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Abstract

A graph theoretic approach is taken to the component order problem in the layout
of statistical graphics. Eulerian tours and Hamiltonian decompositions of complete
graphs are used to ameliorate order effects in statistical graphics. Similar traversals of
edge weighted graphs are used to amplify the visual effect of selected salient features
in the data. Relevant graph theory is summarized and classic algorithms are tailored
to this problem. Graphics for multiple comparisons are reviewed and a new display
developed that is based on graph traversal. Interaction plots are improved and new ones
proposed. Improved star glyph displays of multivariate data are described. Parallel
coordinate displays tailored to particular features of the data are developed. The
methods and new graphical displays are made available as an R package.

1 Introduction

Graphical displays often require an ordering of their components (e.g. scatterplot matrices,
glyphs, parallel coordinate plots, etc.). The ordering itself is an encoding of information
that, if neglected, could hide or distort important information in the data.

Perhaps the best known example is that of Chernoff’s faces. There the information
perceived is very much dependent on the order in which variates are assigned to the face
features (Chernoff and Rizvi, 1975). This lack of invariance to the order renders the faces of
limited use in data exploration. However, post exploration, careful assignment of variates
to features can make an effective presentation graphic.

Ordering has often been used to good effect, to reveal more about the data, to encourage
data comparisons, and to make large datasets coherent – in short to meet Tufte’s (1987)
principles of graphical excellence. Cleveland’s (1995) trellis display of barley data is a
convincing example of the benefits of a well chosen order: here the main effect category
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levels are ordered by their median, and an anomaly in the data is immediately evident.
Ankerst, Berchtold and Keim (1998), Friendly and Kwan (2003) and Hurley (2003) describe
methods for sorting variables so that similar variables are positioned adjacent to each
other in multivariate displays such as scatterplots and parallel coordinates, thus simplifying
interpretation.

In what follows, we explore how ordering might be automated and more widely applied
in statistical graphics. Particular graphics addressed will be a display for multiple compar-
isons, interaction plots, star glyphs and parallel coordinate plots. Some of these are new
displays, others are new variations on existing displays. There are no doubt many other
visualization methods where our approach will apply.

We abstract the problem to one of graph traversal, and so are able to bring mathe-
matical results and algorithms to bear on it. In some cases, traversals can be chosen to
ameliorate the order effect, rendering the display more nearly invariant to the component
ordering. In other cases, some traversals are chosen over others to reinforce the desired
effect of the display.

Section 2 surveys the relevant graph theory and summarizes those mathematical results
most applicable to the ordering problem. The section stands on its own and is applicable
to any statistical problem where order is of concern, not just those of data visualization.

In Section 3, we demonstrate the ordering effects of a number of statistical graphics
and show how the relevant graph theoretic results can be used to produce both new (in the
case of multiple comparisons) and improved (in the case of interaction plots, star glyphs
and parallel coordinate plots) statistical displays.

Section 4 describes the algorithms used in constructing the graph traversals used and
some closing remarks are made in the last section.

2 Graph theory

The complete graph on n nodes or vertices is an undirected graph, denoted Kn, with vertex
set V (Kn) = {1, 2, . . . , n} and edge set E(Kn) = {eij |i, j ∈ V (Kn), i 6= j with eij = eji}
(when there is no ambiguity, the edge eij might also be written ij). The cardinality of the
vertex set is called the graph’s order, here n, and that of its edge set the size of the graph,
here |E(Kn)| = n(n− 1)/2. Figure 1(a) shows K7.

A complete graph is a convenient representation of n objects (the nodes) together with
all possible pairings (the edges). Any path along edges of the graph simultaneously provides
an arrangement of those objects identified with the nodes of the path and of the pairings
identified with the edges of the path.

2.1 Hamiltonians, eulerians, and hamiltonian decompositions

A path is called a hamiltonian path if it visits all vertices of a graph exactly once. The
hamiltonian path of Figure 1(b) orders the nodes as 1243675 (or the reverse), and is

2



●

●

●

●●

●

●

1

2

3

45

6

7

●

●

●

●●

●

●

1

2

3

45

6

7

●

●

●

●●

●

●

1

2

3

45

6

7

(a) K7 (b) A hamiltonian path (c) A hamiltonian cycle

Figure 1: K7, euler tours, and hamiltonians.

identified with a permutation of the nodes. The set of all hamiltonian paths on a complete
graph is the set of all permutations. Closing a hamiltonian path by joining its ends, as in
Figure 1(c), creates a hamiltonian cycle which can be identified with many permutations
(each being a cyclic permutation of the original). A graph G is hamiltonian if it contains
a hamiltonian cycle and a graph G is hamiltonian connected if any pair of vertices are the
ends of a hamiltonian path. Complete graphs Kn are hamiltonian for all n and Kn contains
(n− 1)! distinct hamiltonian cycles.

Equivalently, a path can be regarded as providing an ordering on the edges it contains.
Figure 1(b) orders its edges as 12, 24, 43, 36, 67, 75 to which the hamiltonian cycle of Figure
1(c) adds the edge 51. Often interest lies in visiting (and hence ordering) all of the edges in
a graph. A path which contains all of the edges of a graph, visiting each edge exactly once is
called an eulerian path (or eulerian trail) and if the path is closed then the traversal is called
an eulerian tour. A graph G which has an eulerian tour is called eulerian. The graph K7 of
Figure 1(a) is eulerian. An eulerian tour of a complete graph provides an arrangement of
all possible pairings of the nodes. One such tour for K7 is T0 = 1234567461427157352631.

2.1.1 Many to choose from

As with hamiltonians (cycles and paths), there need not be a unique eulerian tour for a
given graph. Typically there are a great many to choose from. For example, K7 admits
129, 976, 320 eulerian tours that are not cyclic permutations of one another (first determined
by Reiss, 1871-3; see McKay and Robinson, 1998) while K21 has more than 3.4 × 10184.
(For odd n ≤ 21, the number is available online via Sequence A007082 of the Online
Encyclopedia of Integer Sequences (Sloane 2004).)

While an eulerian tour of a complete graph produces an arrangement of all possible
pairings, it may be that some eulerian tours (arrangements) are preferred over others. With
some measure of the value of each, the eulerian tours could, in principle, be ordered and
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the best selected.
For example, if each edge in the graph had a weight, we might prefer eulerians whose

edge weights were by some measure as low (high) as possible in the early part of the
sequence. A greedy eulerian might be one which began with the lowest (highest) weight
edge, then amongst the edges available chose the next edge with lowest (highest) weight,
and so on.

Alternatively, one might prefer eulerians with some particular structure.

2.1.2 Hamiltonian decomposed eulerian tours

One possibility is that the eulerian tour be composed entirely of edge-distinct hamiltonian
cycles, a so-called hamiltonian decomposition. Figure 2 shows a hamiltonian decomposition

●

●

●

●●

●

●

1

2

3

45

6

7

●

●

●

●●

●

●

1

2

3

45

6

7

●

●

●

●●

●

●

1

2

3

45

6

7

(a) H11 = 12345671 (b) H12 = 13572461 (c) H13 = 14736251

Figure 2: A hamiltonian decomposition H1 = H11 : H12 : H13 of K7.

of K7. Note that this decomposition is also a symmetric hamiltonian decomposition be-
cause a node labelling exists which makes all cycles symmetric about the same node (this
decomposition is in fact symmetric about every node).

An eulerian tour can be had by joining these hamiltonian cycles, in any order, at the
same node. For example, T1 = 1 234567 1 357246 1 473625 1 is an eulerian tour that joins
the three hamiltonians at 1 in the order of H11, H12, H13; T2 = 2 345671 2 753164 2 514736 2
joins the cycles at node 2 in the order H12, H11, H13 with the middle cycle reversed. For any
hamiltonian decomposition, an eulerian tour can be constructed by varying the order of
the hamiltonian cycles, varying the direction in which each cycle is traversed, and varying
the point of contact between the cycles.

Moreover, the hamiltonians in Figure 2 are presented in canonical form (in terms of
node labelling as given in Colbourn, 1982), so permuting the node numbers on Figure 2(a)
and carrying that assignment across the hamiltonians of Figure 2(b) and (c), can produce
a different hamiltonian decomposition and consequently many more eulerian tours.

By construction, these different decompositions will be isomorphic to one another (two
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hamiltonian decompositions H and H ′ are isomorphic if there is a one to one mapping of
the nodes of the graph onto themselves which maps each hamiltonian cycle of H onto a
hamiltonian cycle of H ′) and will sometimes be identical (e.g. the decomposition produced
by mapping the nodes 1234567 of Figure 2 to 2715436 is identical to that of mapping
1234567 to 4675321). In this way the hamiltonian decomposition of Figure 2 generates a
class of decompositions. It does not, however, generate all hamiltonian decompositions of
K7.

There is only one other set of isomorphic hamiltonian decompositions of K7 which is
not isomorphic to that of H1 from Figure 2. The canonical form for this set is H2 of Figure
3 (see Colbourn, 1982).
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(a) H21 = 12345671 (b) H22 = 13527461 (c) H23 = 14263751

Figure 3: H2 = H21 : H22 : H23 is the canonical form of the second (and only other) set
of hamiltonian decompositions of K7.

H2 is also a symmetric decomposition, though one with many fewer symmetries than
H1 (i.e. only about node 1 in H2). The fewer symmetries result in a smaller group order of
the automorphisms (6 for H2 vs. 42 for H1) and consequently many more distinct (though
isomorphic) decompositions (viz. 7!/42 = 120 for H1, 7!/6 = 840 for H2).

As before, the cycles of each distinct decomposition can be arranged in many ways to
produce different eulerian tours. Using H1, there will be thousands of distinct hamiltonian
decomposed eulerian tours for K7; using H2 there will be seven times as many to choose
from.

For larger orders of complete graphs, the number of non-isomorphic classes of hamil-
tonian decompositions is huge. There are 122 non-isomorphic decompositions of K9 and
more than 45, 000 for K11 (Colbourn, 1982, stopped computing more after finding this
many).

While in principle it is possible to order the hamiltonian decompositions according to
some preference, it is rarely practicable. Even choosing the single hamiltonian having the
smallest total edge weight (i.e. the travelling salesman problem) is NP hard.
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2.2 General results for complete graphs

If G is a connected graph, G is eulerian if and only if it is an even graph (i.e. every vertex
has an even number of edges), or equivalently if and only if G has a cycle decomposition.
Since complete graphs of odd order are connected and even, eulerian tours and hamiltonian
decompositions exist.

The same notions can be extended to the complete graphs of even order through the
following well known results which have been attributed to Walecki (by Lucas, 1892; e.g.
see Alspach, et al 1990):

Decomposition of complete graphs. Kn can be decomposed as follows:
For n = 2m + 1, into either

m hamiltonian cycles, or
m hamiltonian paths and an almost-one factor.

For n = 2m, into either
m hamiltonian paths, or
m− 1 hamiltonian cycles and a 1-factor (or perfect matching).

The hamiltonian cycle decomposition for the case of odd n has already been illustrated.
When n is even, the analogous decomposition of K2m is into hamiltonian paths rather than
cycles. Figure 4 shows one such decomposition for K6. This was had directly from the
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(a) h31 = 123456 (b) h32 = 241635 (c) h33 = 315264

Figure 4: H3 = h31 : h32 : h33 is a hamiltonian path decomposition of K6.

hamiltonian cycle decomposition of Figure 3 by deleting node 1 and relabelling nodes 2−7
as 1− 6; one might just as easily have used Figure 2.

Alternatively K6 can be decomposed into a 1-factor (or perfect matching) and two
hamiltonian cycles as shown in Figure 5. Similarly, K2m+1 is decomposable into m hamil-
tonian paths and an “almost 1-factor” (i.e. a 1-factor perfectly matching 2m points plus a
single isolated vertex).

Although K2m is not even, and hence not eulerian, m edges can be added to produce a
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(a) 1-factor (or perfect matching) (b) 1245361 (c) 1346251

Figure 5: K6 decomposed into a 1-factor and two hamiltonian cycles.

graph that will be eulerian and will have hamiltonian cycle decompositions. For example,
simply close the hamiltonian paths of Figure 4 producing double edges 16, 25, and 34. If
only an eulerian path is required, only m−1 edges need be added – an eulerian path exists
for any connected graph having exactly two nodes of odd degree, so the m−1 edges added
must be such as to satisfy this condition. For example, in Figure 4, add only extra edges
25, and 34; then an eulerian path will begin and end at the endpoints of the remaining
hamiltonian path h31 of 4(a) and have the hamiltonian cycles (from the extra edges) be
toured at any node along the path h31.

Alternatively, one could start with the hamiltonian cycle decomposition of K2m (e.g.
m = 3 in Figure 5) and add m − 1, or m, edges to the perfect matching to create a
hamiltonian path, or cycle, respectively that will in turn permit an eulerian path, or cycle
on the augmented graph.

Because complete graphs of even order can always be augmented to achieve eulerian
paths, etc., it will be convenient to have a single notation for both K2m+1 and the m − 1
edge augmented graph of K2m. Denote by

Ke
n =

{
K2m+1 if n = 2m + 1
K2m + G(K2m) if n = 2m

where G(K2m) is a subgraph of K2m having m−1 edges chosen so that the graph resulting
from the sum has exactly two odd nodes.

It will also be convenient to refer to an eulerian of Ke
n to mean an eulerian tour of

Ke
n when n = 2m + 1 and an eulerian path of Ke

n when n = 2m. Similarly a hamiltonian
decomposition of Ke

n will refer to a hamiltonian cycle decomposition when n = 2m + 1 and
a decomposition into m− 1 hamiltonian cycles plus one hamiltonian path when n = 2m.

There will of course be many hamiltonian decompositions, and many more eulerians,
of Ke

n to choose from.
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3 Applications to statistical graphics

In this section we illustrate the use of eulerians and hamiltonians to order the components
of several graphical displays.

We begin by illustrating the use of an eulerian tour in the context of the pairwise
comparison of treatment groups. We produce a simple but powerful new display for this
classic problem.

Our second example addresses another classic problem, that of displaying the interac-
tions between two factors from an experiment. Here hamiltonian paths and eulerian tours
are used.

Next the problem of glyph construction whose purpose is the visual clustering of mul-
tivariate data is considered. In particular, we look at improving star glyphs by ordering
variables according to eulerian tours and hamiltonian decompositions. The results are
dramatic improvements over the standard stars.

Finally, parallel coordinate displays are examined. Here we show how hamiltonian
paths, eulerian tours, and hamiltonian decompositions might all be used to construct dif-
ferent parallel coordinate displays, each suited to a different purpose.

3.1 Pairwise comparisons

In the classic one-way anova situation, several conditions are compared at once for differ-
ences in some outcome of interest. Also of interest are all pairwise comparisons,

−30 −10 0 10 20

Stomach−Ovary

Stomach−Colon

Ovary−Colon

Stomach−Bronchus

Ovary−Bronchus

Colon−Bronchus

Stomach−Breast

Ovary−Breast

Colon−Breast

Bronchus−Breast

95% family−wise confidence level

Differences in mean levels of Organ

Figure 6: A standard layout of 95% confi-
dence intervals for differences of mean sur-
vival times (square root scale), corrected
for multiple comparisons.

with correction for the problem of multiple com-
parisons.

To be concrete, we take data on the survival
times of terminal patients with different types of
cancer – viz. Breast, Bronchus, Colon, Ovary, or
Stomach from a study reported in Cameron and
Pauling (1978). The square root of the survival
times are used to better approximate normality.
Figure 6 shows the 95% simultaneous confidence
intervals for the pairwise difference in means, using
“Tukey’s honest significant differences”. This tidy
little layout is fairly standard for multiple com-
parisons (e.g. it is the default plot method for
TukeyHSD, Bates, 1997+).

Comparisons whose intervals do not overlap the
vertical zero line are statistically significant (e.g.
Bronchus-Breast) at a simultaneous 5% level and
those which do overlap are not statistically signif-
icant (e.g. Ovary-Breast). Each interval estimates
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the magnitude of the corresponding difference (at a 95% simultaneous confidence level).
The magnitude of the individual means is absent from this display.

This and other multiple comparison plots are critically examined by Hsu and Peruggia
(1994) who also introduce an interactive “mean-mean” scatterplot designed to address the
shortcomings of the existing plots. Figure 7, shows the Heiberger and Holland (2006) static

multiple comparisons of means of sqrt
multiple comparisons of means of Survival

contrast value

−20 −10 0 10 20 30

simultaneous 95% confidence limits, Tukey method

mean

sqrtSurvival

Organ level contrast

Stomach

Colon

Ovary

Breast

Stomach

Colon

Ovary

Breast

Bronchus

33.20 Breast

25.58 Ovary

19.63 Colon

14.39 Stomach

13.21 Bronchus

Breast−Ovary

Ovary−Colon

Ovary−Stomach
Ovary−Bronchus

Colon−Stomach
Colon−Bronchus

Stomach−Bronchus

Breast−Colon

Breast−Stomach
Breast−Bronchus

Figure 7: Mean-mean multiple comparison plot: 95% simultaneous confidence intervals, from
Heiberger’s HH package in R. See Heiberger and Holland (2006). Significant differences are shown
as a solid red interval. The Hsu and Peruggia (1994) original is an interactive and colour coded
version of this, without the left axis.

version of the Hsu and Peruggia (1994), or mean-mean, multiple comparison plot.
As with the standard plot, a vertical zero line is used for the simultaneous confidence

intervals. For example, the Breast-Colon is found to be significant and the Breast-Ovary is
not. Unlike the standard plot, the intervals are located vertically by the average of the two
means being differenced. The rotated square in the background preserves the proportional
distances between the different cancer types along the ±45 degree lines so that the size
of each mean effect can be determined from the grid (along the ±45 degree lines). Grid
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locations can also be used to identify the mean difference of each interval. In the Hsu
and Peruggia (1994) original, different interval are highlighted to different effect by mouse
interaction with the plot.

In the static version, Heiberger and Holland (2006) use colour to further distinguish the
significant pairwise comparisons (via red solid lines) and add the leftmost axis showing the
levels of each mean. They also show how simultaneous confidence intervals for contrasts of
these means might also be located vertically.

Some drawbacks include the possibility of overstriking intervals or grid lines or both
whenever pairwise averages or original averages or both are identical (or nearly so). For
example, had (Breast + Bronchus) equalled (Ovary + Colon) the intervals for the contrasts
(Breast - Bronchus) and (Ovary - Colon) would have been overlaid. Similarly, if the average
for Bronchus equalled the average for Stomach, the corresponding grid lines would have
been indistinguishable and intervals involving these two and any other cancer, for example
(Breast-Stomach) and (Breast - Bronchus), would also be overlaid (as is nearly the case
in Figure 7). When overlaying occurs, Heiberger and Holland (2006) also show standard
multiple comparison plots as in Figure 6 to display the overstruck intervals, which they
call “tiebreaker plots” in this context.

It is also not clear that the information added by the background grid (originally used
to motivate and construct the plot) merits the amount of ink it is given. Much of it is
redundant given the left axis and the right labels. In the static version the grid can be
used to help locate all comparisons which involve any given cancer (i.e. one versus each
of the others comparison) by following the grid line of that cancer only (e.g. follow the
“Ovary” grid lines to collect the relevant (Ovary - Other) intervals). The cost, however, is
a visually more complicated plot, one which might appear needlessly mysterious to many
viewers.

An important feature of this plot is that it shows the sample means themselves in addi-
tion to their differences. In most applications, having identified the significant differences
one is interested in the actual size of each effect being compared. Indeed, we would argue
that a comparison of the entire distribution of each group, not just their group means,
would be highly desirable.

3.1.1 Boxplots with pairwise testing

Sample distributions can be displayed as histograms, boxplots, density estimates, and so
on, which in turn can be compared along a common scale in a variety of ways: possibly
overlaid (e.g. densities), or placed back to back (e.g. histograms, densities) or simply laid
out side by side (e.g. boxplots, histograms, density estimates). Here we will use a boxplot
for the distribution of each group and lay them out side by side to facilitate their pairwise
comparison.

Figure 8 shows variable width boxplots of the (square-root transformed) survival times
for each cancer type. The left axis gives the values for the boxplots and the horizontal axis
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Figure 8: Boxplots and pairwise comparisons of vitamin-C treated cancer patients. The left axis
and boxplots refer to square-root transformed survival times, the right axis and gray scale vertical
bars refer to confidence intervals for pairwise differences of means. Red lines indicate comparisons
significantly different from 0.

the label for each boxplot.
The cancer types (with their boxplots) are repeated along the horizontal axis in such a

way that every cancer type appears directly beside every other cancer type exactly once.
From left to right, this is an eulerian tour of K5, where each cancer type corresponds to a
node. Because every pair appears together, a fairly rich comparison of survival distributions
can be made via the boxplots (e.g.. location, spread, quartiles, symmetry, tail weight,
sample size, outliers, etc.). Each cancer type’s boxplot is uniquely coloured to facilitate
directed comparisons. For example if interest lies primarily in comparing the survival
distribution of Ovary cancer to that of the others, simply look for each occurrence of
Ovary’s thin light blue boxplot and compare it with the boxplots on either side.

Between each pair of boxplots is a gray vertical strip. Each strip is a Tukey HSD
confidence interval for the difference in means between the distributions on either side
of it, each circle indicating the point estimate of that difference. All confidence interval
values can be read from the vertical axis of differences at the right of the plot. Just as the
boxplots are the nodes of K5, the ten gray confidence intervals between them are the edges
of K5. Moving from left to right, from boxplot to confidence strip to boxplot to confidence
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strip and so on, is an eulerian tour traversal of K5 from node to edge to node to edge,
respectively.

Design features of this plot are chosen to help the user switch visual focus between
the mutely coloured boxplots and the gray confidence intervals as need be. This is much
like the “layering” of information, simple examples of which have been described by Tufte
(1991). For example the right axis is for the confidence intervals and a blue arrow from
this axis anchors a horizontal dashed blue line across the plot from its zero. The dashes of
this line appear only across the space between boxplots which is reserved for the confidence
intervals – the line never interferes with the boxplots themselves.

As with the other multiple comparison plots, inference is had by determining whether
the zero line cuts across a confidence interval. If it does (e.g. between Stomach and
Bronchus at the right) that difference is not found to be statistically significantly different
from zero. Conversely, if it fails to cut through a confidence interval (e.g. between Bronchus
and Breast at the left side of the plot) then the difference is significantly different from
zero. When this occurs, a vertical red arrow is drawn pointing towards the confidence
interval (and on the opposite side of the horizontal line) to draw attention to the interval.
Moreover, the greater the length of the arrow is, the greater is its significance (i.e. the
smaller its “p-value”).

Note that unlike the previous plots for this data only two differences are seen to be
significantly different from zero, namely (Breast - Bronchus) and (Stomach - Bronchus).
The reason (Colon - Breast) does not show up here is that this plot shows confidence
intervals for several levels simultaneously and the largest value here is 99% not 95% as in
the other plots.

Careful examination of the vertical confidence intervals of Figure 8 will reveal that they
progressively narrow and become a darker shade of gray at the ends. In the figure each
interval has three widths and three shades of gray corresponding to three confidence levels:
90%, 95% and 99%. A close look at the confidence interval between the Colon and Breast
boxplots shows that the horizontal zero line cuts through the 99% confidence interval, but
not the 95%. The difference is significant at the 5% level just as in the other plots but,
as this plot indicates, is not significant at the 1% level. Multiple confidence levels are user
determined parameters used to produce the plot.

Note also that significant differences seem to appear mostly on the left side of this
plot. This is had by attaching a weight to each edge of Ke

m (here K5) and applying a
greedy algorithm which selects the lowest weight edge from those available at each step.
To produce Figure 8, we attached the appropriate significance level to each graph edge as
its weight. A different choice of weights could produce a different eulerian tour and hence
ordering.

These plots could be constructed for any contrasts (boxplot nodes) and any choice of
multiple comparison confidence intervals (edges). The boxplots themselves could even be
replaced by some other univariate display which highlighted other distributional features.

By carefully ordering the nodes, a relatively simple yet highly informative plot for

12



multiple comparisons has been constructed.

3.2 Interaction plots
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Figure 9: Interaction plots of Rat data. Plot
shows are average responses by poison type with
the 4 treatments in standard ABCD order.

Interaction plots are used to explore the
presence of interactions between two fac-
tors. Figure 9 shows an interaction plot
for the survival time of 48 rats, each given
one of four treatments A, B, C, or D and
one of three poisons P1, P2, or P3 (data
from Box and Cox, 1964). The average re-
sponse is profiled for each poison across the
treatments in the standard default order of
ABCD. Interaction is detected as a lack of
parallelism in the profiles.

The profiles are similar in shape, indi-
cating relatively strong main effects – e.g.
treatment B produces longer survival times
than A, whatever the poison. However, the
eye is drawn to possible interactions involv-
ing P1 and P2 with C and D where these
profiles cross, but also to no interaction of
P1 and P2 with A and B in the long nearly
parallel line segments from A to B. These profiles invite overall comparison as well as pair-
wise comparison, each of which can be affected by the ordering of the treatments along the
horizontal axis.

The order ABCD is a hamiltonian path (say h0) on the complete graph K4 where each
node is a treatment. Any other hamiltonian would produce a different ordering and a
different looking interaction plot. Figure 10 shows two such hamiltonians, h1 and h2 say,
that together form a hamiltonian path decomposition of K4.

An interaction plot based on any one of these hamiltonians might be interpreted differ-
ently. For example, in h1 of Figure 10, the P1 and P2 profiles cross twice and so the visual
impression of interaction could be taken to be somewhat stronger than in h0 of Figure 9.
The double crossing occurs because the profile difference changes sign at treatment D which
has moved from position 4 to position 2 in the ordering. The second hamiltonian h2 of
Figure 10 might also give a different impression. There, the P1 and P2 profiles exhibit
strong zig-zag patterns and with the long line segments connecting treatments B and A
the overall impression is of parallelism, while by contrast the P3 profile is quite flat.

An interaction plot using a full hamiltonian decomposition as in Figure 10 ensures that
the line segments can be compared for every pair of treatments in a single display and so is
less susceptible to interpretation based on a chance ordering of treatments. Alternatively,
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Figure 10: An interaction plot via hamiltonian decomposition (into paths since the number of
treatments is even). Every pair of treatments adjacently exactly once.

Figure 11 shows an interaction plot following an eulerian path of the treatments. The
eulerian in this case contains back to back hamiltonians, though this will not be the case
in general. Also, because the K4 is of even order, the “eulerian” has had to repeat one of
the edges (viz. D-B, or B-D) so is only truly eulerian on the graph with this extra edge.
Repeating an edge may give it undue influence in the assessment of interaction. So the
hamiltonian path decomposition of Figure 10 would be typically preferable.

Experiments have shown (e.g. Rochlin, 1955) that parallelism is more easily assessed
in line plots which are nearly horizontal. To this end, Figure 12 shows a hamiltonian
decomposition interaction plot, but with the average profile (ȳA, ȳB, ȳC , ȳD) removed. This
removes the overall treatment effect and magnifies the profile differences. Now the P1 and
P2 profiles are better separated and the impression of interaction is stronger that before.
The P3 profile clearly has a different shape to the other two, largely because of its low
survival times for treatment B. Subtracting the average profile generally reduces the tilt of
the line segments, allowing vertical comparisons to be more easily made.

Alternatively, the work of Cleveland and McGill (1984) suggests that parallelism of
two curves might be assessed most easily from their difference. In Figure 13, the profile
differences are plotted directly. In the ideal no-interaction case, the three difference profiles
are flat and and this should be easier to detect than parallelism in tilted lines (Rochlin
1955). Again, the presence of interaction is fairly clear and greatest between P2 and P3.
While plotting differences has the benefit of offering a simpler visual task, the tradeoff
is that for factors with more than 5 or 6 levels the number of difference profiles may be
too large to be easily be distinguished by colour. Even then, the no-interaction pattern of
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Figure 11: An interaction plot via an eulerian path.
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Figure 12: Interaction plots of Rat data with treatment adjusted responses, via the hamiltonian
path decomposition as in Figure 10.
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Figure 13: Profile differences for the Rat data via the hamiltonian path decomposition as in
Figure 10.

horizontal lines will be easily detected.

3.3 Star glyphs

In a star glyph display, variables are assigned to equispaced radii, (scaled) observations are
plotted on each radius, and lines are drawn connecting the case values. High-dimensional
features of the data are quickly compared across cases by comparing glyphs, individual radii
and overall shape – an example of what Tufte (1991) describes as the use of “small multi-
ples”. Suppressing the radial rays from the display, focus is on comparison of shapes rather
than of variable values across cases – a distinction which has been usefully described as
that between integrable and separable dimensions by Wilkinson (2005, p. 269). Arranged
in an array of glyphs corresponding to the cases in a dataset, such a star glyph display
invites visual clustering by shape. Figure 14 shows four star glyph displays of a subset of
car models from the mtcars dataset found in the R datasets package. Here variables are
assigned to radial axes starting from the 3 o’clock position and moving counter-clockwise
thereafter. Each display uses the same seven variables, they differ only in the assignment
of variables to the axes. Imagining the variables as nodes of a complete graph, the order of
assignment of the seven variables to the radial arms of the star is equivalent to the choice
of a hamiltonian cycle from the complete graph K7. Not surprisingly, the shapes of the
star glyphs vary considerably from one ordering or hamiltonian to another.

Let’s attempt to use the first ordering, the hamiltonian cycle H0, to cluster the cars.
The glyphs for models 7, 8 and 9 look very similar to each other, and quite similar to the
glyph for model 1. Models 5 and 6 are both represented by medium-sized blobs which look
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Dataset order H0

1 2 3

4 5 6

7 8 9

Order H1

1 2 3

4 5 6

7 8 9

(a) H0: default dataset order of variables (b) hamiltonian cycle H1

Order H2

1 2 3

4 5 6

7 8 9

Order H3

1 2 3

4 5 6

7 8 9

(c) hamiltonian cycle H2 (d) hamiltonian cycle H3

Figure 14: Star plots of 9 models from the mtcars data using different hamiltonian cycles. H1,
H2, and H3 together form a hamiltonian decomposition.

roughly similar. The model 4 glyph looks different to all others.
Other orderings tell a different story; in H1 model 4 looks like it belongs to the {1, 7, 8, 9}

cluster, while in H2 and H3 we have two separate clusters consisting of models {1, 4} and
{7, 8, 9}. Clearly visual clustering based on star glyph displays is order dependent.

Intuitively, if we replaced the sequence of variables used in the star glyph by a longer
sequence where all variables appear adjacently, we should remove some of the dependence
on variable order. Figure 15 shows two different eulerian sequences of variables. The first
plot uses the sequence H1 : H2 : H3, which is a concatenation of the sequences appearing
in Figure 15(b), (c) and (d), and was constructed using weighted hamiltonians via WHam
(Algorithm 3). The second plot uses a weighted eulerian sequence constructed via GrEul
(Algorithm 2) which favours high correlation pairs of variables appearing early on in the

17



Hamiltonian decomp, H1:H2:H3

1 2 3

4 5 6

7 8 9

Eulerian order

1 2 3

4 5 6

7 8 9

(a) Order by hamiltonian decomposition (b) Correlation ordered eulerian

Figure 15: Star plots of 9 models from the mtcars data.

sequence. We notice that the shapes of the star glyphs vary less with the sequence used
that in Figure 14. This occurs because in Figure 14 the star vertices are rearranged in each
hamiltonian, whereas in Figure 15, it is the star edges that are rearranged. Visual clustering
based on either of the sequences shown in Figure 15(a) and (b) gives the same results; it
appears there are four clusters, made up of models {1, 4}, {2, 3}, {5, 6} and {7, 8, 9}. These
findings are verified by the dendrogram (shown in Figure 16 a) obtained from average
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(a) Dendrogram: Average linkage (b) Glyph scatterplot on first two
principal components

Figure 16: Clustering the cars.

link clustering (single and complete linkage dendrograms were identical) and reinforced by
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plotting the symbols in the space of the first two principal components (correlation matrix)
as shown in Figure 16(b). This experiment suggests eulerian variable sequences on star
glyphs for reliable visual clustering.

3.4 Parallel Coordinate Plots

Parallel coordinate displays (Inselberg 1985, Wegman 1990) are multivariate data displays
where n variables are assigned to parallel, equispaced axes, observations are plotted on each
axis and lines are drawn connecting observations belonging to each case. These displays are
useful for detecting clusters, outliers and correlation between pairs of variables. Once again,
choosing a variable ordering amounts to selecting a hamiltonian path on the complete graph
with the variables as nodes. However, as demonstrated by Wegman(1990), there are strong
reasons for displaying all pairwise variable relationships in a parallel coordinate display,
not just the n− 1 pairwise relationships determined by a particular choice of hamiltonian.

Here we use parallel coordinate displays to revisit the mtcars data. Figure 17 shows

Hamiltonian decomposition

Mpg Disp Hp Drat Wt Qsec Disp.1 Drat.1 Mpg.1 Qsec.1 Hp.1 Wt.1 Drat.2 Qsec.2 Disp.2 Wt.2 Mpg.2 Hp.2

Figure 17: Parallel coordinate plots of the mtcars data. This shows a hamiltonian decomposition,
panel colors distinguish the three hamiltonian paths. Line color shows transmission type.

a parallel coordinate display of six performance measures. The display has three sections,
each highlighting a different hamiltonian path, which together constitute a hamiltonian
decomposition on Ke

6 . The first six axes (the yellow section) show the variables in the
order in which they are listed in the dataset, corresponding to the hamiltonian 123456.
Here we see that the first two variables, Mpg and Disp, are negatively correlated, but
the association between the first and third variables, Mpg and Hp is not so obvious until
we look at the last panel in the grey section and discover that they are also negatively
correlated. The dataset has a cluster of unusually heavy cars which, we discover from the
Wt-Disp panel in the grey section, also have high displacement.

The main argument against all-pairs parallel coordinate displays is that the number of
panels (i.e., the number of edges in the eulerian on Ke

n) is O(n2). (From the discussion
in Section 2.2, the number of edges is

(
n
2

)
when n is odd, and

(
n
2

)
+ (n − 2)/2 when n is
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even.) Figure 18 shows an all-pairs parallel coordinate display for the sleep data which has

Eulerian on all scagnostics.

D P D.1 SWS Life PS TS D.3 P.2 SWS.2 SE.2 GP GP.1 P.4 PS.2 Life.2 D.4 SWS.4 TS.3 PS.4 TS.4 GP.4 Life.4 SE.4

Outlying

Skewed

Clumpy

Sparse

Striated

Convex

Skinny

Stringy

Monotonic

First 18 panels of Eulerian on all scagnostics.

D P LogBodyWt D.1 SE SWS P.1 Life D.2 PS SE.1 TS SWS.1 D.3 TS.1 P.2 PS.1 SWS.2 LogBodyWt.1

Figure 18: Parallel coordinate plots of the sleep data. The top display shows an eulerian with
panels ordered by the total of scagnostic values. The lower display shows the first 18 panels only.
Line colors are assigned using the life expectancy variable. The barcharts show scagnostic index
levels for each panel.

n = 10 measurements on 62 mammal species (Allison and Cicchetti, 1976). The eulerian
has 49 edges and it is difficult to see patterns on a standard computer screen or page. To
ameliorate this, we use the GrEul algorithm (Algorithm 2 of Section 4.1.1) to construct
an eulerian where “interesting” panels appear early on in the sequence. The lower parallel
coordinate plot of Figure 18 zooms in on the first 18 panels, which in some sense is the
most interesting portion.

Here we use scagnostic indices to measure the “interestingness” of each panel. These
indices were designed by Tukey and Tukey (1985), revisted by Wilkinson et al (2005) and
recently implemented in the R scagnostics package (Hofmann et at, 2007). Scagnostics
evaluate different features of a bivariate scatterplot, such as convexity and monotonicity.
(Possibly other indices could be developed focusing on characteristics of a parallel coor-
dinate display.) In Figure 18 the accompanying barcharts show scagnostic indices of each
panel (note index values less than 0.7 are ignored). The overall interestingness of a panel
is then measured by the sum of the scagnostic indices, so that the first panel (D versus P)

20



is the most interesting overall, having large values of both the monotonicity and skinniness
indices.

Note that about half of the panels exhibit either considerable skewness or skinniness
index or both. None of the panels score highly on the convex, striated, sparse or clumpy
indices. The lower display zooms in on the first several panels; these few important panels
permit patterns and relationships to be more easily seen, with the scagnostic barchart
as a guide to interpretation. (Recall from the results given in Section 2.2, when n is
even, construction of an eulerian requires that n/2 − 1 extra edges are added to Kn.)
Coupled with ordering and zooming, eulerian parallel coordinate displays can be practical
and informative for datasets with n=10 variables and more.

Alternatively, rather than zoom in on interesting portions of eulerian parallel coordinate
displays we could focus instead on interesting hamiltonians, or even on several from a
hamiltonian decomposition. For example, parallel coordinate plots are often used to find

Best Hamiltonian on scagnostics: Outlying Clumpy Sparse

PS D P TS SE Life GP LogBrainWt SWS LogBodyWt

Best Hamiltonian on scagnostics: Striated Sparse

LogBodyWt D SWS GP TS LogBrainWt SE PS P Life

Best Hamiltonian on scagnostics: Monotonic Convex

SWS TS PS Life GP LogBrainWt LogBodyWt SE D P

Second hamiltonian on scagnostics: Monotonic Convex

Life LogBrainWt TS SE SWS P PS D GP LogBodyWt

Figure 19: Hamiltonian parallel coordinate plots of the sleep data. Line colors are assigned using
the life expectancy variable. The barcharts show scagnostic index levels for each panel (all values
larger than 0 appear, and on a common scale).

groups of data points in high dimensions, and for outliers. The top left display of Figure 19
shows the best hamiltonian, that which maximizes the sum of the indices “outlying”,
“clumpy”, and “sparse”. The result is a parallel coordinate plot tailored to find clusters
and outliers in this data. The first few panels are dominated by clumpy and sparse, the
last few by outlyingness. Striated data is a particular form of clustering and so the best
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for “striated” + “sparse” is shown in the top right display of Figure 19.
Similarly, parallel coordinate plots are often used for examining correlational structure;

the bottom row of Figure 19 shows the first two hamiltonians from the WHam algorithm
(Algorithm 3 of Section 4.2.3) for maximizing convexity and monotonicity (together they
should indicate pairs of variables which are correlated, i.e. monotonic, and whose scat-
terplots are convex – together, ideal conditions for parallel lines and strong crossings to
appear). While neither of these latter two hamiltonians share any pair of adjacent vari-
ables (being from the same decomposition), they might share adjacent pairs with other
hamiltonian displays, for example the D-P pair of the two leftmost displays.

These two methods of zooming in on selected interesting subsets of all-pairs parallel
coordinate plots allows the analyst to focus on different features of the data. If these were
also dynamically linked so that brushing could occur across these displays, they would
constitute a very powerful exploratory data tool indeed.

4 Graph traversal algorithms

In this section, we describe algorithms for constructing various graph traversals which were
used in the applications to statistical graphics of Section 3. First we present the algorithms
for constructing eulerian paths. Specifically, we recall the standard algorithm due to Hi-
erholzer (1873) and modify it for weighted graphs. We then move on to constructions for
hamiltonian decompositions, specifically on complete graphs. Finally, we present a new
algorithm which is useful for building hamiltonians on complete graphs that are weighted.

4.1 Constructing eulerian paths

4.1.1 Hierholzer’s algorithm

Algorithm 1 (Hierholzer 1873) constructs eulerian tours; another well known algorithm is
due to Fleury (1883). Recall from Section 2.2 that eulerian tours exist for even graphs, but
with a minor adaptation Hierholzer’s algorithm constructs an open eulerian path or trail
for graphs with exactly two odd nodes. Fleury’s algorithm is essentially the same (e.g. see
Fabràga and Fiol, 2004) and could be adapted analogously.

Hierholzer’s method has many arbitrary choices – the choice of the vertex v in line 1
and at each step of the path constructed in lines 2 and 5, the choice of w in line 4, and if
w appears more than once in T at step 6, the choice of which occurrence of w in T to use
to splice path D into T (though the most recent is suggested).

Figure 20 shows how an application of Hierholzer’s method might create an eulerian
tour for K7. Starting at node 1 the selection of edges is such as to produce the hamiltonian
cycle 13572461 of Figure 20(a), followed by a second hamiltonian cycle 12567341 of Figure
20(b), and finally by the short cycle 15471 of Figure 20(c). At this point, node 1 has no
further unused edges and T = 1357246 1 256734 1 547 1. Path D (of Algorithm 1 line 5)
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Algorithm 1 Hierholzer 1873 (adapted to find an eulerian tour or open eulerian path)
Require: A connected graph G that is even or that has exactly two odd vertices.
1: Choose a vertex v. If G is even, v can be any vertex, otherwise v is one of the two odd

vertices.
2: Starting at v construct a path T in G, stopping when a vertex is reached without an

unused edge.
3: while there are edges of G not already in path T do
4: Choose any vertex w in T that is incident on an unused edge.
5: Starting at w, construct a path D of unused edges stopping when a node is reached

without any unused edges.
6: Enlarge T by splicing path D into T at vertex w.
7: end while
8: return T
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(a) First hamiltonian cycle (b) Second hamiltonian cycle (c) Two non-hamiltonian cycles

Figure 20: An application of Hierholzer’s method to K7 which happens to follow one
hamiltonian cycle after another.

is the dashed cycle 2362 of Figure 20(c), which line 6 of the algorithm allows to be spliced
into T at node 2. The resulting eulerian tour can be either 1357 2362 46125673415471 or
13572461 2362 5673415471.

Hierholzer’s method applies to the graph Ke
n for all n. When n = 2m + 1, Ke

2m+1 =
K2m+1 is even and it will yield an eulerian tour. When n = 2m, Ke

2m is an augmented
version of K2m, adding (m−1) extra edges to produce a graph with exactly two odd nodes,
and the result is an open eulerian path.

4.1.2 Eulerians on weighted graphs

If the graph G is a weighted graph (e.g. the weights represent some kind of distance or other
dissimilarity measure between the vertices), we might prefer an ordered eulerian T with
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low weight edges occuring early in the sequence and with weights tending to increase as the
sequence progresses. As the discussion in Section 2.2.1 illustrates, the number of distinct
eulerian tours is typically immense, and finding the overall “best” tour is not a practical
option. However, a greedy algorithm which attempts this is easily had by exploiting the
arbitrary choices available in Hierholzer’s method. The necessary minor modifications of
Algorithm 1 are given below as the greedy eulerian or GrEul of Algorithm 2. Note that

Algorithm 2 GrEul: Greedy Eulerian.
Require: A connected graph G that is even or that has exactly two odd vertices.
1: Choose a starting vertex v from one of the odd vertices connected by the lowest weight

edge, using the next lowest weight edge in their vertex sets to decide between them.
2: Starting at v construct a path T in G, always moving to the lowest weight unused edge,

stopping when a vertex is reached without an unused edge.
3: while there are edges of G not already in path T do
4: Choose the last vertex w in T that is incident on an unused edge.
5: Starting at w, construct a path D of unused edges, always moving to the lowest

weight unused edge and stopping when a node is reached without any unused edges.
6: Enlarge T by splicing path D into T at vertex w.
7: end while
8: return T

the choice of starting vertex is limited to the two odd vertices when constructing eulerian
paths, but when constructing Ke

2m one can always ensure that a particular start vertex v
has odd degree.

For example, suppose the edge weight for the edge connecting two vertices i and j is
min(i, j). Then the construction of an ordered eulerian tour on K5 proceeds as follows.
Choose v = 1. Line 2 of the modified algorithm will produce T = 12314251. Line 5 starts
at vertex 5, and builds D = 5345, which then replaces the ‘5’ in T , yielding a tour of
12314253451.

We note that constructing eulerian trails is an O(|E|) task, where |E| is the size of the
graph, and so the algorithm given above constructs trails on Ke

n in O(n2) time. The cost
associated with constructing an ordered eulerian must include the cost of an edge sort at
each vertex, and so has overall order on Ke

n of O(n2 log n).

4.2 Lucas-Walecki hamiltonian decompositions for Ke
n

While the adapted Hierholzer method will produce an eulerian for any Ke
n, the eulerian

need not be hamiltonian decomposable. Even if node choices were restricted so that the
algorithm first constructed one hamiltonian followed by another, the result need not be a
hamiltonian decomposition. Figure 20 shows just such a situation.

Fortunately, the special structure of Ke
n can be exploited to write down explicit formulas
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for eulerians and Hierholzer’s method need not be used. This method has the added
advantage that for n = 2m, the eulerian is composed of m hamiltonian paths, while for
odd n = 2m+1, it is composed of m hamiltonian cycles. The constructions given here have
been attributed to Walecki by Lucas (1892), and are sometimes described as Lucas-Walecki
constructions (Bailey et al, 2003). A disadvantage is that these necessarily generate only a
single class of isomorphic decompositions which, though potentially huge, cannot include
those produced from possibly thousands of other hamiltonian decomposition classes that
are non-isomorphic to this one.

4.2.1 Hamiltonian decompositions, n even

As before, let n = 2m and define

H[1, 1] = 0
H[1, j] = H[1, j − 1] + (−1)j(j − 1) (mod n), j = 2, . . . , n,
H[k, j] = H[k − 1, j] + 1 (mod n), k = 2, . . . ,m and j = 2, . . . , n, .

Finally, increase each element of H by 1, and set Tn(k−1)+j = H[k, j], j = 1, . . . , n, k =
1, . . . ,m. That is, form T by listing the elements of H row-wise. The resulting path T is
an eulerian trail on Ke

2m.
When the vertices of K2m are arranged clockwise around a circle, the first row of H

visits all vertices in a zig-zag pattern. This is shown for K6 in Figure 21(a). Each successive
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(a) h41 = 126354 (b) h42 = 231465 (c) h43 = 342516

Figure 21: A hamiltonian path decomposition H4 = h41 : h42 : h43 of K6.

row of H follows another zig-zag starting one position clockwise away from the start of the
previous row.

The rows of H form a hamiltonian path decomposition of K2m and consequently every
pair of vertices appears consecutively in exactly one of the rows. When the rows are glued
together to form the T -sequence, the edge pairs contributed by H[i, n] and H[i + 1, 1] are
duplicates. These are the edges j (j+m−1)(i.e. ej,(j+m−1) ) for j = 2, . . . ,m. The resulting
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T -sequence, having duplicate edges, is a decomposition of Ke
2m into m hamiltonian cycles,

where in this case Ke
2m is formed from K2m by adding the additional edges between nodes

j and j + m− 1 for all j = 2, . . . ,m.
Figure 21 illustrates the process for Ke

6 . Each panel shows a hamiltonian path from a
row of H, and these paths are joined up to give T = 126354 231465 342516. In this sequence
the edges 4 2 (or 24) and 5 3 (or 35) are duplicates. Note also that this decomposition is
isomorphic to the decomposition H3 for K6 given in Figure 4.

Wegman (1990) used this Lucas-Walecki construction to list m different permutations
of 2m variables where each pair of variable adjacencies appears exactly once. Following
Wegman (1990), we will use the more evocative name, “zig-zag method”, to refer to this
construction. For n = 2m + 1 the zig-zag method lists m permutations of variables, where
each pair of variables appears adjacently at least once, but with some pairs appearing
twice. The result will obviously not be a hamiltonian decomposition.

4.2.2 Hamiltonian decompositions, n odd
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(a) H41 = 1263547 (b) H42 = 1327564 (c) H43 = 1524376

Figure 22: A hamiltonian decomposition H4 = H41 : H42 : H43 of K7. For K2m+1, the
paths for K2m are constructed and then the point 2m + 1 joined to the ends to complete
the cycle.

An easy way of generating a hamiltonian decomposition for n = 2m + 1 uses a minor
modification of the zig-zag method just described. Start with the H matrix used in the con-
struction of the path for 2m vertices, and create the augmented matrix H∗ by prepending
a column of n’s to H. Row-wise listing the elements of H∗ and adding a final n produces
an eulerian tour for K2m+1.

Each row of H∗ has the form n, j, . . . , (m + j), so we have inserted the required edges
nj at the beginning of each row and (m + j)n at the end, for j = 1 . . . , m. The extra n
at the end of the T -sequence contributes the edge (n− 1)n. For example when n = 7, we
transform the n = 6 sequence of 126354 231465 342516 to 7 126354 7 231465 7 342516 as
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illustrated in Figure 22. Note that this decomposition is isomorphic to the decomposition
H2 for K7 given in Figure 3.

In general, each row of H∗ is a hamiltonian path, and since each row begins with n, we
have formed a decomposition of K2m+1 into m hamiltonian cycles.

Interestingly, constructions of hamiltonian decompositions on K2m+1 have applications
in experimental design. Bailey et al (2003) call these decompositions a round-dance neigh-
bour design, where an odd number n of objects is arranged in (n − 1)/2 rings so that
each pair of objects are adjacent in exactly one ring. They also give a number of other
constructions for such designs, and relate them to Latin and Tuscan squares.

4.2.3 Hamiltonian decompositions on weighted graphs

For weighted graphs our goal is an ordered eulerian T where weights tend to increase
as the sequence progresses. Here we will build such paths out of hamiltonians. For a
given hamiltonian (path or cycle) decomposition H = H1 : H2 : · · · : Hm, it is clear
from the discussion of Section 2.1 that since the labelling of vertices is arbitrary, any
sequence of vertices can be chosen as the first (or any other) hamiltonian in the hamiltonian
decomposition, but then the other hamiltonians in the path must follow the same labelling
scheme. The order in which the hamiltonians appear in constructing the eulerian can be
permuted and each component path or cycle Hi can be oriented arbitrarily to form the
eulerian composed of these hamiltonians.

These operations open up a huge number of possible paths, far too many to attempt
to find the overall winner based on some merit measure using edge weights. However some
preferences can be made algorithmically. For example, given an eulerian T composed of a
hamiltonian decomposition H = H1 : H2 : · · · : Hm (e.g. arrived at by applying the zig-zag
algorithm) we could choose to order the hamiltonians within the decomposition those with
smaller total edge weight precede those with larger total edge weight. Then within each
hamiltonian we could choose to orient the path (or cycle) so that smaller weights tended
to appear earlier in the path (cycle) than larger weights (a strict ordering will not likely
be possible). If no decomposition is in hand, we could first choose a hamiltonian with
smallest total weight out of all possible hamiltonians. This is essentially the travelling
salesman problem (tsp) and so typically only an approximate solution is guaranteed. It
would be nice to think that we could do this recursively, always getting the next best
hamiltonian from the remaining graph, but as the examples of Figures 20 and 5 show,
it is possible to produce several disjoint hamiltonians in sequence without arriving finally
at a full decomposition. So recursing in this way will only be useful for some number
of hamiltonians. If a full decomposition is desired, then we will choose only the first
hamiltonian to be ‘best’ and then apply the zig-zag algorithm from this starting point to
ensure that a full decomposition results.

These ideas are put together as the WHam (or weighted hamiltonian) algorithm out-
lined below as Algorithm 3.
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Algorithm 3 WHam: Weighted Hamiltonian Ordered
Require: A weighted Ke

n.
1: For H1, find the hamiltonian (path for even n, cycle for odd n) with the smallest total

weight.
2: Let C(P ) be a measure of the tendency for the edge weights in a path P to decrease.
3: Using the criterion C, pick the best starting point and path orientation for H1. (For

open paths, there are only two possible starts, for cycles there are n).
4: Apply this node labelling to the other hamiltonians H2, . . . ,Hm in the sequence.
5: Use criterion C again to find the best orientation for each of H2, . . . ,Hm.
6: Permute H2, . . . ,Hm in order of increasing total weight, and relabel the hamiltonians.
7: return T = H1 : H2 : · · · : Hm.

Note that line 1 of Algorithm 3 is essentially the “Travelling Salesman Problem” or
TSP. While finding the optimal solution is NP-hard, there are many approximate solutions
that work well in practice.

5 Concluding remarks

The appearance and resulting interpretation of many data visualizations depends on the
ordering of their components. Our goal is to identify good orderings which reveal the data,
make large datasets coherent and encourage data comparisons and so promote graphical
excellence (Tufte 1987). We approached the ordering problem using graph traversals, and
presented algorithms for constructing hamiltonian decompositions and eulerians, which
enumerate all pairwise comparisons in a systematic way. Aside from Wegman (1991) who
used one of the constructions given here (see Section 4.2.1) to construct parallel coordinate
displays, we know of no other application of these techniques to statistical graphics.

In Section 3 we explored applications of these methods in data visualization, devised a
new multiple comparisons display which facilitates easy comparison of treatment groups,
constructed improved star glyph displays for better visual clustering, and modified parallel
coordinate displays and interaction plots to reveal more data patterns. We have also
investigated applications to profile glyphs, with results similar to that for star glyphs, and
Andrews’ (1972) curves (which also suffer from a variable order effect). More generally,
our methods are applicable to any statistical technique or visualization that relies on a
particular sequencing of variables, cases or factor levels.

The main drawback to using hamiltonian decompositions and eulerians in constructing
data visualizations is that the length of the decomposition or eulerian path is roughly
n2/2. Here our solution is to construct hamiltonians and eulerians on weighted graphs
and in Section 4 we presented new algorithms designed for this purpose. The resulting
visualization can then give prominence to relevant features of the data. In an interactive
setting, the user could select an interesting data feature or features and immediately zoom
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in on a subsequence of the associated weighted eulerian.
In this paper we focused on complete graphs, as these are widely applicable in visu-

alization problems. But we could also envisage visualization applications of incomplete
graphs. For example consider the canonical correlation setting where there are two groups
of variables, {Xi, i = 1, . . . , a} and {Yj , j = 1, . . . , b} and we wish to construct a paral-
lel coordinate display where X and Y variables appear adjacently. Here we construct a
bipartite graph where edges connect X and Y variables only. If a and b are both even
an eulerian exists, and our modified Hierholzer (Algorithm 1) or GrEul (Algorithm 2 for
weighted graphs) give a construction. (If a and b are not both even, extra edges must be
added to the graph so that only two vertices are odd.)

Finally, the algorithms and new graphical displays introduced here are available as the
contributed R package EulerViz.
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