structure via its coordinate sequence.
Finally, as in the original Hartigan (1975), there is no reason to restrict the 2d plots to be only scatterplots, or for the 1d plots to be, say, histograms. The pairs (...) function in R, e.g., has arguments (e.g., panel, lower.panel, diag.panel, ...) which allow the user to create essentially any display of the variates in that panel (or cell) of the scatterplot matrix. More recent authors such as Friendly (1999), Emerson, Green, Schloerke, Crowley, Cook, Hofmann, and Wickham (2013), or Im, McGuffin, and Leung (2013) have undertaken generalizations of the scatterplot matrix to accommodate different pairwise and marginal displays depending on the variates in that panel of the scatterplot matrix.
Zenplots also accomodate any 1d or 2 d plot. And the plot can be written in either of the R graphics packages graphics, see R Core Team (2017b), grid, see R Core Team (2017a) or Murrell (2016) and hence ggplot2, see Wickham and Chang (2016) or Wickham (2016), as well as in the more recent interactive visualization package loon, see Waddell and Oldford (2017).
The R package zenplots provides an implementation of zenplots and zenpaths with the functions
zenplot() and zenpath(), respectively, as well as several other functions for exploratory data analysis and visualization. In this paper we focus on describing the functionality of the zenplots package, intentionally confining our illustrations to data only of "several dimensions", in the sense of Tukey and Tukey (1981b). A fuller appreciation of the package's functionality and value in visual data analysis for "high-dimensional" data is more readily had from Hofert and Oldford (2017) where the package is applied to a data example in $d=465$ dimensions.
The paper is organized as follows. In Section 2 we present the structure, technical aspects and selected features of zenplot () as well as the related basic notion of a zenpath. Section 3 then focuses on zenpaths and describes how visual search can be conducted with the function zenpath(). Section 4 addresses the construction of customized zenplots and Section 5 presents more advanced features.
Some remarks concerning the history of high-dimensional data visualization are in order at this point. For several decades now, people have visualized high dimensional space by connecting displays of low-dimensional projections. The connections are often made temporally so that one low-dimensional view dynamically and smoothly morphs into the next. The earliest versions of these would have been 3d point cloud rotations which date back to at least Ball and Hall (1970) The more general "tour" methods date to Asimov (1985) whereby arbitrary planes connected along geodesic paths are displayed over time. The earliest implementation of this was Buja, Hurley, and McDonald (1986). A series of re-implementations of these methods followed (namely XGobi, GGobi, and rggobi) the most recent incarnations of which appear as tourr and tourrGui; see Huang, Cook, and Wickham (2012). Hurley and Oldford (2011) constrained the planes to the orthogonal axes of the coordinate system defined in advance and proposed exploring high-dimensional spaces by sequences of planes temporally following navigation graphs. The first publicly available implementation of this strategy was RnavGraph of Waddell and Oldford (2011); it has most recently been implemented in the interactive and extendible data visualization package loon (see Waddell and Oldford (2017)), which zenplots can also utilize if required. By default, zenplots accomplish the layout spatially (rather than temporally) and are therefore a novel contribution to high-dimensional data visualization.

2. Zenplots

We start by considering the olive data set of Forina, Armanino, Lanteri, and Tiscornia (1983); see also Azzalini and Torelli (2007). For convenience, this data set is available in the R package zenplots. It consists of $n=572$ measurements of $d=10$ variates (the geographical area and the region of origin of the olive oil, and measurements of eight fatty acid components in each of the oil specimens, namely palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic and eicosenoic).
The default zenplot for these data is constructed as follows:

```
R> library("zenplots")
R> data("olive")
R> zenplot(olive)
```

and appears as the left-hand side of Figure 1. The result is an alternating sequence of one-dimensional (1d) and two-dimensional (2d) plots laid out in a zigzag-like structure so that each consecutive pair of 2 d plots has one of its variates (or coordinates) in common with that of the 1 d plot appearing between them.

Figure 1: Zenplot of the olive data set (default, left) and again using "layout" (right).

The right-hand side of Figure 1 is also a zenplot of these data but one constructed by choosing the value "layout" for arguments plot1d and plot2d:

```
R> zenplot(olive, plot1d = "layout", plot2d = "layout")
```

Now only a box containing the labels of the variates in the 1d and 2d plots is shown. This should help identify the variates that are available to construct each plot as well as the zigzag pattern of alternating plots in the display. Note also that in either display of Figure 1, the labels of vertical 1d plots (e.g., "region", "palmitoleic" or "oleic") are oriented to reflect the left or right direction of the layout but that for horizontal 1d plots (e.g., "area", "palmitic" or "stearic") the natural reading direction is preserved for both up or down directions.
The entire set of arguments of zenplot() are seen by printing its structure:
$R>\operatorname{str}(z e n p l o t)$

```
function (x, turns = NULL, first1d = TRUE, last1d = TRUE,
    n2dcols = c("letter", "square", "A4", "golden", "legal"),
    n2dplots = NULL,
    plot1d = c("label", "points", "jitter", "density", "boxplot",
            "hist", "rug", "arrow", "rect", "lines", "layout"),
    plot2d = c("points", "density", "axes", "label", "arrow",
            "rect", "layout"),
    zargs = c(x = TRUE, turns = TRUE, orientations = TRUE,
            vars = TRUE, num = TRUE, lim = TRUE, labs = TRUE,
```

```
    width1d = TRUE, width2d = TRUE,
    ispace = match.arg(pkg) != "graphics"),
lim = c("individual", "groupwise", "global"),
labs = list(group = "G", var = "V", sep = ", ", group2d = FALSE),
pkg = c("graphics", "grid", "loon"),
method = c("tidy", "double.zigzag", "single.zigzag"),
width1d = if (is.null(plot1d)) 0.5 else 1,
width2d = 10,
ospace = if (pkg == "loon") 0 else 0.02,
ispace = if (pkg == "graphics") 0 else 0.037, draw = TRUE, ...)
```

This seemingly imposing number and variety of arguments group naturally as related to:

- data: x ,
- plots: plot1d, plot2d, zargs, pkg, lim, labs, draw, ...,
- layout: turns, method, n2dplots, n2dcols, first1d, last1d, width1d, width2d,
- spacing: ospace, ispace.

Each of these arguments will be discussed in some detail and illustrated in sections to come, but for now it is their grouping which merits attention because it helps answer the question: What is a zenplot?
A zenplot is first and foremost a navigation plot. By this we mean it is a sequence of lowdimensional plots which follow some trajectory through a higher dimensional data space for the purpose of revealing structure. Different trajectories and different 1d and 2d displays may reveal different features of the data. Choosing which trajectories and which displays amounts to navigating through the high-dimensional data space.
The trajectory is determined entirely by the data x . This single argument, x , provides the data and the order in which the data dimensions will be traversed in the low-dimensional trajectory. For example, in Figure 1 plots are laid out in the same numerical order in which the variates appear in the data-frame. That is, for a d-dimensional data-frame, with variates numbered $1, \ldots, d$, the variate pairs appear as $(1,2),(2,3), \ldots,(d-1, d) ; 2$ d plots would be constructed for each variate pair and 1d plots interspersed between them for the variate they have in common. In this way, the determination of the trajectory is separated from its visualization. The code respects this separation in that the function zenplot () assumes the order given by the data x . Another function, zenpath(), is available to provide a variety of different orders which might be used to arrange that the data x produce a given trajectory.
The second grouping of arguments, the plots, determine the 1 d and 2 d plots that will be used to display the lower dimensional spaces along the trajectory. A number of plot types are built in as specific values of these arguments and, by using the information bundled as zargs, the user may also write their own display functions using any one of the R graphics packages given by pkg. Together with the trajectory, this specification of plots define the nature of the navigation through the high-dimensional space.
One could, as in Hurley and Oldford (2011), Oldford and Waddell (2011) and Waddell and Oldford $(2011,2014,2017)$ use dynamic graphics to move from one display to another thus linking the displays in time. Motion graphics very powerfully connect one low-dimensional display to the next, visually reinforcing the notion of navigation through high-dimensional space along low-dimensional trajectories. However, such temporal linking becomes increasingly
burdensome on our short-term memory as the time over which the displays are transiently presented grows. And the presentation time can indeed grow quickly given that the number of variate pairs can grow quadratically with dimensionality d.
In contrast, zenplot() spatially links the displays along the trajectory by laying them out following a zigzag path pattern (hence the name "zigzag expanded navigation plot" or zenplot). Thus, it is in the third grouping of arguments, the layout arguments, which effectively define a zenplot and which distinguish it from other displays of high-dimensional data. The last grouping, spacing, is arguably also part of the layout but is not peculiar to the definition of a zenplot layout and so can be regarded as separate, more generic, layout arguments.
The next few sections deal with each of these groupings of arguments in some detail beginning with the layout arguments, being those which most distinguish a zenplot. Standard features are treated separately from those which are more customized so that the reader may skip the more advanced at first reading. Because of their simplicity, the spacing arguments will be mentioned and illustrated in the following section on the layout.

2.1. Layout

Nearly all arguments of zenplot () are concerned with the physical layout of the plots. In this section, only those basic layouts (zigzag patterns) which conceptually distinguish a zenplot from other layouts are treated.

Zigzagging layout methods

The argument method provides a choice between the zigzag patterns "tidy", "double.zigzag", "single.zigzag" or "rectangular"; the default value is "tidy". To clearly contrast these options for method, more plots than those which appeared in Figure 1 are required. To this end, we simply double the number of columns in the olive data set so that there are now $d=20$ variates to plot:

R> olive2 <- cbind(olive, olive)
Using olive2 as the data x , the layout for the first three of the method values appears in Figure 2. Both plot1d and plot2d have value "layout", and n2dcols $=6$ so as to exaggerate the effect.
The leftmost layout is the "single.zigzag" method which follows the simplest pattern, zigzagging downwards left to right alternating 1 d and 2 d plots down and right as it goes. At most n2dcols columns can be used for 2 d plots. Once this limit is reached, the right hand side is reached, and the pattern then reverses to be from right to left, continuing downwards until ultimately it reaches the corresponding left side of the display area. Were there more plots to lay out, the pattern would continue repeating itself, reversing horizontal directions as each edge of the display is reached.
Note that when the display edge is reached on the right in Figure 2, the rightmost plot is a 2 d plot and the change in direction is effected by moving down through a 1 d plot followed by moving out left from the 2 d plot below it. It is not possible to have a vertical 1 d plot as the rightmost plot (unless it were the last plot of all). Minimally, the "single.zigzag" method must be able to tell that the edge has been reached and the layout must turn down and reverse directions horizontally.

Figure 2: Zenplots of the layout of the doubled olive data set with method = "single.zigzag" (left), method = "double.zigzag" (middle), method = "tidy" (right) and n2dcols = 6.

The "single.zigzag" layout is easy to follow but wastes a considerable amount of display space. Had there been only ten 2d plots to display, the plots would move diagonally down the display leaving unused the large areas on either side of the diagonal.

The "double.zigzag" method tries to make better use of this space by zigzagging up and down horizontally across the display, exhausting a double row of 2 d plots before reaching the edge of the display, where it then moves down enough to reverse horizontal directions and continue as before.

The main challenge for the "double.zigzag" method is to not get "cornered" before it reverses horizontal direction. The middle display of Figure 2 shows a "double.zigzag" layout. Clearly there would be room at the top-right corner of this display for three more 2 d plots to appear but using this space would trap the layout in that corner; there would be no room to turn and reverse horizontal direction. This is what we mean by getting "cornered". By the time the position of the rightmost 2 d plot in the second row (from the top) is reached, the zenplot must determine that it is time to turn down and effect its horizontal reversal. This requires looking ahead a little farther than was done for reversal of the "single.zigzag" method.

While the "double.zigzag" layout is much more space efficient than is the "single.zigzag" one, there is still room for some improvement. For example, in the middle display of Figure 2, the blank space at the left of the row containing only two 2 d plots seems wasted. This unused space was generated by the turning of the corner at the right of the display. Similarly, the very last 2 d plot at the bottom seems to be poorly placed. This too is a consequence of changing horizontal directions, this time entirely due to anticipating the horizontal reversal. To effect the turn (on the left this time), the "double.zigzag" rule is to drop down so as to not get "cornered". However, the method will only get cornered if there are more than three 2 d plots left to display. In the present case there is only one 2 d plot left which could be easily
accommodated by moving up instead of down.
The "tidy" method tries to make the most efficient use of the space. This requires looking ahead a little more before each turn. The right most display of Figure 2 shows a "tidy" layout. The first two rows are identical to that of the "double.zigzag"; so too are the rightmost two in row three, the rightmost three in row four, and the rightmost two in row five. Only the last three 2 d plots are positioned in different places. For the "double.zigzag" method these are directed down and left anticipating the next possible reversal, whereas for the "tidy" method they are directed up and left to fill the empty space. Note that although there were only three 2d plots left, the "tidy" method was not in danger of being "cornered". As the position of the very last 1 d plot shows, there is room for another 2 d plot and for the corner to be turned.
The "tidy" method clearly has the most sophisticated look ahead and consequently compact display of the three methods. This becomes more important when there are a great many variates (dimensions) to display.
Finally, method = "rectangular" produces a rectangular layout filled from left to right (then right to left etc.) before moving downwards. This is an example of a method which leaves the zigzagging zenplot paradigm but can be useful for laying out 2 d plots which are not necessarily connected through a variable; see zenplots for more details.

The number of columns containing 2d plots

As seen in the previous section, the layout of a zenplot (whichever the method) depends on the width of the display area available. In zenplot () this width is essentially determined by the number of columns there are for 2 d plots. This is specified by the value of the argument n2dcols. In Figure 2, we specified that this be n2dcols $=6$ for illustrative purposes.
The default value of n2dcol is the string "letter" and was used, e.g., in Figure 1. The idea here is that the user imagines that the zenplot will be laid out to fit on a North American standard "letter" size display. Other possibilities corresponding to other standard formats are the strings "square", "A4", "golden" and "legal"; "golden" stands for the golden ratio, namely $(1+\sqrt{5}) / 2$ (interpreted as height/width).
Provided the total number of 2 d plots, say $n_{2 d p}$, is known, the number of columns and rows containing 2 d plots can be determined to (approximately) respect the aspect ratio of any format. This approximation is based on the following reasoning. Let $n_{2 \mathrm{dr}}$ and $n_{2 \mathrm{dc}}$ denote the number of rows and columns of 2d plots. Since there is typically an empty 2d plot space at the end of a row in a zenplot, the total number of 2 d plots displayed is about $\left(n_{2 \mathrm{dc}}-1\right) n_{2 \mathrm{dr}}$. A standard format suggests that the ratio of the number of rows to columns (i.e., height/width) be fixed at some specified scale $s=n_{2 \mathrm{dr}} / n_{2 \mathrm{dc}}$. This gives $n_{2 \mathrm{dr}}=s n_{2 \mathrm{dc}}$ and hence, for known $n_{2 \mathrm{dp}}$ and $s, n_{2 \mathrm{dc}}$ is the solution to

$$
n_{2 \mathrm{dp}}=\left(n_{2 \mathrm{dc}}-1\right) s n_{2 \mathrm{dc}} \quad \text { or equivalently } \quad n_{2 \mathrm{dc}}^{2}-n_{2 \mathrm{dc}}-n_{2 \mathrm{dp}} / s=0 .
$$

Solving the latter equation gives $n_{2 \mathrm{dc}}=\frac{1+\sqrt{1+4 n_{2 d \mathrm{p}} / s}}{2}$. For n2dcols we essentially use the numerical value

$$
\begin{equation*}
n_{2 \mathrm{dc}}=\max \left\{3, \text { round }\left(\frac{1+\sqrt{1+4 n_{2 \mathrm{dp}} / s}}{2}\right)\right\}, \tag{1}
\end{equation*}
$$

where $n_{2 \mathrm{dp}}$ is the number of 2 d plots and s is the scaling factor (height/width) given by the relevant standard. Furthermore, if necessary, $n_{2 \mathrm{dc}}$ is increased by 1 to obtain an odd number of 2 d columns in order to have a slightly more compact layout.
Alternatively, the user may supply any positive integer as the value of n2dcols.

The number of $2 d$ plots displayed

In determining the layout, particularly the value of n2dcols, the total number of 2 d plots to be displayed needs to be determined. This can be determined (by default) directly from the number of variates in the data given by the argument x . Alternatively, the user may wish to specify a specific number of plots to be displayed only. This number must be less than or equal to $d-1$ where d is the number of variates appearing in \mathbf{x}.
This, and the remaining basic features of a zenplot layout are illustrated by the pair of zenplots displayed in Figure 3: The right-hand side plot shows the effect of the argument n2dplots of zenplot(). It allows to adjust the number of 2 d plots displayed along the zenpath (with the obvious default to show all plots). Due to our choice n2dplots $=8$, the right-hand side of Figure 3 shows only eight instead of all nine plots.

Omitting first or last $1 d$ plots

Sometimes, the first or last of the 1d plots might be preferred to be omitted from the zenplot display. This is effected by the logical-valued arguments first1d and last1d. For example, the right-hand side of Figure 1 shows the last 1d plot, the left-hand side of Figure 3 does not.

Relative widths of 1d and 2d plots

The arguments width1d and width2d are non-negative integers whose ratio determine the relative space given to 1 d and 2 d plots. If a 2 d plot occupies a square of side width2d, then every horizontal 1 d plot will occupy a rectangle of width width2d and height width1d, and every vertical 1d plot will occupy a rectangle of width width1d and height width2d. See the right-hand side of Figure 3.

Spacings between 1d or $2 d$ plots and around whole zenplots

Users will also want to sometimes control the spacing around the individual 1d and 2d plots as well as the spacing around the whole zenplot layout. To illustrate this, as well as some of the arguments of the previous sections, consider the two zenplots produced as follows and displayed as Figure 3:

```
R> zenplot(olive, plot1d = "layout", plot2d = "layout", method = "double.zigzag",
+ last1d = FALSE, ispace = 0.1)
R> zenplot(olive, plot1d = "layout", plot2d = "layout", n2dcol = 4, n2dplots = 8,
+ width1d = 2, width2d = 4)
```

The left-hand side of Figure 3 shows the same layout as the right-hand side of Figure 1, except for the changes described in the preceding subsubsections and below.
The left-hand side of Figure 3 has a larger gap between all plots. This follows from ispace $=0.1$, which sets the inner space (ispace) (a number in $[0,1]$). For graphics (the default; more on that later), ispace defaults to 0 , otherwise to some small positive fraction. (This

Figure 3: Zenplots of the layout of the olive data set with method = "double.zigzag", last1d $=$ FALSE and ispace $=0.1$ (left) and n2dcol $=4$, n2dplots $=8$, width1d $=2$, and width2d $=4$ (right).
difference in behaviour is because other graphics systems (like grid or loon) may not have a default extension of the plot region and so would lead to clipping of plot symbols near the margins of the plot region.) Note that ispace can also be a vector of length four, in which case it provides the bottom, left, top and right inner space. To adjust the space around the whole zenplot, an analagous argument ospace is used to determine the zenplot's outer space (ospace).
Note that for graphics plots, ispace and ospace are internally set with the par arguments plt and omd, respectively; for grid-based zenplots they are set with respective viewports.

2.2. Plots

A large number of plot functions for each of the arguments plot1d and plot2d can be specified via character strings. For 1d plots, these include:
"label": to show the label of the current plot variable,
"points": scatter plots (of the data against their index),
"jitter": jittered version of "points",
"density": density plot based on density(),
"boxplot": box plots,
"hist": histograms,
"rug": rug plots,
"arrow": an arrow head indicating the direction of the zenpath,
"rect": a rectangle indicating the plot region,
"lines": line spanning the plot region,
"layout": showing the current plot variable and a box around it.
For 2 d plots, the following are available:
"points": scatter plots (of the two data columns under consideration),
"density": density plot based on MASS's kde2d() (see Ripley (2017)),
"axes": coordinate axes,
"label": to show the labels of the two current plot variables,
"arrow": as for 1d plots (see above),
"rect": as for 1d plots (see above),
"layout": showing the pair of current plot variables and a box around it.
It is also possible for the user to supply their own plot functions; this will be covered in more detail in Section 4.

Enforcing common plot limits

By construction, neighbouring plots along a trajectory share a variate (on their common dimension/axis) and hence have common data limits on that variate. This allows the viewer to visually track the same location across adjacent plots that share that variate. By default, the
limits of these shared dimensions are determined individually for each variate; this is effected by the lim argument's default value "individual".
Should the viewer wish that all dimensions have the same extent across all plots, then lim = "global" should be used. Alternatively, when the data argument x is a list (indicating groups of data and variates; see Section 2.3 and 4) setting lim = "groupwise" ensures that within each group all plots have identical data limit extents.

The graphical system

By default, the R package graphics is used for drawing zenplots; see pkg = "graphics". The underlying rectangular layout with rows and columns containing the 1 d and 2 d plots is constructed internally with layout() based on width1d and width2d; the same applies to pkg = "loon". For pkg = "grid", the layout is implemented with the more sophisticated grid.layout(). The 1d and 2d plots are placed (with placeGrob()) in a frame grob (with frame $\operatorname{Grob}()$) which is returned invisibly. This grid object can further be modified, if required. The support of pkg = "grid" opens the door for other grid-based graphics systems; see, e.g., Figure 5 which shows a zenplot based on ggplot2 (the special layout will be discussed soon). If pkg = "loon", then an interactive zenplot (e.g., with brushing, zooming, panning, and so on) is constructed via the R package loon. The resulting zenplot can then be linked to any other interactive plot in loon.
Note that plotting is done if draw = TRUE (the default). Either way, information about the underlying zenpath and layout is returned; more on this later.

Ellipsis arguments

All plots produced using the basic argument values described above for plot1d and plot2d are implemented using standard plot functions from the relevant package. The ellipsis arguments are passed on as extra arguments to these standard plot functions. So, e.g., if a zenplot is using pkg = "graphics" (the default), then plot arguments such as col, cex, pch and so on could reasonably be given to zenplot() whenever plot1d = "points" or plot2d = "points" were given as well; the extra arguments and their values would be passed on.

2.3. Data

The data argument x of zenplot() is typically a matrix or a data.frame. In either case, each column/variate of x is taken to be a dimension and the trajectory moves through these dimensions in order as described earlier.
However, the value of x can also be a list of objects of these types. Then each element of the list is interpreted as a group of variables which belong together. As such, each group should be visually separated from one another in the resulting zenplot. This case is covered in more detail in Section 4.

3. Zenpaths

Suppose the zenplot() argument x is a matrix named dataMat having $d=5$ columns. By default, the zenplot will follow the trajectory through the data given by the path $1,2,3,4,5$ as in

R> (path <- 1:5)
[1] 12345
and the sequence of dimension pairs $(1,2),(2,3),(3,4),(4,5)$ would determine the order and dimensions of the 2 d plots.
This default sequence is not perhaps the best one to reveal interesting structure in the data. We might, e.g., wish to look at all pairs of dimensions at once in the zenplot. This could be the sequence

[1] 512231425345

for example since every number appears beside every other number once. Or, if we had some way to measure the interestingness of any pair of dimensions, we might choose a path which visited only the most interesting pairs.
In any case, if path were a vector which contained the desired sequence then

```
R> zenplot(x = dataMat[,path])
```

would produce the zenplot that followed the navigation path of interest. We call such a navigation path a zenpath.
To construct zenpaths, the R package zenplots provides a function of the same name, zenpath(), which takes a variety of arguments and returns a sequence of dimensions which can be used for the path.

```
R> str(zenpath)
function (x, pairs = NULL,
    method = c("front.loaded", "back.loaded", "balanced",
        "eulerian.cross", "eulerian.weighted", "strictly.weighted"),
    decreasing = TRUE)
```

Some of the methods to construct zenpaths simply depend upon the number of dimensions that are involved and ensure that all possible pairs of dimensions occur in the sequence. Since there are a great many possible sequences a few approaches are offered:

■ "front.loaded": If x is an integer and method = "front.loaded" (the default), zenpath() provides a sequence of numbers which, considering two consecutive numbers at a time, contains all pairs of the variables 1 to x sorted in such a way that the first variables appear the most frequently early in the sequence. Note that this sequence of numbers is typically not exactly of length $\binom{d}{2}$ as the pairs have to be "connected" along a zenpath in the sense of consecutive numbers building pairs along the zenpath.

```
R> zenpath(5, method = "front.loaded")
```

[1] 51231425345
■ "back.loaded": Similar to method = "front.loaded" but with later variables appearing the most frequently later in the sequence.

```
R> zenpath(5, method = "back.loaded")
```

[1] $1 \begin{array}{lllllllllll}1 & 2 & 3 & 1 & 4 & 2 & 5 & 3 & 4 & 5 & 1\end{array}$

- "balanced": Similar to method = "front.loaded" but with variables appearing in balanced blocks throughout the sequence (a so-called Hamiltonian Decomposition, see Hurley and Oldford (2011)).

```
R> zenpath(5, method = "balanced")
```

[1] 1223154134251

- "eulerian.cross": For this method, two integers representing the sizes of two groups of variables must be passed to zenpath(). zenpath() returns a sequence of numbers, which, when interpreted two consecutive numbers at a time, sorts all pairs of variables such that each pair is formed with one variable from each group.
$R>$ zenpath $(c(3,5)$, method $=$ "eulerian.cross")

As an example, Figure 4 displays a zenplot of all pairs of olive acids only (no "region" or "area") based on an Eulerian zenpath showing the (default "front.loaded") ordering of all pairs of variables. The code to generate the figure is as follows:

```
R> oliveAcids <- olive[, !names(olive) %in% c("area", "region")]
R> zpath <- zenpath(ncol(oliveAcids))
R> zenplot(as.matrix(oliveAcids)[, zpath], plot1d = "hist", plot2d = "density")
```

The histograms point in the direction of the zigzag layout. In this case, plot1d = "hist" causes the (default) labelling of the variates to be lost; a more sophisticated version of this plot using pkg = "grid" will be given in Section 4 to illustrate how more complex displays via simple plot1d and plot2d functions can be written.
Although it is possible to lay out hundreds of thousands of plots with a zenplot, see Hofert and Oldford (2017), one is often not interested in all of them. For example, Hofert and Oldford (2017, Figure 6) shows a zenplot containing only those 10 pairs of variables with largest and those 10 pairs with smallest pairwise tail dependence among all $\binom{465}{2}=107,880$ pairs of stocks in the S\&P 500. Given a (numerical) measure of "interestingness" (such as correlation, tail dependence etc.) assigned to all pairs of variables, one can sort all pairs according to this measure and plot the most (or also the least) interesting ones. Two more arguments to zenpath () provide the means for doing this, given we have weights for each pair of variates which correspond to the interestingness of that pair. These are:
"eulerian.weighted": For this method, a numeric vector of weights (or matrix or distance matrix, internally converted to a vector) needs to be passed to zenpath() as argument x. Furthermore, the argument pairs of zenpath() must be provided, which is a two-column matrix, that, row-wise, contains the connected pairs of variables to be sorted according to the weights x . zenpath() then returns a sequence of numbers which sorts all pairs according to a greedy (heuristic) Euler path visiting each edge precisely once.
"strictly.weighted": Similar to method = "eulerian.weighted" but strictly respecting the order given by the weights. An example can be found in Section 4.5.

Figure 4: Zenplot of an Eulerian zenpath showing histograms (as 1d plots) and densities (as 2d plots) of all pairs of the acids of the olive data set.

If the argument decreasing of zenpath() is TRUE (the default), then the sorting by weight is done in decreasing order.

4. Build your own zenplots

The zenplot() arguments plot1d, plot2d and method provide sufficient functionality to satisfy a variety of common uses. Spacing arguments provide some simple aesthetic control over the layout and the use of zenpath () allows the analyst to select a trajectory through the high-dimensional data space. In this section, we describe some extended features of zenplot () which allow the user to begin to tailor a zenplot() to their particular analysis needs. This will require some familiarity with one of the graphics packages allowed by zenplot().

4.1. Custom plot functions

Each named value of either argument plot1d or plot2d is implemented by calling a zenplots package function whose name has that argument value as prefix and the drawing package name as suffix. Between prefix and suffix the plot type 1d or 2d appears. For example, for arguments plot1d = "hist", plot1d = "points" and pkg = "grid", 1d plots are drawn by the function hist_1d_grid() and 2d plots by the function points_2d_grid().
That is, the plotting functions called within zenplot() are of the form *_1d_graphics(), *_2d_graphics() (for pkg = "graphics"), *_1d_grid(), *_2d_grid() (for pkg = "grid") and *_1d_loon(), *_2d_loon() for pkg = "loon"; here the $*$ stands for the respective string as given above. All these functions are exported from the zenplots package and so are also available to the user for direct use.
This means, e.g., that the effect of the call

```
R> zenplot(oliveAcids, plot1d = "hist", plot2d = "density", pkg = "graphics")
```

would be identically produced by

```
R> zenplot(oliveAcids, plot1d = hist_1d_graphics, plot2d = density_2d_graphics,
+ pkg = "graphics")
```

Note that hist_1d_graphics and density_2d_graphics each end in "_graphics" indicating that all of their drawing is done using only functions from the graphics package.
As the second case suggests, the user may also provide their own plot function using functionality exclusively from the named package (e.g., pkg = "graphics"). However, because it will be called within zenplot(), any user supplied plot function must also accept zargs as its first argument, the value of which will be constructed by zenplot(). The built-in plot functions named above may be helpful as templates and can also be called within any other function provided it passes on the zargs argument.
The zargs argument consists of a list of further named arguments; which of these named arguments must appear in this list is determined by the zenplot() call and in particular by the value given to its argument zargs. For zenplot(), the zargs argument is merely a logical vector indicating which of the named set of arguments are to be passed to every 1 d and 2 d plot function as argument zargs.

For example, the default value of zargs (in the call to zenplot() is c ($\mathrm{x}=$ TRUE, turns $=$ TRUE, orientations = TRUE, vars = TRUE, num = TRUE, lim = TRUE, labs = TRUE, width1d = TRUE, width2d = TRUE, ispace = match.arg(pkg)!= "graphics"). If TRUE, the value of each argument (constructed within zenplot() itself), is passed to the every 1d and 2 d plot functions (in a named list) as the value of the plot function's argument zargs. The value and meaning of each argument contained in this zargs is as follows:
x : the original data object x as provided by the user. Virtually any object can thus be passed to the underlying 1d and 2d plot functions as long as the latter two take care of appropriate plotting. As such, zenplot() completely distinguishes between layout and plotting, which provides great flexibility for data visualization. Although certainly a rare use case, setting $\mathrm{x}=$ FALSE in zargs avoids x being passed on. With appropriate plot1d and plot2d arguments, one can then even plot independently of the provided data object.
turns: the character vector of turns (either computed or user-provided). This has the advantage of each 1 d and 2 d plot knowing all turns before plotting is done and thus the layout of the zenplot. Typically most helpful are the turns into and out of the current plot position. For example, one could have all plots colored blue (red) which turn down (up) out of the current position along the zenpath.
orientations: the character vector consisting of the plot orientations ("s" for square (so 2d) plots, " h " for horizontal and "v" for vertical plots) as determined internally based on the turns. This information can be used, e.g., to determine the orientation of plot labels in a zenplot.
vars: a two-column matrix containing, for each 1d and 2d plot (so each row), the (pairs of) variable(s) which is (are) to be plotted in the current plot; for 1d plots, the respective row simply shows the same variable twice.
num: the current plot number among all 1 d or 2 d plots along the zenpath. This is especially helpful for indexing, say, a row in vars to find out which variable(s) was/is (were/are) to be plotted previously, currently and next.
lim, labs, width1d, width2d, ispace: (already discussed) arguments of zenplots() that are passed on to the underlying 1 d and 2 d plot functions.

Any user defined 1 d or 2 d plot function can then access any of these values from its zargs argument provided they were marked for use by the logical values of the argument zargs of the zenplots() call. This gives the user access to all of the functionality used by the built-in plotting functions.
Furthermore, plot1d or plot2d can also be NULL, in which case an "empty plot" is generated, so no visible plotting is done.
Besides zargs, the ellipsis arguments ("...") are also passed to the underlying 1d and 2d plot functions. If only one of the two functions shall obtain additional graphical parameters, say, one can proceed as already seen in the code for the right-hand side of Figure 6, namely by providing a corresponding 1 d or 2 d plot function.

4.2. Custom layouts - as the plot turns

The defining layout of a zenplot is the "zigzag" pattern determined by the value of the zenplot() argument method. The various choices were described and illustrated in Section 2.1
and all zenplots so far considered have followed one of these zigzag layout methods. The attentive reader may have noticed, however, that one of the layout arguments mentioned in Section 2, namely the turns argument, did not appear in the basic layout discussion of Section 2.1. This is because the turns argument, if specified, will override the method argument and so can be used to produce a zenplot which need not follow a zigzag pattern; normally, the argument turns is not given but is determined within zenplot() based on the value of its method argument.
What is meant by turns? These are directional instructions "d", " 1 ", " u " and "r", being short for the directions "down", "left", "up" and "right", which describe the next direction that the layout path follows upon completion of that plot. Each 1d or 2d plot has a directional instruction associated with it which describes the direction to be taken from that plot to the next. In this way, the entire layout path can be thought of as a sequence of directional instructions; this sequence is the value of turns.
For example, consider the most recent zenplot given in Figure 4. The zenplot begins with the histogram (a 1d plot) in the top-left corner. The next plot in the layout is immediately below the histogram so that the directional instruction from the histogram is "d", meaning move down. Moving down leads to the 2d density contour plot. From this plot the layout moves right to the next histogram so this first density contour has exiting directional instruction "r". This leads to the next histogram from which again we move "right" to the next density plot from which we move down to the next histogram, and so on. The value of turns associated with this plot is the sequence "d", "r", "r", "d", "d", "r", "r", "u", "u", "r", "r", "d", "d", "r", "r", "d", "d", "l", "l", "d", "d", "l", "l", "u", "u",..., "d", "d", "l". Note that there is no turn associated with the last histogram at the lower-left of the Figure 4 because no plot follows this histogram in the layout.
Note the zigzag pattern apparent in both these turns and in the display layout. In the next section, we consider a layout which does not follow any of the zigzag patterns considered so far, though it is a zigzag spiral. In general, turns need not follow a zigzag of any sort.

4.3. Custom layout and plots - a spiral of ggplots example

In zenplot () one can freely choose any sequence of directional instructions as the value of turns. Because the zenpath is laid out according to the given turns, the length of turns must match that of the zenpath. For the oliveAcids we might therefore choose the following path and sequence of turns:

```
R> path <- c(1,2,3,1,4,2,5,1,6,2,7,1,8,2,3,4,5,3,6,4,7,3,8,4,5,6,7,5,8,6,7,8)
R> turns <- c("l",
+ "d", "d", "r", "r", "d", "d", "r", "r", "u", "u", "r", "r", "u", "u", "r", "r",
+ "u","u","l","l","u","u","l","l", "u", "u", "l","l", "d", "d", "l", "l",
+ "u", "u","l","l", "d", "d", "l", "l", "d", "d", "l", "l", "d", "d", "r", "r",
+ "d", "d", "r", "r", "d", "d", "r", "r", "d", "d", "r", "r", "d", "d")
```

which already begins in a different way in that the layout moves "left" out from the first plot. The resulting layout starts at the centre of the display area and moves in a zigzag pattern but now in a (counter-clockwise) spiral instead of any of the row-filling patterns seen earlier.
Note that there is no restriction on turns so that the layout is limited only to following a continuous path of alternating 1 d and 2 d plots. This flexibility allows analysts to tailor the layout to the needs of the problem.

As an example, we might prefer to use the plotting paradigm given by the R package ggplot2. In this case, we might need to write custom 1 d and 2 d plotting functions. Here, we write a custom 2 d plot function.

```
R> library("ggplot2")
R> stopifnot(packageVersion("ggplot2") >= "2.2.1")
R> ggplot2d <- function(zargs) {
+ r<- extract_2d(zargs)
+ num2d <- zargs$num/2
+ df <- data.frame(x = as.numeric(r$x), y = as.numeric(r$y))
+ p <- ggplot() +
+ geom_point(data = df, aes(x = x, y = y), cex = 0.1) +
+ theme(axis.line = element_blank(),
+ axis.ticks = element_blank(),
+ axis.text.x = element_blank(),
+ axis.text.y = element_blank(),
+ axis.title.x = element_blank(),
+ axis.title.y = element_blank())
+ if(num2d == 1) p<- p+
+ theme(panel.background = element_rect(fill = 'royalblue3'))
+ if(num2d == (length(zargs$turns)-1)/2) p <- p +
+ theme(panel.background = element_rect(fill = 'maroon3'))
+ ggplot_gtable(ggplot_build(p))
+ }
```

Note the use of extract_2d (zargs) to get the x and y coordinates. The principal additions to ggplot() are the removal of several default plot elements. Note also the use of num2d <- zargs\$num/2 to get the total number of 2 d plots in the zenplot so that the first and last ones can be distinguished by background colour (respectively, "royalblue3" and "maroon3"). Finally, because ggplot() is written using the grid package, a suitable grid object must be returned.

The spiral zenplot, beginning at the center ("royalblue3") and zigzagging counter-clockwise to end at the bottom-right ("maroon3") and using ggplot(), is now simply constructed as

```
R> zenplot(as.matrix(oliveAcids)[,path], turns = turns, pkg = "grid",
+ plot2d = function(zargs) ggplot2d(zargs))
```


Figure 5: A zenplot displaying all pairs of acid components of the olive data at least once. In particular, this zenplot shows that one can use one's own turns (provided by the argument turns) and that plotting can also be done with ggplot2.

4.4. Data groups

In Section 2.3 it was noted that the data argument x might also be a list. In such cases, zenplot() assumes that each element of the list is itself a data set comprised of its own set of variates (dimensions). For example, we could take the oliveAcids data and split it into groups according to geographic area as follows:

```
R> oliveAcids.by.area <- split(oliveAcids, f = olive$area)
R> names(oliveAcids.by.area)[3] <- gsub("\\.", " ", names(oliveAcids.by.area)[3])
R> names(oliveAcids.by.area)
[1] "South" "Sardinia" "Centre North"
```

The data oliveAcids.by. area are a list having three components, the first, second and third containing 323, 98 and 151 measurements of the eight acid components, respectively. Zenplots of these data groups can now be produced as

```
R> zenplot(oliveAcids.by.area, labs = list(group = NULL))
R> zenplot(oliveAcids.by.area, lim = "groupwise", labs = list(sep = " - "),
+ plot1d = function(zargs) label_1d_graphics(zargs, cex = 0.8))
```

which appear as the left- and right-hand sides of Figure 6. In both zenplots, the displays

Figure 6: Zenplots showing the grouping feature (both left and right) and label feature (left: no group labels in 1d plots; right: groupwise scaling, label separator, downsizing labels).
follow the zigzag pattern for the variates which appear within each data group (each of which can have its own number of observations); the zigzag pattern continues on from one group to the next with a visually separating 2 d plot showing the names of the groups to either
side. This visual separator plot is constructed as a 2d plot function, group_2d_graphics() (and, for the other graphical systems, group_2d_grid() and group_2d_loon(), following the naming convention of Section 4.1), that simply displays the group labels in the order in which they appear indicating the transition from one group to the other (see "South" and "Sardinia" as well as "Sardinia" and "Centre North"; the first/top label indicates the last group along the zenpath, the second/bottom label indicates the next group).

Note that in the right-hand side zenplot, every 1d plot has the group name appear before that variate name (separated by a hyphen). This was effected by the argument labs = list (sep = " - "). In contrast, the left-hand side zenplot omitted the group labels from its 1 d plots by specifying labs $=$ list (group $=$ NULL). Note also that because the resulting 1d plot labels would be large when the group name was prepended, a user-defined (anonymous) function was provided as the argument of plot1d so that the size of this label could be reduced via the (ellipsis) argument cex $=0.8$ passed on to the built-in plotting function label_1d_graphics() (see Section 4.1 for more complex examples).

Note also that each displayed 2d plot has its own limits (lim = "individual", the default) as seen in the left-hand zenplot of Figure 6. In the right-hand zenplot, common limits are used within each group (lim = "groupwise"). A third choice would be to have all plots have identical limits across all plots regardless of groups (lim = "global"). For the data in this example, the effect would be nearly identical to that of the right-hand side zenplot of Figure 6.

4.5. Custom zenpaths

The R package zenplots provides auxiliary functions for connecting and extracting pairs along a zenpath or for obtaining a list of matrices for plotting a zenplot with grouping feature. We will now briefly present these functions.

Say our measure of "interestingness" is "convexity" according to scatter-plot diagonstics (scagnostics) and we are interested in the zenpath containing the six most convex pairs. We could proceed as follows. In a first step, we build a (d, d)-matrix, which, in the (i, j) th entry, contains the convexity measurement of the pair (i, j); this is the matrix M below.

```
R> library("scagnostics")
R> Y <- scagnostics(oliveAcids)
R> X <- Y["Convex",]
R> d <- ncol(oliveAcids)
R> M <- matrix(, nrow = d, ncol = d)
R> M[upper.tri(M)] <- X
R> M[lower.tri(M)] <- t(M)[lower.tri(M)]
R> round(M, 5)
```

 \([, 1] \quad[, 2] \quad[, 3] \quad[, 4] \quad[, 5] \quad[, 6] \quad[, 7] \quad[, 8]\)
 $[1$,$] \quad NA 0.489520 .463430 .458870 .439140 .345830 .312590 .28413$
$\left[\begin{array}{llllllllllllll}{[2,]} & 0.48952 & N A & 0.42276 & 0.50499 & 0.44591 & 0.35855 & 0.35846 & 0.31729\end{array}\right.$
$\left[\begin{array}{llllllllllllllll}{[3,]} & 0.46343 & 0.42276 & \text { NA } & 0.39700 & 0.36394 & 0.31316 & 0.29534 & 0.33709\end{array}\right.$
[4,] $0.458870 .504990 .39700 \quad \mathrm{NA} 0.464540 .366160 .294510 .34888$
$[5] \quad 0.439140 .44591 \quad$,$0.363940 .46454 \quad NA 0.319770 .314430 .36750$
[6,] 0.345830 .358550 .313160 .366160 .31977 NA 0.537260 .34001
[7,] 0.312590 .358460 .295340 .294510 .314430 .53726 NA 0.22231
[8,] 0.284130 .317290 .337090 .348880 .367500 .340010 .22231 NA

Next, we use the entries in M to determine the zenpath of strictly ordered pairs (according to the ordering with respect to "convexity"); this can be done with zenpath (, method = "strictly.weighted") as described before.

```
R> zpath <- zenpath(M, method = "strictly.weighted")
R> head(M[do.call(rbind, zpath)])
[1] 0.5372599 0.5049945 0.4895179 0.4645377 0.4634277 0.4588675
```

We can now conveniently use the function extract_pairs() as follows to extract the pairs we are most interested in, namely the first six along the zenpath.

```
R> (ezpath <- extract_pairs(zpath, n = c(6, 0)))
[[1]]
[1] 7 6
[[2]]
[1] 4 2
[[3]]
[1] 2 1
[[4]]
[1] 5 4
[[5]]
[1] 3 1
[[6]]
[1] 4 1
```

The function graph_pairs () can be used to depict these six pairs in a graph, where an edge indicates that the adjacent nodes build a pair; see Figure 7 .

```
R> library("graph")
R> plot(graph_pairs(ezpath))
```

As we can see, some of the pairs are naturally connected: For example, the pairs with secondand third-largest convexity measure share the variable 2 and thus could be (zen)plotted in the same group of variables $(4,2,1)$ (so plotting the pairs $(4,2)$ and $(2,1)$ with the variable 2 along the joint axis). How can we find connected pairs along a zenpath which still strictly respect the order given by "convexity"? This can be achieved with the function connect_pairs(), which provides us with a "compactified" zenpath which then also leads to a more compact zenplot.

R> (cezpath <- connect_pairs(ezpath))
[[1]]
[1] 76
[[2]]

Figure 7: Graph representing those six pairs along the zenpath which exhibit largest convexity; an edge corresponds to a pair between the adjacent variables.
[1] 421
[[3]]
[1] 54
[[4]]
[1] 314

We can use the function group() to group our data into the groups determined by cezpath.

```
R> oliveAcids.grouped <- group(oliveAcids, indices = cezpath)
```

Lastly, we can plot the corresponding (grouped) zenplot, see Figure 8.
R> zenplot(oliveAcids.grouped)

5. Advanced features

In the previous section, a variety of ways in which zenplots might be customized to suit the analysis were described and illustrated. There could be many more such illustrations given. In fact, an immense amount of control over the zenplot display is available to the user. This can be used to construct nearly arbitrary displays beyond any we have imagined here. To facilitate such creativity, a number of auxiliary software tools are provided in the zenplots package. This section provides detail on these tools so that the user can create their own novel layouts.
Section 5.1 describes the structure of a zenplot and highlights some of its important elements. In particular, the occupancy matrix is introduced which provides a potentially useful rectangular array description of the positions occupied by every plot in the display.
In Section 5.2 several important functions useful to create plots are described. Particularly important are those functions which extract the data so that it can be accessed by the

Figure 8: Zenplot showing the six pairs of acids which exhibit largest convexity; also note the U-turn at the end.
plot functions. These include the function extract_2d() seen earlier, its 1d counterpart extract_1d(), as well as all of the components which each function returns. Two important working functions are burst() and unfold(). The first, as its name suggests, takes any of the data structures acceptable to zenplot() and "bursts" this data into an easy to use common form. The second, unfold(), is the major function underpinning zenplot(). This name is intended to suggest its functionality which is to take a high-dimensional hypercube (all coordinate pairs of the high-dimensional space) and "unfold" it so that it may be laid flat in the two-dimensional plane. The unfolding determines the layout of the 2d plots. The algorithmic details of this layout (and other functions on which it depends) are described in Appendix A. In that appendix, the entire topdown structure of zenplot() and the functions on which it depends are given. The greatest detail, however, will be found in the source code itself.

5.1. The structure of a zenplot

As mentioned before, zenplot(), besides plotting, invisibly returns a list containing information about the zenpath and layout. For Figure 1, e.g., we obtain:

```
R> res <- zenplot(olive, plot1d = "layout", plot2d = "layout", draw = FALSE)
R> str(res)
List of 2
    $ path :List of 3
    ..$ turns : chr [1:19] "d" "r" "r" "d" ...
    ..$ positions: num [1:19, 1:2] 1 2 2 2 3 4 4 4 5 6 ...
    .. ..- attr(*, "dimnames")=List of 2
    .. .. ..$ : NULL
    .. .. ..$ : chr [1:2] "x" "y"
    ..$ occupancy: num [1:8, 1:6] 0 0 0 0 0 1 0 0 3 2 ...
$ layout:List of 6
    ..$ orientations : chr [1:19] "h" "s" "v" "s" ...
    ..$ dimensions : num [1:19] 1 2 1 2 1 2 1 2 1 2 ...
    ..$ vars : num [1:19, 1:2] 1 1 2 3 3 3 4 5 5 5 ...
    .. ..- attr(*, "dimnames")=List of 2
    .. .. ..$ : NULL
    .. .. ..$ : chr [1:2] "x" "y"
    ..$ layoutWidth : num 33
    ..$ layoutHeight : num 44
    ..$ boundingBoxes: num [1:19, 1:4] 0 0 10 11 11 11 21 22 22 22 ...
    .. ..- attr(*, "dimnames")=List of 2
    .. .. ..$ : NULL
    .. .. ..$ : chr [1:4] "left" "right" "bottom" "top"
```

Besides the components already discussed before (such as turns, orientations and vars), the return object of zenplot(), a list of length two, also contains the plot dimensions (as part of the layout component). Furthermore, it contains occupancy and positions:

```
R> res[["path"]][["occupancy"]]
[ [,1] [,2] [,3] [,4] [,5] [,6]
```

$[2]$,	0	2	2	3	0	0
$[3]$,	0	0	0	3	0	0
$[4]$,	0	0	0	2	2	3
$[5]$,	0	0	0	0	0	3
$[6]$,	1	1	0	3	1	1
$[7]$,	0	4	0	3	0	0
$[8]$,	0	4	1	1	0	0

R> head(res[["path"]][["positions"]])
x y
[1,] 12
[2,] 22
[3,] 23
[4,] 24
[5,] 34
[6,] 44

The occupancy matrix (component occupancy) is a matrix which reflects the layout containing all 1 d and 2 d plots underlying a zenplot. Its elements are in $\{0,1,2,3,4\}$ where 0 corresponds to the respective element in the layout being empty (or: not occupied) and the numbers 1 to 4 correspond to the turns " 1 ", "r", "d" and " u " out of the current position in the occupancy matrix. For example, the entry $(2,3)$ in the occupancy matrix is 2 , so the turn out of the position $(2,3)$ is to the right. The i th row in the 2 -column matrix positions provides the position of the i th plot in the occupancy matrix. For example, the fifth row is (3,4), meaning that the fifth plot will be plotted in the position $(3,4)$ of the layout corresponding to the occupancy matrix.
Finally, let us remark that for specific graphical systems, more information might be returned. For example, for pkg = "grid", the whole plot as a grid object is also returned.

5.2. Tools for writing 1 d and 2 d plot functions

We now present selected tools which help writing user-specific 1d and 2d plots. We also go into some more detail concerning the main underlying paradigm behind zenplots.

Bursting the data and extracting the current plot variables

As mentioned before, the data argument x of zenplot() is typically a vector, matrix, data.frame or a list of such. The auxiliary function burst() obtains the arguments x and labs (a list of length four as described above) and returns a list with the following components:
xcols: A list containing the columns of x (so x "burst" into its columns). These columns are named and the names contain, by default, the combined group and variable labels.
groups: The (group) number the respective column belongs to; all equal to 1 if x does not consist of different groups.
vars: The (variable) number the respective column belongs to within its group.
glabs: The group labels (NULL if x does not consist of different groups).
vlabs: The variable labels.

See ?burst for various examples showing how burst () works.
The functions extract_1d() and extract_2d() obtain the single argument zargs and extract (hence the name) useful information for most 1 d and 2 d plots, respectively. These are widely used in the exported $*_{-} 1 d_{-} *()$ and $*_{-} 2 d_{-} *()$ functions, respectively, and make use of burst (). In particular, extract_1d() checks whether zargs contains x, orientations, vars, num, lim and labs (all discussed before) and returns a list with components:
x : The (named) data column to be plotted in the current 1d plot.
xcols, groups, vars, glabs, vlabs: These are the components as returned by burst().
horizontal: A logical indicating whether the current 1d plot is horizontal or not (so vertical).
xlim: The axis limits for the current 1d plot.
Similarly, extract_2d() checks whether zargs contains x, vars, num, lim and labs and returns:
x: The (named) data column to be plotted as x variable in the current 2 d plot.
y : The (named) data column to be plotted as y variable in the current 2 d plot.
xcols, groups, vars, glabs, vlabs: These are the components as returned by burst().
xlim: The x axis limits for the current 2 d plot.
ylim: The y axis limits for the current 2d plot.
same.group: A logical indicating whether the two data columns x and y belong to the same group or not.

Simply passing zargs to the 1 d and 2 d plot functions *_1d_*() and *_2d_*() is very convenient. It also allows one to easily write new 1 d and 2 d plot functions without the need of having to deal with a lot of different arguments; we have already seen the short function function(zargs) label_1d_graphics(zargs, cex $=0.8$) as plot1d in the code for producing the right-hand side of Figure 6. It is thus natural to have the extractor functions extract_1d() and extract_2d() available to extract the actual information to be used for plotting by most 1 d and 2 d plot functions. For example, here is the definition of points_2d_graphics():

R> points_2d_graphics
function (zargs, cex $=0.4$, box $=$ FALSE, add $=$ FALSE, group.. = NULL, plot... = NULL, ...)
\{
r <- extract_2d(zargs)
xlim <- r\$xlim
ylim <- r\$ylim
$\mathrm{x}<-\mathrm{r} \$ \mathrm{x}$
y <- r\$y
same.group <- r\$same.group
glabs <- r\$glabs
if (same.group) \{ if (!add) plot_region(xlim = xlim, ylim = ylim, plot... = plot...) points($\mathrm{x}=\mathrm{x}, \mathrm{y}=\mathrm{y}$, cex = cex, ...) if (box)

```
            box(...)
    }
    else {
        args <- c(list(zargs = zargs, glabs = glabs, add = add),
            group...)
        do.call(group_2d_graphics, args)
    }
}
<environment: namespace:zenplots>
```

As we can see, extract_2d() is used to extract all the plotting information used for the current 2d plot. The component same.group is then used to determine whether a normal 2d scatter plot is produced via points() or whether a group-specific 2 d plot is produced (via group_2d_graphics()) to indicate the change of groups.
Bursting x in every 1 d and 2 d plot involved in a zenplot is quite time-consuming and becomes prohibitive in larger zenplots. The extractor functions extract_1d() and extract_2d() nicely address this problem by setting up an environment containing the burst x the first time this needs to be done (which is by the first call of extract_1d() if first1d = TRUE and by the first call of extract_2d() if first1d = FALSE). Subsequent calls of extract_1d() or extract_2d() can simply perform a look-up.

Setting up the plot region and determining the plot indices

When writing 1d or 2 d plot functions, one frequently needs to set up the plot region (of the 1 d or 2 d plots). To this end, zenplots provides the function plot_region() in case the graphical system is graphics; see the exported functions *_*_graphics() such as the above points_2d_graphics() where plot_region() is used.

```
R> plot_region
function (xlim, ylim, plot... = NULL)
{
    if (is.null(plot...)) {
        plot(NA, xlim = xlim, ylim = ylim, type = "n", ann = FALSE,
            axes = FALSE, log = "")
    }
    else {
        fun <- function(...) plot(NA, xlim = xlim, ylim = ylim,
            ...)
        do.call(fun, plot...)
    }
}
<environment: namespace:zenplots>
```

Similarly for grid, where one often needs an auxiliary function for constructing the correct viewport, zenplots provides vport(); see the exported functions *_*_grid() for how to use it.
A short, but useful helper function is plot_indices (), which allows one to determine, based on zargs, the indices of the two variables to be plotted in the current 1 d or 2 d plot (as mentioned
before, for 1d plots, the two are the same); see ?zenplot() for how to use plot_indices() in constructing 1d and 2d plots.

```
R> plot_indices
function (zargs)
zargs$vars[zargs$num, ]
<environment: namespace:zenplots>
```


Unfolding the hypercube

The major helper function which zenplot() calls is unfold(). Although unfold() is probably rather rarely used directly by a user, it provides insight in how zenplots are constructed. It obtains, as first argument, nfaces, the number of 2 d plots and produces the zenpath and zenplot layout required for zenplot(). On an abstract level, all $\binom{d}{2}$ distinct pairs of d plot variables can be viewed as determining distinct (among the $2^{d-2}\binom{d}{2}$ possible) 2-dimensional faces of a d-dimensional hypercube; see Figure 9. Laying out these pairs with a zenplot means

Figure 9: Three-dimensional (folded) hypercube with faces $(1,2),(1,3)$ and $(2,3)$ (left) and unfolded faces after cutting along the blue line (right).
"unfolding" (at least a part of) the d-dimensional hypercube. This is what unfold() does. It first constructs the zenpath (either based on given turns or based on the given method for constructing turns) with the (non-exported) helper function get_path() and then, given the zenpath, determines the layout with the (non-exported) helper function get_layout(). Both of these functions are described in more detail in the appendix.
Note that the (invisible) return value of zenplot() actually equals the return value of unfold(), which we can easily check:

R> n2dcols <- ncol (olive) - 1
$R>\operatorname{stopifnot(identical(res,~unfold(nfaces~}=n 2 d c o l s))$)

A. Algorithms

In a "top-down" (top layer to bottom layer) manner, we now describe in terms of pseudoalgorithms how zenplots and zenpaths are constructed "under the hood". The presented algorithms only capture the main purpose, essential inputs (important for the algorithm overall, not necessarily required to be provided), optional inputs, the return value and the major steps; for more details (including more or more general features than captured here), consider the actual source code of zenplots. The reason these pieces of information are presented is to convey the intellectual challenge and contribution in constructing zenplots and zenpaths. The algorithms refer to functions which are used by zenplots (not all exported and thus visible to the user) but assume a more compact, mathematical notation.
The following algorithm describes the main structure of zenplot () as already discussed before. It mainly calls unfold() to determine the zenpath in the form of a list containing the vector of turns (denoted by t), a 2-column matrix of positions in the occupancy matrix (denoted by p) and the occupancy matrix itself (denoted by O). The function unfold() also determines the corresponding layout of the zenplot.

Algorithm A. 1 (Main plot function; zenplot())

Purpose: Compute the zenplot and, invisibly, return the path and layout.
Essential: An (n, d)-matrix or data frame (or list of such) X containing the $n d$-dimensional data vectors, the turns t (if not provided, they will be computed from the given number $n_{2 d} \geq 2$ of columns of 2 d plots and the method ("tidy" (the default), "double zigzag", "single zigzag" or "rectangular") used for constructing the path), functions for creating the 1d and 2d plots, and an argument indicating the graphical system used for plotting.

Optional: Logicals indicating whether the first or last 1d plot are to be plotted, the number of 2 d plots along the zenpath, a vector of logicals indicating which pieces of information are passed to the 1 d and 2 d plot functions, how group and variable labels are determined, parameters for adjusting spaces in a zenplot and further parameters such as an ellipsis argument passed to the underlying 1d and 2d plot functions.

Return: Nothing (R's invisible()) unless assigned to a variable in which case a list containing the path and layout is returned.

Major steps:

1) Call unfold() to compute the path and corresponding layout; see Algorithm A.2.
2) Determine the argument lists passed to the 1 d and 2 d plot functions, respectively.
3) Setting up the overall layout.
4) Loop over all plots and call the 1 d and 2 d plot functions with the respective arguments.

The following algorithm unfolds the hypercube along a (provided or determined) set of edges and returns the corresponding zenpath and a layout of 1 d and 2 d plots along it.

Algorithm A. 2 (Unfolding the hypercube; unfold())
Purpose: Computes the path and corresponding layout by unfolding a cube (the sides of which are interpreted as the pairs of variables to be plotted in the 2d plots of a
zenplot).
Essential: The number of faces of the hypercube (which equals the number $n_{2 \mathrm{dp}}$ of 2 d plots in a zenplot, so typically the number of columns d of X minus one), the number $n_{2 \mathrm{dc}}$ of columns containing 2 d plots and the method (see Algorithm A.1).

Optional: The turns t, logicals indicating whether the first or last 1 d plot are to be plotted and widths of 1 d and 2 d plots in the layout.

Return: Returns the path (t, p, O) and corresponding layout (a list with orientations, plot dimensions, plot variables (2-column matrix), layout width and height and bounding boxes); see the output for Figure 1 we discussed earlier in the paper.

Major steps:

1) Construct the path via get_path(); see Algorithm A.3.
2) Determine the layout (corresponding to the turns) via get_layout(); see Algorithm A.6.

We now turn to determining the path. This is done via get_path() (Algorithm A.3) which is an auxiliary function of unfold() (Algorithm A.2) and which itself has two more auxiliary functions discussed below; these are get_zigzag_turns() (Algorithm A.4) and next_move_tidy () (Algorithm A.5).

Algorithm A. 3 (Determining the path; get_path())

Purpose: Determine the path (turns t, positions p and occupancy matrix O).
Essential: The turns t, the number $n_{2 d c}$ of columns containing 2 d plots, the number $n_{2 d p}$ of 2 d plots and the method (see Algorithm A.1).
Optional: Logicals indicating whether the first or last 1d plot are to be plotted.
Returns: The path in the form of a list.
Major steps:

1) If the turns t are provided, say, n_{t}-many, proceed as follows.
1.1) Initialize the $\left(n_{\mathrm{t}}, 2\right)$-matrix p of positions with zeros, set the current location $p_{\text {cur }}$ to $(0,0)$ and the horizontal and vertical limits of the number of plots to $(0,0)$ each; the latter determine the extend of the occupancy matrix in horizontal and vertical direction.
1.2) If $n_{\mathrm{t}}>1$, loop over $i \in\left\{2, \ldots, n_{\mathrm{t}}\right\}$, set the current position $p_{\text {cur }}$ to the position obtained by moving in the direction of turn $i-1$ (the turn into the current position) and set the i th row of p to $p_{\text {cur }}$. Then check whether the horizontal or vertical limits have to be extended and extend them if necessary.
1.3) To obtain the final matrix of positions, "shift" all coordinates appropriately (by subtracting the minimum of each column of p from the respective column and adding 1 to each value).
1.4) Initialize the occupancy matrix O with zeros (no position occupied); note that the maximum of the first and second column of p determine the dimensions of O. Then loop over all rows of p and set the respective entry in O to $1,2,3$ or 4, depending on whether the turn out of the current position $p_{\text {cur }}$ is " 1 ", " r ", " d " or " u ", respectively.
2) If the turns t are not provided, proceed as follows. Let $n_{\text {plots }}$ denote the number of all plots (1d or 2 d).
2.1) For method "rectangular", proceed as follows.

- Set $n_{\text {plots }}=2 n_{2 \mathrm{dp}}+1-\left(1-\mathbb{1}_{\text {first1d }}\right)-\left(1-\mathbb{1}_{\text {last1d }}\right)$, where $\mathbb{1}_{\text {first1d }}\left(\mathbb{1}_{\text {last1d }}\right)$ is the indicator of the event that the first (last) 1d plot is to be displayed.
- Set the number $n_{2 \mathrm{dr}}$ of rows with 2 d plots to $n_{2 \mathrm{dr}}=\left\lceil n_{2 \mathrm{dp}} / n_{2 \mathrm{dc}}\right\rceil$.
- Determine the turns to fill the rectangular layout (determined by $n_{2 \mathrm{dr}}$ and $n_{2 \mathrm{dc}}$), remove the first turn or append the last (depending on whether the first and last 1 d are to be displayed) and extract the $n_{\text {plots }}$-many turns required for the zenplot.
- Loop over the turns to determine the positions p and from there the occupancy matrix O.
- Return the path (list of turns t, positions p and the occupancy matrix O).
2.2) For all other methods, set $n_{\text {plots }}=2 n_{2 \mathrm{dp}}+1$ and proceed as follows.
- If $n_{\text {plots }}=1$, set turns $t=(" \mathrm{~d}$ "), positions $p=(1,1)$, occupancy matrix $O=(3)$.
- If $n_{\text {plots }}=2$, set turns $t=\left(" d "\right.$, "r"), positions $p=\left(\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right)$, occupancy matrix $O=\binom{3}{2}$.
- If $n_{\text {plots }}=3$, set turns $t=(" d$ ", "r", "r"),

$$
\text { positions } p=\left(\begin{array}{ll}
1 & 1 \\
2 & 1 \\
2 & 2
\end{array}\right), \quad \text { occupancy matrix } O=\left(\begin{array}{ll}
3 & 0 \\
2 & 2
\end{array}\right) .
$$

- If $n_{\text {plots }} \geq 4$, proceed as follows.
2.2.1) For method "double zigzag" or "single zigzag", the idea is to build all turns right away (the positions and the occupancy matrix can the be determined from the turns):
- Compute the turns via get_zigzag_turns(); see Algorithm A.4.
- Initialize the occupancy matrix O as an $\left(1,2 n_{2 d}-1\right)$-matrix containing zeros and the positions p as an ($n_{\text {plots }}, 2$)-matrix containing zeros.
- Encode the turns " 1 ", "r", "d", "u" as the numeric values 1-4, respectively.
- Set $p_{\text {cur }}=(1,1)$ and the first row of p to $p_{\text {cur }}$. Furthermore, set O at $p_{\text {cur }}$ to the numeric value of the first turn.
- Loop over $i \in\left\{2, \ldots, n_{\text {plots }}\right\}$, set the next position $p_{\text {next }}$ to the value obtained by moving from $p_{\text {cur }}$ in the direction of turn $i-1$ and set the i th row of p to $p_{\text {cur }}$. Then update $p_{\text {cur }}$ to $p_{\text {next }}$. If $p_{\text {cur }}$'s first entry exceeds the maximal row number of O append another row of zeros to O. Then set O at $p_{\text {next }}$ to the numeric value of the i th turn.
- Trim off the last columns of zeros (if any) from O.
2.2.2) For method "tidy":
- Initialize the $n_{\text {plots }}$-vector turns t, and the $\left(1,2 n_{2 d}+1\right)$ occupancy matrix O with zeros and the positions p as an $\left(n_{\text {plots }}, 2\right)$-matrix containing zeros. Furthermore, set the first turn to d, the first row of p to $(1,2)$ and the occupancy matrix O at $(1,2)$ to 3 (numeric value corresponding to a turn "d").
- Loop over $i \in\left\{2, \ldots, n_{\text {plots }}\right\}$, determine the next position $p_{\text {next }}$ and the turn $t_{\text {next }}$ out of $p_{\text {next }}$ via next_move_tidy (), see Algorithm A.5, set the i th turn to $t_{\text {next }}$ and the i th row of p to $p_{\text {next }}$. If the first entry of $p_{\text {next }}$ exceeds the maximal row number of O append another row to O. Then set O at $p_{\text {next }}$ to the numeric value of the i th turn.
- If it exists, trim off the last column of zeros from O.
- If it exists, trim off the first column of zeros from O and subtract 1 from the second column of p (as all positions relative the occupancy matrix changed).
- Depending on whether the first and last 1d plot are to be displayed, trim the path accordingly.
- Return the path (list of turns t, positions p and the occupancy matrix O).

Algorithm A. 4 (Compute the turns for zenplots with method "double zigzag" or "single zigzag"; get_zigzag_turns())

Purpose: Compute the vector of turns for zenplots with method "double zigzag" or "single zigzag".

Essential: The number of plots $n_{\text {plots }}$, the number $n_{2 d} \geq 2$ of columns of 2 d plots, the method used for constructing the path ("double zigzag" or "single zigzag").
Returns: The turns t.
Major steps:

1) Define the horizontal 2 d pattern ("r", .., "r", "l" ..., "l") (each of "r", "l" appears $2\left(n_{2 d}-1\right)$ times). So far this only contains horizontal movements, vertical movements will be added in Step 4) below.
2) Define the vertical 2 d subpattern corresponding to the first part ("r",...,"r") of the horizontal 2 d pattern in the following way:

- For method "single zigzag", the vertical 2d subpattern is ("d", ..., "d") (of length $n_{2 d}-1$).
- For method "double zigzag", the vertical 2 d subpattern can be constructed as follows: If $n_{2 d}=2$, it is ("d"). If $n_{2 d}>2$, take $n_{2 d}-3$ elements from the alternating sequence "d", "u", "d", " $\mathrm{u} ", \ldots$ and append two "d"'s (so, ("d", "d") for $n_{2 d}=3$, ("d", "d", "d") for $n_{2 d}=4$, ("d", "u", "d", "d") for $n_{2 d}=5$, etc.).

3) Define the vertical 2d pattern corresponding to the horizontal 2 d pattern from Step 1) by repeating the vertical 2 d subpattern from Step 2) twice, i.e., (vertical 2 d subpattern, vertical 2 d subpattern).
4) Set components of the horizontal 2d pattern from Step 1) with even indices to the values of the vertical 2 d pattern from Step 3). With this merge, we obtain the 2d pattern which repeats itself until we run out of plots.
5) Repeat each element of this 2 d pattern twice to obtain the overall pattern; this is to account for 1d plots, so the pattern now contains turns for both 1d plots and 2d plots.
6) The vector of turns can now be obtained by taking " d " as first component (since the first turn is always "d") and then taking the first $n_{\text {plots }}$ elements of an imaginary sequence
consisting of the overall pattern repeated after each other; recall that $n_{\text {plots }}$ denotes the total number of 1 d and 2 d plots.

Algorithm A. 5 (Determine the next position and turn out of there; next_move_tidy())

Purpose: Determine, for the method "tidy", the next position $p_{\text {next }}$ to move to and the turn $t_{\text {next }}$ out of this next position.
Essential: The current plot number n_{p}, the total number of plots $n_{\text {plots }}$ and the current path as has been determined up to and including n_{p}. Note that this function assumes that the zenplot starts with a 1d plot; get_path() trims off the first 1d plot if necessary.
Returns: A list containing the next position $p_{\text {next }}$ (i.e., the position of plot numbered $n_{\mathrm{p}}+1$) and the turn $t_{\text {next }}$ out of this next position.

Major steps:

1) Let $n_{\text {left }}=n_{\text {plots }}-n_{\text {p }}$ denote the number of remaining plots.

- If $n_{\mathrm{p}}=1$, return $p_{\text {next }}=(2,2)$ and $t_{\text {next }}=$ "r".
- If $n_{\mathrm{p}}=2$, return $p_{\text {next }}=(2,3)$ and $t_{\text {next }}=$ "r".
- If $n_{\mathrm{p}}=3$, set $t_{\text {next }}=u$ if $n_{\text {left }} \leq 2$ and set $t_{\text {next }}=$ "d" otherwise. Return $p_{\text {next }}=(2,4)$ and $t_{\text {next }}$.

2) Determine the current position $p_{\text {cur }}$ (corresponding to row n_{p} in the positions matrix p), the turn $t_{\text {in }}$ into $p_{\text {cur }}$ (element $\left(n_{\mathrm{p}}-1\right)$ in the vector of turns t), the turn $t_{\text {out }}$ out of $p_{\text {cur }}$ (element n_{p} of t) and the next position $p_{\text {next }}$ when moving from $p_{\text {cur }}$ in the direction given by $t_{\text {out }}$.
3) If n_{p} is even (i.e., the current plot is a 2 d plot according to the above assumption), return $p_{\text {next }}$ and $t_{\text {out }}$.
4) Now the current plot numbered n_{p} is a 1 d plot. We proceed by determining the horizontal moving direction out of this plot. To this end, consider the turns at $n_{\mathrm{p}}-2$ and $n_{\mathrm{p}}-1$. If " r " is among any of these two turns, the horizontal moving direction is " r ", otherwise it is "l". Furthermore, determine the distance to the margin of the occupancy matrix O in the horizontal moving direction; if the latter is " r ", the distance is the number of columns in O minus the second component of $p_{\text {cur }}$ (distance to the right end of O); otherwise it is the second component of $p_{\text {cur }}$ minus 1 (distance to the left end of O).
5) We now determine the turn $t_{\text {next }}$ out of $p_{\text {next }}$. To this end, we distinguish two cases:
5.1) If $t_{\text {out }}$ is " d " or "u" (i.e., the current 1 d plot is horizontal), proceed as follows.
5.1.1) If $n_{\text {left }} \leq 2$, check the location of the 2 d plot which comes after the next 2 d plot in opposite horizontal moving direction.

- If this location does not exist in O (which can only happen if $t_{\text {out }}=$ "d" in which case O is missing a new row), proceed as follows. Put the last 1 d plot in opposite horizontal moving direction if we are near the margin (i.e., set $t_{\text {next }}=$ "l" if the horizontal moving direction is " r " and $t_{\text {next }}=$ "r" otherwise; we follow this strategy here since we occupy an additional column otherwise). Otherwise, put it in horizontal moving direction (i.e., set $t_{\text {next }}$ to the horizontal moving direction; this can be done since we are away from the margin, i.e., "inside" O).
- If this location exists, check the occupancy matrix at this location to see whether it is occupied. If it is not occupied, set $t_{\text {next }}$ to the opposite horizontal moving direction ("l" if the horizontal moving direction is " r " and vice versa). Otherwise, set $t_{\text {next }}$ to the current horizontal moving direction.
5.1.2) If $n_{\text {left }} \geq 3$ (so there are at least two more 2 d plots left), change the horizontal moving direction if and only if the distance to the margin is less than or equal to two.
5.2) If $t_{\text {out }}$ is " 1 " or "r" (i.e., the current $1 d$ plot is vertical and the distance to the margin is at least two in this case), proceed as follows. Ideally, we would like to go up (in order to save space in the plotting region), but if there are too many plots left, we can only go up if we have the space to go down again. To explain this part of the algorithm, we utilize the concept of a U-turn (going up and back down again).
5.2.1) Given $p_{\text {cur }}$, the horizontal moving direction and the occupancy matrix O so far, determine the number of plots which fit in the U-turn starting from $p_{\text {cur }}$, i.e., the length $l_{\mathrm{U} \text {-turn }}$ of the U-turn. This can be done as follows.
- Let $p_{\text {check }}$ denote the position obtained from $p_{\text {cur }}$ by going up two rows and then one column in the horizontal moving direction. If $p_{\text {check }}$ exists in the occupancy matrix O and is occupied, return $l_{\mathrm{U}-\mathrm{turn}}=1$ (as only one additional plot fits in along this U-turn). If it does not exist in O, return $l_{\mathrm{U}-\mathrm{turn}}=2$.
- Update $p_{\text {check }}$ by going two columns further in the horizontal moving direction. If $p_{\text {check }}$ does not exist in O or if it exists but is occupied, return $l_{\mathrm{U} \text {-turn }}=4$.
- Update $p_{\text {check }}$ by going two rows down. If $p_{\text {check }}$ does not exist in O or if it exists but is occupied, return $l_{\mathrm{U} \text {-turn }}=6$.
- Update $p_{\text {check }}$ by going two columns further in the horizontal moving direction. If $p_{\text {check }}$ does not exist in O or if it exists but is occupied, return $l_{U-\text { turn }}=8$. Otherwise return $l_{\mathrm{U} \text {-turn }}=10$ (which means that at least 10 plots fit in the U-turn and we can do a complete U-turn by going up and back down again).
5.2.2) If the first component of the current position $p_{\text {cur }}$ is less than or equal to two (i.e., we are in the second row of O and thus cannot go up) or if $l_{\mathrm{U} \text {-turn }} \leq 9$ (i.e., at most 9 plots fit in the U-turn starting from $p_{\text {cur }}$) but $n_{\text {left }}>l_{\mathrm{U}-\mathrm{turn}}$ (i.e., there are more plots left than fit in the U-turn), set $t_{\text {next }}=$ " d ". Otherwise, set $t_{\text {next }}=" \mathrm{u}$ ".

6) Return $p_{\text {next }}$ and $t_{\text {next }}$.

Finally, we describe how the layout can be constructed.

Algorithm A. 6 (Determining the layout; get_layout())

Purpose: Determine the layout (1d and 2 d plot orientations, plot dimensions, plot variables, total width and height of the layout and bounding boxes).

Essential: The turns t and number $n_{2 d p}$ of 2 d plots.
Optional: Logicals indicating whether the first or last 1d plot are to be plotted and widths of 1 d and 2 d plots in the layout.

Returns: The layout (a list with components as described above).

Major steps:

1) Set up an empty 4 -column matrix containing the left, right, bottom and top coordinates (in units of the widths of 1 d and 2 d plots) of the bounding box of each plot. Furthermore, set up a 2 -column matrix containing the variables of each 1 d or 2 d plot.
2) Loop over all 1 d and 2 d plots and determine, for each, its orientation, plot variables involved and coordinates of the bounding box. In particular, this loop requires as input the number of plots, the current and the last plot variable. Some more details about this loop:

- Determining the current plot variables: For 1d plots, this is the current plot variable repeated twice. For 2 d plots which turn left or right out of the current position in O, this is the last and current plot variable; for 2 d plots turning down or up out of the current position in O, this is the current and the last plot variable (notice the difference in order).
- Determining the current bounding box: This is a function of the last turn (i.e., the turn into the current plot position), the last bounding box and the width and height of the bounding box. The latter two are easy to determine based on the provided widths of the 1 d and 2 d plots. And the location of the bounding box for the current plot equals the bounding box of the previous plot shifted in the direction of the last turn (so the turn into the current plot position).

References

Asimov D (1985). "The Grand Tour: A Tool for Viewing Multidimensional Data." SIAM Journal on Scientific and Statistical Computing, 6(1), 128-143.

Azzalini A, Torelli N (2007). "Clustering via Nonparametric Density Estimation." Statistics and Computing, 17, 71-80.

Ball GH, Hall DJ (1970). "Some Implications of Interactive Graphic Computer Systems for Data Analysis and Statistics." Technometrics, 12(1), 17-31.

Buja A, Hurley CB, McDonald JA (1986). "A Data Viewer for Multivariate Data." Computing Science and Statistics, 18, 171-174.

Emerson JW, Green WA, Schloerke B, Crowley J, Cook D, Hofmann H, Wickham H (2013). "The Generalized Pairs Plot." Journal of Computational and Graphical Statistics, 22(1), 7991. doi:10.1080/10618600.2012.694762. URL http://dx.doi.org/10.1080/10618600. 2012. 694762.

Forina M, Armanino C, Lanteri S, Tiscornia E (1983). "Classification of Olive Oils from Their Fatty Acid Composition." In H Martens, HJ Russwurm (eds.), Food Research and Data Analysis, pp. 189-214. Applied Science Publishers.

Friendly M (1999). "Extending Mosaic Displays: Marginal, Conditional, and Partial Views of Categorical Data." Journal of Computational and Graphical Statistics, 8(3), 373-395.

Hartigan JA (1975). "Printer Graphics for Clustering." Journal of Statistical Computation and Simulation, 4(3), 187-213.

Hofert M, Mächler M (2014). "A Graphical Goodness-of-Fit Test for Dependence Models in Higher Dimensions." Journal of Computational and Graphical Statistics, 23(3), 700-716. doi:10.1080/10618600.2013.812518.

Hofert M, Oldford RW (2017). "Visualizing Dependence in High-dimensional Data: An Application to S\&P 500 Constituent Data." Econometrics and Statistics. doi:10.1016/j. ecosta.2017.03.007.

Huang B, Cook D, Wickham H (2012). "tourrGui: A gWidgets GUI for the Tour to Explore High-Dimensional Data Using Low-Dimensional Projections." Journal of Statistical Software, 49(6), 1-12.

Hurley CB, Oldford RW (2010). "Pairwise Display of High-dimensional Information via Eulerian Tours and Hamiltonian Decompositions." Journal of Computational and Graphical Statistics, 19(4), 861-886.

Hurley CB, Oldford RW (2011). "Graphs as Navigational Infrastructure for High Dimensional Data Spaces." Computational Statistics, 26(4), 585-612.

Im JF, McGuffin MJ, Leung R (2013). "GPLOM: The Generalized Plot Matrix for Visualizing Multidimensional Multivariate Data." IEEE Transactions on Visualization and Computer Graphics, 19(12), 2606-2614.

Murrell P (2016). R Graphics. CRC Press.
Oldford RW, Waddell A (2011). "Visual Clustering of High-dimensional Data by Navigating Low-dimensional Spaces." STS057, pp. 3294-3303. International Statistical Institute, The Hague, The Netherlands. URL http://2011.isiproceedings.org/papers/650370.pdf.

R Core Team (2017a). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project. org/.

R Core Team (2017b). The R graphics Package. R Foundation for Statistical Computing, Vienna, Austria.

Ripley BD (2017). MASS: Support Functions and Datasets for Venables and Ripley's MASS. URL https://CRAN.R-project.org/package=MASS.

Tukey JW, Tukey PA (1983). "Some Graphics for Studying Four-Dimensional Data." In KW Heiner, RS Sacher, JW Wilkinson (eds.), Computer Science and Statistics: Proceedings of the 14th Symposium on the Interface, pp. 60-66. Springer-Verlag, New York, NY, USA.

Tukey JW, Tukey PA (1985). "Computer Graphics and Exploratory Data Analysis: An Introduction." In Proceedings of the Sixth Annual Conference adn Exposition, volume III. National Computer Graphics Association.

Tukey PA, Tukey JW (1981a). "Graphical Display of Data Sets in 3 or more Dimensions - DataDriven View Selection; Agglomeration and Sharpening." In V Barnett (ed.), Interpreting Multivariate Data, pp. 215-243. John Wiley \& Sons, Chichester.

Tukey PA, Tukey JW (1981b). "Graphical Display of Data Sets in 3 or more Dimensions Preparation; Prechosen Sequences of Views." In V Barnett (ed.), Interpreting Multivariate Data, pp. 189-213. John Wiley \& Sons, Chichester.

Waddell A, Oldford RW (2011). "RnavGraph: A Visualization Tool for Navigating Through High-dimensional Data." IPS117, pp. 1852-1860. International Statistical Institute, The Hague, The Netherlands. URL http://2011.isiproceedings.org/papers/450430.pdf.

Waddell A, Oldford RW (2014). RnavGraph: Using Graphs as a Navigational Infrastructure. URL http://www.navgraph.com.

Waddell A, Oldford RW (2017). loon: Interactive Statistical Data Visualization. URL https://CRAN.R-project.org/package=loon.

Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag.
Wickham H, Chang W (2016). ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. URL https://CRAN.R-project.org/package=ggplot2.

Wilkinson L, Anand A, Grossman RL (2005). "Graph-Theoretic Scagnostics." In INFOVIS, volume 5, pp. 157-164.

Affiliation:

Marius Hofert
Department of Statistics and Actuarial Science
University of Waterloo
200 University Avenue West
Waterloo, ON, Canada N2L 3G1
E-mail: marius.hofert@uwaterloo.ca
URL: http://www.math. uwaterloo.ca/~mhofert/

Wayne Oldford
Department of Statistics and Actuarial Science
University of Waterloo
200 University Avenue West
Waterloo, ON, Canada N2L 3G1
E-mail: rwoldford@uwaterloo.ca
URL: http://www.math.uwaterloo.ca/~rwoldfor/

Iournal of Statistical Software
published by the Foundation for Open Access Statistics
MMMMMM YYYY, Volume VV, Issue II
doi:10.18637/jss.v000.i00
http://www.jstatsoft.org/
http://www.foastat.org/
Submitted: yyyy-mm-dd
Accepted: yyyy-mm-dd

