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ABSTRACT

A mathematical theory is presented which extends the geometric theory of vector spaces to deal par-
ticularly with finite collections of vectors. This theory is then exploited in the case of the linear model to
describe the geometry of certain practically relevant issues such as least-squares regression diagnostics.

Keywords: Geometry of linear model, Numerical ranks, Regression diagnostics, Ridge regression.

1. Introduction

Consider the geometry of the linear model

�������	��
 (1.1)

where ���� ������� ������������������ � � and �!�"
#���������������� � ��� �%$ . The response vector � , is to be fitted by some
vector &�'�(�)� which lies in the subspace of � ��$ generated by the vectors �*����������+� � . The residual vector
�,-�/. &� lies in a complementary subspace and gives the error with which � is fitted by &� . This framework
has powerful theoretical and pedagogical value, particularly when used to study or motivate such standard
statistical techniques as least-squares regression or analysis of variance ( see e.g. Scheff 01 [1959], Seber
[1966], Kruskal [1968], or Gurrman [1983]). In light of the geometry, such procedures become intuitively
compelling.

In what follows, a more detailed geometric framework is proposed which supplements the usual vector
space approach and makes it possible to bring geometric intuition to bear on a greater variety of statistical
methods. In particular, the new frame work will be shown to yield geometric insight into matrix rank
measures, collinearity problems, least-squares influential data diagnostics and the minimax properties of
certain ridge regression estimators. The new frame work takes as a basic premise that in practice the ob-
served vectors are often of as much interest as the subspaces they generate. Hence, instead of spaces and
subspaces, finite collections of vectors will be the objects of geometric interest.

The mathematical theory involved is presented in the next section (proofs of certain results appear in
the appendices). As will be shown, strong parallels exist between the new geometric framework and the
more familiar geometry of finite dimensional vector spaces. The remaining sections apply the theory to
different areas of practical statistical interest.

2. A finite Collection Extension

In this section, theory is presented to describe certain properties of finite collections of vectors. The vec-
tors may come from any finite dimensional vector space 2 with inner product �435�76 � for 38��69� 2 . However,
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in the exposition it will be simpler to assume that 2 �:� � � However, in the exposition it will be simpler
to assume that 2 �;� � � for some finite <>=@? , and that �435�76 � �A3CB!6 , the usual inner product. What fol-
lows is an extension of vector space theory which focuses on particular finite collections of vectors. New
objects, operators and attributes are defined and linked to their familiar counterparts in finite dimensional
vector space theory. Table 1 summarizes some of the relationships to be discussed.

To motivate the theory, suppose that some practical problem under investigation yields D data vectorsEF���G�������HEJI���� ��� to be studied. Typically, these vectors will have been selected in an arbitrary fashion but
will have some meaning attached to them. For example, EK� may represent < measurements of the gross
domestic product of a nation, E!L < measurements of the price of oranges and so on. Conceivably, each of
these vectors will have some intrinsic meaning within the problem while an arbitrary linear combination of
them will not. A geometric frame work which does not ignore the individuality of each vector is therefore
proposed.

Table 1. Analogies between items of the proposed extension and those of the finite dimensional vector
space theory.

Finite Dimensional Finite Collection
Vector Space Theory Extension

Objects -vector space 2 - Star P
-subspace M of 2 - Substar S of P

Operators - MON-2 ,;P M is a subspace of 2 ’ - S QN P , ’S is a subset of P’

- MSRUT , vector space intersections - S QR T , ’substar intersection’

- MSV(T , vector space addition - S QW T , ’substar union’
-isomorphic vector spaces 2 and X -‘star-equivalent’ stars P and Q (P Q� Q)

Attributes -dim � 2 � , dimension of the vector space 2 -d Y (P;P) , ‘effective dimension
of the star P’

-dim � M � , dimension of the subspace M -d Y (S;P) , ‘effective dimension
of the substar S of P’

Pictorially, EZ���G�������HEJI can be represented as rays emanating from the origin to the points E8���G�������HEJI in� �%� as in Figure 1, where D �\[ and < �A] .

Figure 1: ^ EF���4E9L�HE`_a�HEJbdc in � �
Such a representation suggests the following definition.
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Definition 2.1: A collection P, denoted P � ^ E � ��������4E I ce� ^ EJf�gZhi��j ? �G������� DSk c , of D*< . dimensional
vectors E � ��������4E I ��� � � such that ?mlA<nl-o and Dp=�q is called a star in � � �

Note that the possibility that E f �rEts for some h�u�wv is not excluded. Also, if no vectors are in P � D � �+�
then P is the null star and denoted by the empty set symbol u q .

Stars are basic objects of the extension and, as suggested in Table 1, may be compared to the set of
all vectors in the space spanned by the vectors of the star. For example, consider again the vectors of
Figure 1. The same vector space, � � L , is produced by the span of two or more of the vectors in the figure.
The vector spaces denoted by span ��Ex���4E9L � , span ��E9La�HEJ_ � , and span ��EZ���4E9L�HE`_ � are identical. A more general
notion of equivalence of vector spaces would be isomorphism. When it comes to stars, equivalence of the
corresponding vector spaces will not do. The stars ^ EK�G�HE9Lycy� ^ EzL�HEJ_{c and ^ EF�G�HEzL�HEJ_|c are clearly
distinct and any definition of the equivalence of stars should distinguish these three as different. Roughly
speaking, a star, P, will be said to be equivalent to another star S, if P can be scaled by a single scale factor
c, and/or rotated in � �}� , so as to fit on top of S. For example, Figures 2(a), (b) and (c) depict three different
stars in � � L

(a) (b) (c)

Figure 2: Three stars in � � L : (a) and (b) show equivalent stars; star in (c) is not equivalent to either of the
others.

The star in Figure 2(b) may be rotated and scaled up to be identical to the star in Figure 2(a). The star in
Figure 2(c) has the same orientation as that in Figure 2(a), but no single scale factor applied to both of its
vectors will yield the star of Figure 2(a). HEnce the stars of Figures 2(a) and 2(c) are not equivalent.
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More formally, let P = ^ E � ��������HE I c and S � ^�~ � �������� ~� c be two stars in � � � and suppose the
indices of the vectors are arranged so that E � � q and ~ s � q whenever h�c�� and vAc>� , for some� l-D and � l�� . The following definition determines when P and S are judged to be equivalent.

Definition 2.2: P and S, as defined above, are said to be star-equivalent, written P Q� S, if there exist a non-
zero scalar c ��� � , an <��)< orthogonal matrix ), and a permutation function � of the indices h�� ? ��������7� ,
such that

(i) �S�A�
and (ii) EJ����f���� c �aq�~ s for h�� ? ��������7� .

The permutation, � , makes the equivalence independent of the order in which the vectors of P and S
are indexed.

For every vector space 2 , a subspace M can be constructed by selecting vectors, E5���G�������HEJ� from 2 and
forming M � span ��EZ�G��������4EJ� � . Similarly, selecting � vectors from the star P = ^ Ex�G��������HE`I:c will yield
another star ^ EZ���G�������HEJ�dc , say, which “fits inside” P. We say that, ^ EZ����������HE`�yc is a substar of P. Before
formalizing this concept, consider Figure 3. There an arbitrary star P, shown in Figure 3(a), is represented
by dashed lines and other stars represented by solid lines are placed on top of P in Figures 3(b)-(e). Only
Figures 3(b) and 3(c) show substars of P. Note that the solid stars of Figures 3(c) and (e) are star-equivalent
to the dashed star but only that of Figure 3(c) is a substar of P.
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(a)

(b) (c)

(d)

(e)

Figure 3: (a) P; (b) a substar of P; (c) a substar of P; (d) not a substar; (e) not a substar.

Definition 2.3: For P and S as above, S is said to be a substar of P, written S Q� P, if there exists scalars
c f4� S � ��� q � ?�� h�� ? ���������� and a permutation function � of the indices ? ���������� such that

(i) q{l � l �
and (ii) ~ f8�A��f4� M � E ����f�� for h�� ? ����������x�
As is the case with subspaces, the substar operator “ Q� ” is a transitive one.

Having defined substars of a given star P, we next consider operations on substars of P that lead to
new substars of P. For these purposes, let M � ^�~ ���������� ~ � c and X � ^�� ���������� �"� c be substars of2 � ^ E!����������HE`I�c such that the following hold:

�Hh � ~ f �A� f � M � E �a��f�� for h�� ? �G����������4hHh � ~ f � q for h��\��� ? ���������� � (2.1)
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and similarly

�HhHh4h � � s �A� s � X � E�� � s � for v�� ? ��������i �HhH6 � � s%� q for v'�¡ �� ? ���������¢ (2.2)

where �x�£  l�D �"¤ f � M � and ��sa� X � ��� q � ?�� for all hy� ? �G��������� and v¡� ? ��������i #� and � �4h � and ¥ �Hh � are two
specified permutation functions of the indices h/� ? �G��������� .

Unless � f � M � �A��sG� X � whenever � �4h � � ¥ ��v � , the collection of vectors formed by the union of the vec-
tors of S and Q will not necessarily be a substar of P. Alternatively, the collection formed by the vectors
in the intersection of the set of vectors in S and the set of vectors in Q will always product a substar of
P.1 However, this substar will often be empty or contain only the zero vector. More intuitive versions of
the union- and intersection- like operations which will always produce substars of P are now defined. For
expository reasons we set � f � M � � q for � ^ h l � and �7sG� X � � q and   ^ v l ���
Definition 2.4: For M � X QN:2 as defined above, union � QW � and intersection � QR � operators on M and X are
defined to be

(a) M QW X � ^\¦�§ E § g�¨©� ? ��������7�©c
(b) M QRwX � ^ 
 § E § g�¨©� ? ��������7�©c

where for ¨©� � �4h � � ¥ ��v � � ? ���������� 2

¦�§ � <*ªJ« j#��f¬� M � ��� s � X � k 3

and 
 § � < h4�5j#��f¬� M � ��� s � X � k �
The intuitive motivation for these operators, QW and QR , can be seen by examining the five stars of Fig-

ures 4 (a)-(e). In (a) some star P is shown. The remaining stars (b)-(e) are substars of P, (b) and (c)

representing two arbitrary substars, M and X , and (d) and (e) representing their substar union M QW X and

substar intersection M QRwX respectively.

As might be expected, a number of properties of substar union and intersection are easily shown to
hold. Among them are the following:

(i) ^�q c Q� M QROX Q� M Q� M QW X Q� 2
(ii) M QRO2 � M

1If  and ® are subspaces of a vector space ¯ , the analogy persists: a subspace of ¯ is not necessarily produced by ±°e® ,
while one is always produced by d²e® . Introducing vector space addition ³ , however, will yield a subspace d³�® .

2Note that the permutation functions ´ and µ used to define S and Q determine the sequence of ¶ ’s and · ’s, respectively.
3 ¸�¹aºt»�¼�½ denotes the maximum element in the set »�¼�½ and min »�¼�½ the minimum element.
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(iii) M QW 2 � 2

(a)

(b)

(c)

(d) (e)

Figure 4: (a) P; (b) M Q� 2 ; (c) X Q� 2 ;

(d) M QW X ; (e) M QRwX
A potential ambiguity exists unless each non-zero vector of the substars M and X above is given explicitly
as a specified scalar � f ��� q � ?�� times E f . For example, suppose that Ex� �¡E9L� ~ �¾� q ��¿"E f and � �¾� q ��À�Ets where
it is only known that h and v are either 1 or 2. The ambiguity in ~ � and � � causes an unresolvable ambiguity

in M QW X . If h±� ? and v)��] , then M QW X includes both q ��¿�E � and q �ÁÀ�E L p; whereas if h±�;vÂ� ? thenM QW X might only include q ��À�E � . The same ambiguity arises for M QRAX . For this reason, application of
the star-union and star-intersection operators requires a precise specification oft he vectors in each substar
like that given in equations (2.1) and (2.2) for M and X .

From Table 1, the only item remaining to be introduced and examined in this extension is an attribute
of stars and substars called the effective dimension4. This attribute takes non-negative real values which
can be given an interpretation similar to that of the usual dimension. Given that attention is to be focussed
on the particular collection of vectors in hand and also given the possible inexactness of these vectors in

4For a more general axiomatic treatment see Oldford [1983].
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practice, the basic premise of an effective dimension is that certain orthogonal directions, or dimensions,
are better determined by the collection of others. For example, consider again Figure 1. The premise
suggests that the horizontal dimension is more clearly defined by this star than is the vertical dimension.
In this sense, a value of 2 for the dimension is considered misleading. A number between 1 and 2 would
more closely reflect the ambivalence with which the vertical dimension is regarded. For the star of Figure
2(c), on the other hand, each dimension is equally well defined and the value of 2 is appropriate.

Capturing this notion of relative merits of dimensions is further complicated when the object of interest
is a substar, M , of a given star 2 . For example, let 2 be the star of Figure 3(a) and M be the substar in Fig-
ure 3(c). Given 2 , the effective dimensionality suggested by M should be smaller than that suggested by 2
alone. However, M is star equivalent to 2 and when taken alone it should have the same dimensionality as
that of 2 . Which is appropriate for M depends upon whether its dimensionality is to be taken with respect
to 2 or not. The function to be proposed as an effective dimension will therefore operate on a (substar,
star) pair. Since a star is always a substar of itself, when the effective dimension is to be taken of M alone,
the appropriate pair will be ( M � M ).

For any star X let Ã f � X � denote the h -th largest singular value 5 of the matrix having column (or row)
vectors equivalent to the vectors of X . We then have

Definition 2.5: The ¦ÄY - effective dimension of M Q� 2 where Å c q is given by ¦ÄY � M Æ"2 � where

¦�Y � M�Æ�2 � �
ÇÈÉ ÈÊ q if M � ^�q cy� or M ��u qË Ã �G� 2 � �ÍÌ Y

�Îf�Ï � Ë Ã f � M � � Y otherwise
(2.3)

As ÅwÐ q � ¦ÄY � M Æ"2 � will give the dimension 6, ¦ h < � M � , of the subspace of � ��� spanned by the vectors ofM . For Å c q � ¦�Y � M Æ"2 � will equal some non-negative real number less than or equal to this dimension.

In what follows, similarities and differences between the ¦ Y - effective dimension of a subspace
may be seen by simply identifying the elements of the first column of Table 1 with the corresponding
ones of column 2 whenever these appear. That is, to check whether any results given below is anal-
ogous to, or fundamentally different from, a result concerning vector spaces, stars like ^ Ñ ��Ò8��Ó:c
must be replace by the span (a, b, c), and so on. for example, if 38��69��� � � are both non-zero, we have? � ¦�Y � ^ 6Ôc Æ^ 6Õc � � ¦ h < �HÖi× Ñ�Ø �H6 ��� c ¦�Y � ^ 6)c Æ^ 38��6)c � for all Å c q . while some similarity
exists between ¦ÄY and ¦ h < when operating on a single vector, this simple example underscores the impor-
tance of the substar-star relationship to the ¦�Y -effective dimension.

5For vector spaces other than Ù ÚÜÛ and arbitrary inner products, Ý#Þ4ß�®¾à may be defined as the square root of the ¶ -th largest
eigenvalue of the matrix of inner products of the vectors of ® .

6The number of basis vectors necessary to generate the subspace.

9



The effect this relationship has on ¦ Y is investigated in the following series of propositions (proofs are
detailed in Appendix A). With the exception of the first proposition, M and T will denote substars, while 2
and X denote stars. Occasional reference to the pictures of Figure 4 should make most results transparent.

Proposition 2.1: If Q� T Q� X Q� 2 then for all Å c q
¦�Y � M Æ"2 � lA¦�Y � TmÆ"2 � lA¦�Y � TmÆ"X � (2.4)

This result describes the effect of increasing, or decreasing, in size either partner of the (substar, star)
pair. Increasing the size of the substar or decreasing the size of the star will increase the effective dimen-
sion. Equivalently, a decrease in ¦�Y results if the opposite changes in the sizes of the substar and star are
made. Proposition 2.1 may be illustrated by letting M � T and X � or T � X � and 2 , be the stars of Figures
4(b), (d) and (a) respectively. Note also that when the vector space quantities are substituted in (2.4) only
the left hand inequality holds and the right hand one becomes equality.

Proposition 2.2:7 If M Q� 2 and M Q� X then for all Å c q
¦�Y � M�Æ�2 W X � l ?] Ë ¦�Y � M Æ"2 � � ¦�Y � M Æ"X � ��Æ (2.5)

Proposition 2.3: á If M W T Q� 2 then for Å � ? and Å �A] ,
¦�Y � M W TmÆ"2 � lA¦�Y � M�Æ�2 � � ¦�Y � TyÆ"2 � (2.6)

While (2.5) and (2.6) describe similar bounds for ¦tY applied to the set-union of stars and substars, note
that they differ in one important respect, namely, (2.6) requires Å to be 1 or 2. for other values of Å c q ,
it is an open problem as the whether (2.6) applies or not.

In terms of dimensions of vector spaces, strict inequality holds in Proposition 2.2, unless ¦ h < � M � is
zero. As it stands, Proposition 2.3 does not make sense in terms of ¦ h < . The following result is more
meaningful.

Proposition 2.4: If M Q� 2 and T Q� 2 , then for Å � ? and Å �â]
¦�Y � M QW TyÆ"2 � lA¦�Y � M Æ"2 � � ¦�Y � TmÆ�2 � � (2.7)

If M W T Q� 2 then (2.7) follows from (2.4) and (2.6), otherwise the proof given in Appendix A is required.

7Here the set-union operation is used on stars. The standard interpretation holds: e.g., ã ¹�ä£å*æ °çã å�äHè)æêé ã¹�äëå7ä4è8æ and ã ¹�ä£åxæ °�ã�ìí å�ä4è5æ5é ã ¹�ä£å�ä ìí å7ä4è�æ
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Substitution of the corresponding finite vector space quantities into (2.7) yields the familiar property¦ h < � MSV(T � lA¦ h < � M � � ¦ h < � T �
which follows from the fact that

¦ h < � MSVrT � � ¦ h < � M � � ¦ h < � T � . ¦ h < � M*RîT � (2.8)

Considering the definition of ¦ Y , it may come as no surprise that results analogous to (2.8) hold when the
vectors of the collection of interest (substar or star) are mutually orthogonal. Additionally, the essential
differences between ¦ÄY and ¦ h < are easily examined under these conditions. These differences and the
effect on ¦ÄY of the conditions themselves are explored in the remaining propositions of this section (see
Appendix B for these proofs).

Some new notation will simplify the presentation. As before, 2 will denote an arbitrary star. However,
for the rest of this section X and T will denote a star and substar each containing only mutually orthogonal
vectors. That is, ï � ^-ï ���������� ï �|c and X � ^-� ���������� ��ð c are such that ï Bf ï se� q and � Bf � se� q wheneverh�u�ñv . Further, if the length of a vector 6 is denoted by ò�ò 6 ò�ò ���46 B 6 �aóô , then T and X are also such thatò�ò ï � ò�òz=õò�ò ï L ò�òJ=ö���Z=õò�ò ï � ò�ò c q and ò�ò÷� � ò�ò9=çò�ò � L ò�ò9=ö���x=�ò�ò ��ðò�ò c q . These substars are X s�� ^A� f g`h	�? �G�������Hve. ? �4vm� ? ��������i dc for v{� ? �G�������i #� T s � ^�ï f g`h�� ? �G� Æ �����Hv�. ? �Hve� ? ����������cyc for v'� ? �G��������� , andXyø � ^;� f gxhi���Ucm� X�ù � ^ ¢ � f g!hi��ú(c where � and ú are arbitrary subsets of j ? ��������i  k . A picture may
help clarify the notation. Figure 5(a) is a
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(a) Q

t1

t3

t2

(b) Q1

t3

t2

(c) Q2

t1

t3

(d) Q3

t1

t2

representation in � � _ of X , when  Õ�pû . Figure 5(b), (c) and (d) represent X ��� X L and X _ respec-
tively. These have been reoriented to lie in the plane of the page. These same three pictures also representXyø ��ü�ý�þeÿ � when � (or ú ) equals j 2, 3 k , j 1, 3 k and j 1, 2 k , respectively. Similar figures could be drawn
for T and its substars.

With this notation, the essential differences between ¦tY and ¦ h < are illustrated by two propositions.
The first is directed at assessing the ¦�Y -effective dimension of stars with respect to themselves. The second
is an assessment of the ¦ÄY of substars with respect to a fixed star.

Proposition 2.5: For h/cwv c ? and for all Å c q
¦�Y � X f Æ�X f � =�¦�Y � X s Æ"X s � (2.9)

and equality holds if, and only if, ò�ò÷� f ò�ò � ò�ò � s ò�ò .
There are two things to note here. First, since Ã � appears as a standardizing factor in the denominator

of ¦ Y ��h Ñ�Ø � v are restricted to be greater than 1. If v�� ? , the inequality could go either way. Second, (2.9)
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states that the star of Figure 5(d) has larger effective dimension than that of Figure 5(c). This corresponds
to the intuitive notion that when the largest orthogonal directions, here the vertical ï � , of Figures 5(c) and
(d) is fixed, the horizontal dimension is better determined by X _ than it is by X L . Of course with ¦ h < no
such distinction would be made. Both Figures 5(c) and 5(d) would yield ¦ h < �A] .

As a corollary to Proposition 2.5, it may easily be seen that by replacing � f in X by � �9� f , whereh/c ? and � is some positive scalar such that � �#ò�ò÷� f ò�ò`l ò�ò÷� � ò�ò � ¦�Y � X{Æ"X � will be decreased or increased as �
is less than or greater than 1. Again, ¦ h < will be completely unresponsive to such changes provided �±c q .

Similar results hold for substars of T . However, since the standardization
Ë Ã ��� 2 � � Ì Y of ¦�Y is based on

a larger common star 2 , there need be no concern about inclusion or exclusion of ï � . Corresponding to
Proposition 2.5, we have the following.

Proposition 2.6: For a star 2 , such that T Q� 2 , for h¾cÔv�c q and for all Å c q
¦�Y � T f Æ"2 � =\¦�Y � T s Æ"2 � (2.10)

and equality holds if, and only if, ò�ò ï f ò�ò � ò�ò ï s ò�ò .
The conditions under which an equality similar to (2.8) holds for ¦tY are now described. As before,

propositions for two cases are given. The first has ¦tY operating on particular stars with respect to them-
selves, or (star, star) pairs, and the second shows ¦�Y ’s operation on certain substars of a star 2 , or (substar,

2 ) pairs. For the first result, recall the sets �z�"ú N j ? �G�������i  k and the corresponding substars X�ø � X|ù Q� X .
Further, let � �|��� Ñ��f�� ø ò�ò � f ò�ò and � L���� Ñ	�f�� ù ò�ò÷� f ò�ò denote the maximum attained by ò�ò � f ò�ò for all hi��� , and

for all hi��ú respectively. In Appendix B, the following result is shown to hold.

Proposition 2.7: If � � � � L and either (i) � R ú)� u q , (ii) � Ñ	�f�� ø�
tù ò�ò÷� f ò�ò � � � , then for all Å c q
¦ Y � X ø QW X ù Æ"X ø QW X ù �� ¦ Y � X ø Æ"X ø � � ¦ Y � X ù Æ"X ù � . ¦ Y � X ø QROX ù Æ�X ø QRwX ù � � (2.11)

The corresponding result for substars with respect to a common star is more simply written.

Proposition 2.8: If T Q� 2 , and M � and M L are arbitrary substars of T , then for all Å c q
¦�Y � ~ � QW M L Æ"2 � � ¦�Y � M � Æ"2 � � ¦�Y � M L Æ"2 � . ¦�Y � M � QRwM L Æ"2 � � (2.12)

As with the earlier result (2.9), care must be taken when the star part of the (substar, star) pair is
changing. This is entirely due to the normalizing factor Ã Ì Y� in ¦�Y . The conditions of Proposition 2.7 are
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required to keep this factor constant.

Finally, note that while ¦ Y � M g 2 � l-¦ h < �� � , in general no stronger relationship exists. If M � and M L
are substars of 2 and ��� and �êL are the corresponding vector spaces, then ¦ ��� M � Æ"2 � l�¦ ��� M L Æ"2 � does not
imply anything about the relation ship between ¦ h < ���	� � and ¦ h < ����L � . Similarly, ¦ �G� M � Æ"2 � l�¦ ��� M L Æ"2 � in

general implies nothing about the relationship between ¦ L� M � Æ"2 � and ¦ L� M L Æ�2 � . If additionally M � Q� M L ,
then Proposition 2.1 applies and ¦ L� M � Æ"2 � l�¦ L� M L Æ"2 � , otherwise the inequality does not necessarily
hold.
Because of such considerations, for those pairs � M Æ"2 � where no value of Å is preferred over any other,
the dimension indices � f � Ã f � M ��� Ã �G� 2 � will be used to summarize the dimensionality information� ¦�Y � M Æ"2 � � Î � Yf � .
3. Some Applications

The theory of the last section will now be applied to a number of problem areas which deal with the linear
model of (1.1). For these applications stars will be formed by taking the column (or row) vectors of some
given matrix. For example, if � �;� � � �������� � $ � is an <>� � matrix, then a star 2 might be formed by the
columns of � , that is 2 � ^�� � �������� � $ c . With some abuse of notation, Ã fH� � � will also be used to denoteÃ � � 2 � .

To begin, the close relation between ¦�Y � M�Æ�2 � and the numerical determination of the rank of a matrix
is briefly illustrated. Other problems to be discussed are minimax ridge-A estimates, collinearity and least
squares influential data diagnostics.

3.1 Numerical Ranks

Mathematically, the rank of a matrix A is easily determined. It equals the number of non-zero singular
values of A, or equivalently, the dimension of the row or column-space of A. 8 Computationally, however,
the determination of the rank must take into account the precision of the machine.

The condition number of a matrix A, Ã ����� � � ��� Ã � f $ � � � , has long been used to numerically determine
whether or not A is of full rank (Wilkinson [1965]). More recently, Chambers [1977] has defined the
numerical rank of A, for a given �|c q , to be � � � � if Ã�� � � � = � �JÃ ��� � � c Ã���� �G� � � . the similarity to¦�Y � M Æ"2 � is clear. If � f is the h -th dimension index, then � � � � if

8Hence it is always greater than the corresponding ���tß� �ë¯	à where  é ¯ é ã"! ì ä$#%#�#�ä !'& æ if A é ß(! ì ä$#�#�#�ä !'&�à
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� � = ��c � �)� �
Equivalently,

� � � 2|Æ"2 � � Î �+* ��, �.-�� � f �
where �0/$1 2"� � � is the indicator function for the set j ��k . If the � f ’s were plotted against their indices, h , the

numerical rank � � would count the number of points above some cutoff �|c q , whereas the ¦`Y -effective
dimension would sum the Å'354 power of the heights of the points. Note also that the numerical rank operates
only on a � 2|Æ"2 � pair (or � ).

3.2 A Minimax Result

Given the model (1.1), assume that the errors, 
 f , are independent and identically distributed as D � q �76 L �
with known 6 L c q . An alternative to the least squares estimator, &� , is the adaptive Ridge-A estimator
(Thisted [1982]) given by (when shrinking &� to 0)

&� � �ñ�¬� B �n�¡� L � ��� Ì � � B � (3.2.1)

where � L � ª 6 L � � &� B98;:=<>8eB &� � . Here ª c q � :;< equals some diagonal matrix of weights, and 8 is the
matrix having the eigenvectors of � B � as columns. Further, suppose that the expected loss of an estima-
tor ? of � can be given by @BA � ? � � B ¢ � ? .¡� �DC for some positive semi-definite matrix ¢ . Thisted [1982] has
shown that the ¦ÄY -effective dimension plays much the same role in this setting as does the dimension in
the well-known James-Stein result.

The relevant star for this result is 2 . ^ EZ����������HE � c where E f is the h -th column vector of the matrix: óô< 8 B 8 ª�� � &� � ¢ 8 ª�� � &� � 8E: óô< (3.2.2)

The following result is proved by Thisted and Morris [1980] and may be found in Thisted [1982].

Proposition 3.1: For suitable choices of ª'=Aq , Ridge-A estimators given by (3.2.1), are minimax with
respect to the above loss function, if and only if ¦ ��� 2|Æ"2 � c�] .

Note that whereas the James-Stein result required ¦ h < c�] , the above result requires a ~�Y c�] . For this
reason, Thisted [1982] has called ¦ ��� 2|Æ"2 � the effective dimension and denoted it as ED. Since ¦tY shares
many geometric properties with ¦ h < for values of Å other than Å � ? , the term “ ¦`Y -effective dimension”
is preferred here.
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3.3 Collinearity

In a collinearity analysis 9 it helps to distinguish between those procedures used to detect the presence of
collinearity and those used to ascertain its effect on the problem of interest. In this subsection both kinds
of procedures are examined.

For detection, consider the star given by 29F � ^ � � �G��������� � c in � � $ . Given that the �{f ’s are in a struc-
turally interpretable form (see Belsley [1984] and Belsley and Oldford [1984] for discussion), collinearity
is judged to be present if at least one of the dimension indices, � f , of ¦ � � 2GFaÆ"2HF � is small, 10 and ines-
timability occurs if at least one is zero. Thus, collinearity is present if at least one orthogonal direction
is not well determined. Further, the � f ’s, whose inverses are called “condition” indices by Belsley, Kuh
and Welsch [1980], are used to assess the extent of the collinearity. The greater the number of poorly
determined orthogonal directions of 2 F , the more extensive is the collinearity.

Consider now the effect on the Ridge-A estimator. Thisted [1980, 1982] has suggested that ¦ � -effective
dimension o Proposition 3.1 be used to assess the effect of collinearity o the minimax property of the
Ridge-A estimators. As will be demonstrated, the statistics itself is not at all related to the presence or ab-
sence of collinearity. However, since Ridge-A estimators are often suggested in place of the least-squares
estimator when collinearity is present, it is of interest in this case to see when minimaxity obtains.

In particular, ;et 2 � and 2 L be the stars having as vectors the columns of the matrix of (3.2.2) with:=< �A� when ¢O��� and when ¢w��� B � , respectively. it can be shown that

¦ ��� 2 � Æ"2 � � � Ã ��� 2 � � Ì �JI Ã f � 2 � �� Ã � ��� � b I Ã f£�¬� �LK (3.3.1)

and

¦ � � 2 L Æ"2 L � � Ã � � 2 L � Ì � I Ã f4� 2 L �� Ã � �¬� � L I Ã f �¬� � Ì L (3.3.2)

where Ã ���� � = ����� = Ã � �¬� � c q , are the singular values of the X-matrix. Thisted [1980, 1982] has
called ¦ ��� 2 � Æ"2 � � and ¦ L� 2 L Æ"2 L � the multicollinearity index (mci) and the predictive multicollinearity in-
dex (pmci), respectively. From Proposition 3.1, each quantity is relevant to the minimaxity of a particular� :=< �A� � Ridge-A estimator, first when the expected loss is that of the mean-square-error of the estimator�DM��õ� � and second when the expected loss is that of the mean-square-error of the predicted response at
the observed �w�£¢w��� B � � . Values of mci or pmci less than two indicate that the corresponding minimax

9Recently, formal definitions have been proposed by Gunst [1984], and by Belsley and Oldford [1984].
10Based on experimental evidence, Belsley, Kuh and Welsch [1980] suggest that those N Þ ’s less than 0.033 be regarded as

small
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property is lost.

That mci and pmci bear no relationship to the presence or absence of collinearity, as assessed by the di-
mension indices � f of ¦ ��� 2 F Æ�2 F � , is easily demonstrated by an example. Let � be of full mathematical rank< �:[ and denote by O the vector of ordered singular values of � , written as O � � Ã ���¬� � �������� Ã bG�¬� �+� .
Now consider the following three possibilities for O

(i) O �	� � ? � ? � ? �"� �
(ii) O L%� � ? � ? �"���"� �

(iii) O �+û � � ? �����"���"� �
where q{^ � ^A? . Corresponding to each case are the values of ¦ ��� 2 � Æ"2 � � and ¦ ��� 2 L Æ"2 L � ,

(i) � ? �¡ût� b � and � ? �¡ût� L �
(ii) �4]±�¡]t� b � and �4]±�¡]t� L �

(iii) �4û±��� b � and �Hû±�(� L �
Suppose first that �¾� ? � ¿ . In all cases, the condition number of the X-matrix which results is five and

collinearity is not likely to be judged present. However, the values of ¦ � � 2 � Æ"2 � � are (i) 1.0048, (ii) 2.0032,
and (iii) 3.0018 giving minimaxity of the Ridge-A estimator in the last two cases but not in the first. Now
suppose that �y� ?q Ì�P yielding 100, 000 as the condition number of X. Most likely, collinearity will be
judged to be present. But the minimaxity or not of the Ridge-A estimator remains the same in each case
as when �{� ? � ¿ . Indeed, when there are three out of four mutually orthogonal linear combinations of
the parameters which are very nearly inestimable, as in case (iii), the minimax property of the estimator is
assured, whereas in the case (i) of least extensive collinearity the minimaxity is lost.

Although mci and pmci and their dimension indices are of little uses for the general diagnosis of
collinearity, they do provide interesting geometric information about the minimaxity of the Ridge-A esti-
mator. The Ridge-A estimator (3.2.1) can be thought of as an estimator which shrinks the least squares
estimates toward zero (or some other specified point). This shrinkage is done selectively, as Smith and
Campbell [1980] point out, shrinking most those parameter estimates having the greatest variance. Letting&¥ � 8yB &� with &� and 8 in (3.2.1), then the components of &¥ have variances equal to 6 L Ã Ì L �¬� � . In the
above examples, these correspond to the following vectors of variances,

(i) �L6 L �76 L �76 L �76 L � � L �
(ii) �L6 L �76 L �76 L � � L �76 L � � L �

(iii) �L6 L �76 L � � L �76 L � � L �76 L � � L �
17



For small � c q , the variance 6 L is negligible when compared to 6 L � � L . The first case, (i), this means
that there is essentially only one least squares estimate, &¥ b say, with non-negligible variance, or equiv-
alently, there is effectively only one random quantity to shrink. Not until � L (or � b ) is greater that
1/3 does ¦ ��� 2 L Æ�2 L � � or ¦ ��� 2 � Æ"2 � �+� produce a value larger than two. In terms of variance, as long as8 ª�� � &¥ b � =RQ 8 ª�� � &¥ f � for hdu��[ , by comparison the &¥ f for h�u�A[ act as fixed quantities. This interpretation
makes sense of the fact that in case (i) large values of � , which might properly be ignored by a collinearity
detection diagnosis, cannot be tolerated by the minimaxity property. Similar remarks and interpretations
apply to the cases (ii) and (iii).

It has been demonstrated that there is a role to be played by the ¦ � -effective dimension in the detection
of collinearity and in the determination of the minimaxity of the ridge-A estimator. In the latter its role is
critical as demonstrated by Proposition 3.1, whereas in the former the dimension indices of ¦ ��� 2 F Æ"2 F � are
the important quantities. Further, in each instance a geometric interpretation is available by considering
the dimension indices of certain stars.

Beyond the geometrical interpretation, it is tempting to interpret the ¦ � -effective dimension as the
effective number of explanatory variables in the regression model (1.1), or in the case of the ridge-A
estimator as the effective number of least-squares parameter estimates which might reasonably be regarded
as random quantities for the purposes of minimaxity. Certainly when collinearity is present one often feels,
as Thisted[1980] has pointed out, that there are in fact fewer variables available than are given by the rank
of the X-matrix. The cases (i) to (ii) above, examined with respect to variances, also lend support to this
thesis for the ridge-A estimator. While this interpretation is a tantalizing one, it is not clear that is should
be adopted. For instance, except for Proposition 3.1, there does not seem to be any particular reason for
preferring ¦ � over any other ¦ÄY 11. This being the case, it must be noted that in general for two stars 2 andX it is possible to have ¦ � � 2|Æ"2 � c ¦ � � X{Æ"X � and also ¦ L � 2|Æ"2 � ^�¦ L � X{Æ"X � . It may be the case that only
in special circumstances, such as those given in Proposition 3.1, will such an interpretation be permitted.
Nevertheless, as will be seen in the remaining subsection this kind of interpretation presents itself again.

3.4 Influential Observations in Least Squares Regression

Let &
 be the residual from the least squares fir &� of (1.1). If it is felt that � observations, without loss of
generality the last � , may be suspect in this fit, then � parameters could be added to the model yielding

�{���)�¾� ? ��
 (3.4.1)

where ? �TS FU ô�V is an � � ? vector and �GL is � � ? . Many peculiarities of the data and fit can be incorpo-
rated in this manner (e.g., see Andrews [1971]). Let 
�W denote the least squares residual for the model of
(3.4.1). The influence these � observations have on the original fit can be measured by the difference in

11Proposition 2.3 admits at least X éZY and X é\[
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fits � W . &��� &
�.�
 W �^]�
 , say.

Assuming that X is of full rank let

�ñ�;�i�d.w�w��� B � � Ì � � B � �`_ �e�£���e�4L� L�� � L£Lba (3.4.2)

where � �£� is �4�{.Ô� � � �H��.Ô� � �	�}LiL is � � � and �e�4L�� � BL�� is �H�{.Õ� � � � . Now assume also that the� observations are such that � L£L is of rank � . The following result is proved in Appendix C.

Proposition 3.2: Given 
 and 
 W as above and � as in (3.4.2), then

]U
��dc �e�4L��L£L$e � Ì �L£L �£� B �4L �"��L£L � &
#� (3.4.3)

Denote the h 3f4 column of � by the vector ª f so that �n��� ª ���G������� ª $�� , and let ��L denote �i��L�������L£L � B �� ª $ Ì � � �G�������� ª $a� . Associated with each matrix is a star, respectively P , ^(ª �7�������� ª $ c and S , ^(ª $ Ì � � �G�������� ª $ c
with S Q� P, and a subspace of � �}$ , respectively the error space g , span � ª ���������� ª $a� and ��, span � ª $ Ì � � �G�������� ª $��
with � � g .

Since � L£L �-��BL � L , Proposition 3.2 shows that the change in fit, ]�
 , equals the orthogonal projection
of &
 onto the subspace � . Thus the influence of the last � observations is expressible as a perturbation in
the direction of the vectors of M . The size of the perturbation will depend upon the actual vectors of M and
the orientation of M relative to &
 . These two components, M and its orientation to &
 , provide simple starting
places to generate summaries of the information in ]�
 . As will be shown, summaries of one or both of
these components are quite common.

The structure of M may be summarized by the dimension indices of ¦`Y � M Æ"2 � and the principal di-
rection vectors of M given the eigenvectors of matrix �eL"� B L . These two sets of summary statistics are
sufficient to describe the “leverage” 12 or “potential influence” any group of � observations may have on
the determination of the least-squares fit of the remaining �).A� observations. To show this denote the
dimension indices by 
 ï�ª � = �����ih!
 �j� �yc q and, since � f � Ã f � M � , the singular value decomposition (svd)
of ��L by ��L}�^kbl 8yB where ln, diag � � ������� � � � , and k B k-� 8eBH8 � 8=8=m ï �A��� so that k contains the
principal direction vectors of M . Letting k B �;��k B� �nk BL � where kÜL has � rows, it is easily shown thatk BL kÜL}�ol L
and k B� k¾���-��� .pl L � (3.4.4)

12This differs slightly from that of Hoaglin and Welsch [1978] where the leverage of a single observation is described in
terms of the potential influence it has on its own fit.
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Further, (3.4.3) may be rewritten as ]U
e�^k|�qk B &
 � � (3.4.5)

Together (3.4.4) and (3.4.5) indicate that the fit will be perturbed only at the � suspect observations if, and
only if, � �y�n������� � �*� ? regardless of &
 . If some of these dimension indices are small, then the fit of
the other observations may be perturbed. The extent of the perturbation will also depend upon &
 . If some
of these dimension indices are small, then the fit of the other observations may be perturbed. The extent
of the perturbation will also depend upon &
 . Therefore examination of k and the dimension indices alone
can determine only the potential influence of the group. Hence the word “leverage”. 13 Note that, as was
the case with collinearity, to determine the presence of high leverage it is best to examine the entire set of
dimension indices rather than any single unidimensional summary like ¦`Y � M Æ"2 � .

Now consider summarizing the orientation of M with respect to &
 . The simplest, and most common
(see e.g., Andrews [1971], Dempster and Gasko-Green [1981]), way to proceed is to ignore the particulars
of M and summarize instead the orientation of &
 to the subspace � . A summary of this orientation is given
by the angle, r , that &
 makes with � . The closer &
 lies to � M , the smaller r � Ë q � � � ] � is, and the greater
the influence of the � observations. This is equivalent to the extra-sum-of-squares principle and has been
advocated in the literature to test for outliers by Gentleman [1980] and Draper and John [1981]. However,
examination of the second factor of (3.4.5) indicates that the orientation of the principal directions of M to&
 contain important information about the change in fit. for example, suppose that � � ^ñ? and all other � f ’s
equal 1. Only the last column of k � is non-zero and the fit of the first ��.�� observations will be perturbed
if, and only if, &
 is orthogonal to the � 354 column vector of k . The amount of the perturbation will increase
as the acute angle between this vector and &
 decreases, regardless of the value taken by r . The value ofr serves only as a lower bound for this angle. The � angles r ���������� r � , say, between &
 and the principal
directions of M , or equivalently the scaled vector of cosines k B &
 , provide more detailed information on
the orientation of M to &
 and hence on the actual influence.

Separate examination of the structure of M in 2 and the orientation of M to &
 , suggests that the � -
dimensional information contained in ]�
 can be reasonably summarized by the two � -dimensional statis-
tics � � �7�������� � � � and � r ���������� r � � . These statistics correspond roughly to the “leverage” and “outlyingness”
components of the influence of a group of � observations. respectively. However, if many groups of � ob-
servations are to be examined and � is large enough, then practicality will require still lower dimensional
summaries. Two obvious unidimensional statistics which maintain the above distinction are ¦JY � M Æ"2 � andr . Any further reduction would sacrifice this distinction.

A number of single unidimensional statistics have been suggested in the literature. Two of them,
Cook’s [1977] statistic and the Andrews-Pregibon [1978] statistic are now described geometrically. These

13When s é�Y N í ì éot%t ¹ & t�t í éut�t ¹ & t�t í éRY�vxw & where w & is the yjz({ diagonal element of the “hat matrix” | é Ù v Ú .
Thus for the one-at-a-time case this notation of leverage corresponds directly to the self-influence one given by Hoaglin and
Welsch[1978].
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have also been discussed recently by Dempster and Gasko-Green [1981], and by Draper and John [1981].
As will be shown, each captures the structure of M (leverage) and its orientation to &
 (outlyingness) in
different ways.

Let X be the extra sum of squares, ]U
 B ]U
 , due to fitting �"L . The angle, r , between &
 and the spanª $ Ì � � �G�������� ª $�� may be measured by,

cot
L r � }~�D� ~� Ì } ,

or equivalently,

sin
L r � ~� � ~� Ì }~� � ~� ,

One-at-a-time statistics combine this outlier information with the leverage information, ò�ò÷ª f ò�ò L , in simple
ways (see Dempster and Gasko-Green [1981]).

For � -at-a-time diagnostics, the Andrews-Pregibon (AP) and Cook (C) statistics may be expressed, up
to a multiplicative constant, as follows,

AP � sim
L re� det �i��L£L � � sin

L r ��f�Ï � � Lf
and

C � cos
L r c &
 B ��L"� Ì LL£L � B L &
X . ? e (3.4.6)

Small values of AP and large values of C indicate influential groups.

Since a single unidimensional statistic is used in either case, care must be taken when combining the
two sources of information. For example, having the “outlier” part, r , enter each statistic multiplicatively
through sin

L r and cos
L r has certain drawbacks. In particular, if the fit including the h th observation is

exactly the same as that excluding it, then cos
L r � q and AP may be small if ò�ò÷ª f ò�ò L � � ? .¡¨9f � is small.

Draper and John [1981] recommend C over AP for this reason alone. If cos
L r � ? , then removal of the h th

observation gives a perfect fit to the remaining observations. C does not detect this. This has been pointed
out by Dempster and Gasko-Green [1981].

While the AP statistic factors simply into an “outlier” part, sin
L r , representing the orientation of &
 to� , and a “leverage” part,

��f�Ï � � Lf , summarizing the structure of M , this is not the case for the C statistic. Its
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second factor in (3.4.6) is not a simple “leverage” component. Rather, the second factor summarizes both
the structure of M and the orientation of M to &
 . This may be seen by reexpressing this factor (+1) as

?
cos

L r � �If�Ï � c cos r f� f e L (3.4.7)

where r f is the angle between &
 and the h ’th principal direction of M . Clearly, both the structure of M and
its orientation to &
 are captured by (3.4.7). Indeed (3.4.6) can now be rewritten as

C � �I
f�Ï � c cos r f� f e L . cos

L r � (3.4.8)

The closer &
 lies to principal direction of M which has a small dimension index the large is C. This is a
fundamental difference between C and AP. The Andrews-Pregibon statistic uses the orientation of � to &

whereas the Cook statistic uses the orientation of M to &
 with that of � to &
 appearing more as a correction
factor in (3.4.8).

Analogous to the case of collinearity, it is tempting here to interpret some ¦`Y -effective dimension
as a measure of the effective number of observations determining the least-squares fit. Certainly when
few observations are overly influential it will be found that the error vector &
 lies close to some smaller
dimensional space, � , and/or the vectors of � which generate � form a star M having one or more small
dimension indices. Further, if &
 lies close to a principal direction of M associated with a small dimension
index then, as in the Cook statistic, the influence of these points will be greater still. Unfortunately there
are many such substars, M , to consider so that until there exists a result similar to Proposition 3.1 which

would specify a particular M Q� 2 and an Å c q such an interpretation is unavailable.

4. Concluding Remarks

As always, a number of issues are left open. Among those that can be stated precisely are the following
strictly mathematical ones. Does (2.6) of Proposition 2.3 hold for values of Å other than 1 or 2? Further,
what, if any, functions of � M Æ"2 � satisfy it many properties? It can be shown for example (Oldford [1983])
that any such function operating on � 2|Æ"2 � must be a function of the singular values Ã f � 2 � . Statistically,
one can speculate on other possible applications of ¦tY and the dimension indices. Huber [1981, p. 160]
has called ¨ Ì �f “the equivalent number of observations entering into the determination of &� f ” and Mosteller
and Tukey [1977, p. 348] have referred to the sum of weights from a robust regression as indicative of the
“equivalent number of equivariable observations”. Can these vague notions of “equivalent” or “effective”
number of observations being used be formalized through some ¦ Y -effective dimension as was done for
the number of least-squares parameter estimates by Proposition 3.1? Section 3.4 lends support to this
possibility for least-squares regression.
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In conclusions, then, a mathematical theory has been presented which supplements the theory of vector
spaces by focusing on finite collections of vectors. When applied to one area of statistical interest, namely,
the linear model (1.1), it has been found to describe a variety of practical statistical concerns, some of
which previously were not described within an � -dimensional framework. It remains to be seen what
other areas of statistical interest might benefit from this theory.
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Appendix A: Propositions 2.1 - 2.4

Some notation and preliminary results are necessary before proceeding with the proofs of the proposi-
tions.

For any star 2 � ^ E � ��������HE I c and <��rD matrix � � ��E � ��������HE I � may be formed having ordered

singular values denoted by Ã f � � � , or equivalently by Ã f � 2 � for h�� ? �������� < hH�ê� < � D � � Now, if S Q� P,
it will be assumed without loss of generality that the vectors of S have been indexed and sufficient zero
vectors added to either S or P so that the matrix formed from S may be written as A �%��� (S) where ��� (S)
is an D �SD diagonal matrix with diagonal elements Ó����q� � ��������7Ón�8�q� � . Here the scalars Ó#���q� � ���������Ó0�x��� � are
constants in [0,1] peculiar to the pari (S;P).

Three lemmas are now given on singular values of certain matrices. The first two may be found in the
literature and hence are presented without proof.

Lemma A.1: let A me an <ç��D matrix and B the <ç� � D . ? � matrix resulting from deleting any column
of A. Then for

<�=�D Ã ���D� � =AÃ ���L� � =�Ã L�D� � = �G������� =�Ã I Ì �G�D� � =AÃ Id�D� � =�q
and for

<>^âD Ã ���L� � =�Ã ���D� � = �������� =�Ã � �D� � =-Ã � �D� � =Aq
Proof: See e.g., Lawson and Hanson [1974].

Lemma A.2: Let A, B and C = (A + B) be < �ÔD matrices. Then, for ��� ? �G������� < hH��� < � D ��I
f�Ï � Ã f �q� � l �I

f�Ï � Ã f �D� � � �I
f�Ï � Ã f �D� � �

Proof: Ky Fan [1951].

Lemma A.3: Let A = (EF����������HE`I ), B = ( ��ÍEF�G��������7��IZEJI ) where � f � [0,1] for h�� ? �������� D , then

Ã f �L� � =-Ã f �D� � =�q h�� ? �������� < hH��� < � D � �
Proof: For h�� ? �������� < hH�ê� < � D � and any ] D�� ] D orthogonal matrix �

Ã f �ê�D� � � Ã f �+��E!��� q �HEzL� q �G�������HEJI�� q � �j� � �
Now take � to be the block diagonal matrix diag � � � �������� � I � where
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� f ��c � f � ? .¡� Lf � óô� ? .¡� Lf �aóô � f e h�� ? �������� D �

Then by repeated application of Lemma A.1,

Ã f �D� � � Ã f ���4� � EF���� ? .¡� L � � óô EF�G��������"¤¾IKEJIe�G� ? .¡� L � � óô E $J���
=-Ã f �D� � h�� ? �������� < hH��� < � D �

which completes the proof.

We are now in a position to prove the propositions stated in Section 2.

Proposition 2.1 (proof): S Q� T Q� Q Q� P

¦�Y ��� Æ7� � � Ã Ì Y � � � Î f Ã Yf �q� �
l-Ã Yf � � � Î f Ã Yf �D� �
¦�Y �D� Æ�� �

by Lemma A.3

Similarly for all Å c q � ¦ Y �L� Æ7� � l�¦ Y �L� Æ þ � .
Proposition 2.2 (proof): S Q� P and S Q� Q. Let A = (E � �G�������HE I ) and B = ( � � �G������� � � ) be the matrices which
correspond to P and Q, respectively. Then by Lemma A.3, for all Å c q

Ã Ì Y� � � W þ � lAÃ Ì Y� � � �
and Ã Ì Y� � � W þ � lAÃ Ì Y� �£þ �
�9� Ã Ì Y� � � W þ � l �L Ë Ã Ì Y� � � � � Ã Ì Y� �iþ � �
�9� ¦�Y �q� Æ7� W þ � l �L Ë ¦�Y �q� Æ7� � � ¦�Y �q� Æ þ � � �

Proposition 2.3 (proof): S
W

T Q� P. Let C denote the matrix containing the vectors S and T have in
common and A and B be the matrices of the remaining vectors in S and T respectively. Then,
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¦�Y ��� W � Æ7� � � Ã Ì Yf � � � Î Ã Yf ��� W � �
� Ã Ì Yf � � � Î Ã Yf �+�D���n����� ���
l Ã Ì Yf � � � Î Ã Yf �+�D���n�����e�n� �+�

by Lemma A.3. For Å � ? , application of Lemma A.2 yields the required result. The same lemma may be
applied for Å �A] after recognizing that

Ã Lf ���L���n���7�e�n� ��� � Ã f �L�����*�o�����'���������p����� � �
Proposition 2.4 (proof): This proof is entirely similar to that of Proposition 2.3, the only difference being
that two possible different matrices ��� and � L will be required from the single matrix C owing to the

difference between QW and
W

.
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Appendix B: Propositions 2.5 - 2.8

Proposition 2.5: For h/cOv�c ? and for all Å c q
¦ Y �iþ�f Æ þ�f � =A¦ Y �iþ s Æ þ s �

and equality holds if, and only if, ò�ò÷� f ò�ò � ò�ò � s ò�ò
Proof: Recall the definitions of þ±f and þ s . since h/c ? and v c ? ,

¦�Y �iþ f Æ þ f � � ò�ò � � ò�ò Ì Y Î ò�ò÷� � ò�ò Y � ò�ò÷� � ò�ò Ì Y ò�ò÷� s ò�ò Y�Õu�Ah�Õu�¡v
and ¦�Y �£þ}s Æ þ�s � � ò�ò � � ò�ò Ì Y Î ò�ò÷� � ò�ò Y � ò�ò÷� � ò�ò Ì Y ò�ò÷� f ò�ò Y�Õu�Ah�Õu�¡v
Since ò�ò÷� f ò�ò9lçò�ò � s ò�ò whenever h¾c¡v , the inequality is true fro all Å � q and further it is clear that equality
holds if ò�ò÷� f ò�ò � ò�ò � s ò�ò �
Proposition 2.6: For a star p, such that T Q� P and T is defined as in Section 2, for h�c�vSc q and for allÅ c q

¦�Y �D� f Æ�� � =�¦�Y �L�	s Æ7� �
and equality holds if, and only if, ò�ò ï f ò�ò � ò�ò ï s ò�ò .
Proof: The proof is virtually identical to that presented above with ò�ò � � ò�ò replaced by Ã ��� � � and all other� ’s by ï ’s. The major difference here is that v may now equal 1 since the same star P is used as a reference.

Proposition 2.7: If � � � � L and

either (i) �xR"� � u q
or (ii) � Ñ	�f��5� 
 ÿ ò�ò÷� f ò�ò � � � ,

for all Å c q
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¦�Y �iþ � QW þeÿ Æ þ � QW þdÿ �
� ¦�Y �iþ � Æ þ � � � ¦�Y �iþdÿ Æ þdÿ � . ¦�Y �£þ � QR þdÿ Æ þ � QR þdÿ � �

Proof: Recall the definitions of þ � �"þdÿ� � ��� and � L"� Suppose � �)� � L , then Ã ���iþ � � � Ã ���iþdÿ � �Ã ���iþ � QW þeÿ � � � � and hence

¦ Y �iþ�� Æ þ�� � � � Ì Y� Î f%�f� ò�ò � f ò�ò Y
¦ Y �£þ ÿ Æ þ ÿ � � � Ì Y� Îf�� ÿ ò�ò÷� f ò�ò Y

and

¦�Y �£þ � QW þdÿ Æ þ � QW þdÿ � � � Ì Y� Îf��f�5� ÿ ò�ò÷� f ò�ò Y
� � Ì Y� � Î f��f� ò�ò÷� f ò�ò Y � Îf�� ÿ ò�ò � f ò�ò Y . Îf��f� 
 ÿ ò�ò � f ò�ò Y � �

Now if (i) �8R"� ��u q then ¦ÄY �£þ � QR þdÿ Æ þ � QR þdÿ � � q and for all Å c q
¦�Y �iþ � QW þeÿ Æ þ � QW þdÿ � � ¦�Y �£þ � Æ þ � � � ¦�Y �iþdÿ Æ þdÿ �

as required. If instead (ii) � Ñ��f��5� 
 ÿ ò�ò÷� f ò�ò � � � , then

¦�Y �iþ � QR þeÿ Æ þ � QR þdÿ � � � Ì Y� f%�f� 
 ÿ ò�ò÷� f ò�ò Y
and the required equality will again be satisfied for all Åw^�q .
Proposition 2.8: If T Q� P, and � � and � L are arbitrary substars of T, then for all Å c q

¦�Y �q�9� QW �`L Æ7� � � ¦�Y �q�9� Æ7� � � ¦�Y �q�`L Æ7� � . ¦�Y ���9� QR �tL Æ7� � .
Proof: Again recall the definition of T and further without loss of generality suppose that �Z� and �`L are
representable as �9��� ^ Ó������9� �D� �����������Ón����9� �D� ��c and �`L±� ^ Óa���q�`L �D� ���G��������Ón�G�q�`L �L� �|c for some scalar con-

stants Ó f �q�9� � and Ó f �q�`L � in [0,1] for h�� ? ���������� . Then �C� QW �`L�� ^ � � � ���������� � � � ��c and �9� QR �`LU� ^1�� � ����������+1+� � �ec where ¦ f ��� Ñ	� �HÓ f �q�z����Ó f ���`L ��� and 
 f ���>� Ø �HÓ f �q�9�7��Ó f �q�`L �+� for h�� ? ���������� .

Thus, ¦ f �;�HÓ f ���9�ê�¡Ó f �q�`L �+� .�
 f for all h and it is easily seen that
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¦�Y ���9� QW �`L Æ7� � � Ã Ì Y� � � � Î f ¦ Yf ò�ò ï f ò�ò Y
� Ã Ì Y� � � � Ë Î f Ó f �q�9� � Y ò�ò ï f ò�ò Y � Î f Ó f �q�tL � Y ò�ò ï f ò�ò Y

. Î f 
 Yf ò�ò ï f ò�ò Y �
� ¦ Y �q� � Æ7� � � ¦ Y ��� L Æ7� � . ¦ Y �q� � QR � L Æ7� �

as required.

Appendix C. Proof of Proposition 3.2

Given � and �±L£L are of full rank, Draper and John [1981] show that


 W � c � �£� .�� �4L � Ì �L£L � L�� qq q e � .

Thus ]�
�� &
�.¡
 W
� c �e�4L�� Ì �L£L ��L�� �e�4L��L�� ��L£L e � . (C.1)

Since � is idempotent, the following results hold

� L �£� ��� �4L � L�� �-� �£� (C.2)

��L����e�£�ê����L£L��}L7�¾�-�}L7� (C.3)

and ��L��+�e�4L��(� LL£L �ñ��L£L . (C.4)

Multiplying (C.3) and (C.4) on the left by �y�HL"� Ì �LiL gives

�e�4L�� Ì �L£L ��L��¾�-�e�4L�� Ì �L7� �}L7���d�i�8�(�e�4L"��L�� (C.5)

and

�e�4L%�ñ�e�4L�� Ì �L£L ��L����}LiL/���}L7�+��L£L (C.6)
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Now equations (C.3) to (C.6) are substituted into (C.1) to give

]U
 � c �d�HL"� Ì �LiL ��L����e�£�8���e�4L"��L�� �d�HL"� Ì �LiL �}L7�+�e�4L��(�e�4L���L���}L7���d�i�8�(��L£L"��L�� �}L7���d�HL��(� LL£L e �F�
� c �d�HL"� Ì �LiL ��L�� �e�4L�d�HL ��L£L e c �e�£� �e�4L��L�� ��L£L e �
� SD  ó ô  ôÍô V � Ì �L£L �£� L�� � L£L � &


which completes the proof of Proposition 3.2.
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