Modelling response models in software

D.G. Anglin* and R.W. Oldford!
Department of Statistics and Actuarial Science
University of Waterloo

Abstract

We describe our software design and implementation of a wide variety of response
models, which model the values of a response variable as an interpretable function
of explanatory variables. A distinguishing characteristic of our approach is the
attention given to building software abstractions which closely mimic their statistical
counterparts.

1 Introduction

One of the great workhorses of statistical science is the response model. This model
supposes that there are p+1 variables x4, ..., z, and y whose values are observed for each
of n independent realizations. Interest lies in modelling the values of the response variable
y as an interpretable function of the explanatory variables x1,...,z,. The explanatory
variables are taken to be fixed at their observed values — either because they are under our
control and the response is observed after their setting, or because we choose to condition
the response on the observed values of the explanatory variables. Once fitted to data, the
model is an interpretable summary of the dependence of the response on the explanatory
variables as well as a predictor of values of the response for any values of the explanatory
variables.

The most widely used response model is the linear model, which expresses the response
as a function of the explanatory variables and a random disturbance e. This function is
linear in its unknown parameters o and [y, .., 3, and is typically written as

y:a+ﬁ1x1+---ﬁp:€p+e. (1)

In its simplest form, the model takes each € to be an independent realization from some
distribution having zero mean and finite variance o2. When the distribution of € is also
assumed to be the Gaussian distribution, we will call this the Gaussian linear model.
Software for this model has long been the mainstay of statistical packages. The fitting
algorithm is simply least-squares (or equivalently maximum likelihood when € is Gaus-
sian) and requires only data corresponding to the response and explanatory variables.

*Supported by a Postgraduate Scholarship from the NSERC.
fSupported by grants from the NSERC.

Summary results run the gamut from printed tabular output to interactive graphics for
model criticism and exploration.

As computational resources have grown, so too has the response model. The relatively
simple linear model has been generalized to response models which are at once more com-
putationally intensive and more flexible. Even so they retain much of the interpretability
of the linear model. We review some of these models in Section 2.

Good statistical modelling is a largely iterative process. Many models might be se-
lected, examined, and discarded before the analyst settles on some hopefully small set of
competing models worth reporting (if any). Statistical computing environments must be
designed to support this process of data analysis and modelling.

In what follows we describe our software design and implementation of a wide variety
of response models. A distinguishing characteristic of our approach is the attention given
to building software abstractions which closely mimic statistical counterparts (see eg.
[Oldford 87]). That is, we intend to build software models of response models. The
response models we consider are reviewed in Section 2 and our software is described in
Section 3. Section 4 relates a very short example of the use of the software. In Section 5 we
describe our approach in relation to that of others. Section 6 contains some discussion of
implementing other response models not covered in previous sections and of implementing
statistical models in general.

2 Response Models

As described earlier, by a response model we mean one which designates some variables
(typically one) as response variables and the remainder as fixed explanatory variables. We
suppose further that values of all response variables are independent from one realization
to the next. Of interest then, is inference about the conditional distribution of the response
variables given the explanatory variables.

The linear model equation (1) is such a model. To emphasize this we rewrite the
Gaussian linear model (1) as

ylr, ..., ~ N(p,0”) (2)
Boo= O‘+ﬁ1$1+"'ﬁp$p- (3>

Here, N(ju,0?) denotes the Gaussian distribution with mean p and variance o2. o2 is the
unknown conditional variance of y and the explanatory variables enter the model only
through the conditional mean u of y.

An important natural generalization is to replace the Gaussian distribution by one
that is more appropriate for the response. For example, if each realization of the response
is a proportion of people who respond to some medical treatment, we may wish to use
a Binomial distribution with mean proportion 7. However, modelling the mean 7 as a
linear combination of the explanatory variables may lead to estimated values of 7 outside
of [0,1]. The logit, or log-odds, defined as log(w/(1 — 7)) = a + Sy + - - Bz, is one
possible alternative. This is the logistic regression model and is a special case of an
extension due to Nelder and Wedderburn [NeldWedd 72] called a generalized linear model
(see also [McCuNeld 89)).

A generalized linear model is determined by three relations:

yle ~ f(u, ¢) (4)

n = z'p (5)

g(w) = n (6)

for explanatory variables = (1,1, ..., z,) and parameters 3 = (a, (1, ..., ;). Now the

response is a random variable whose (conditional) distribution f(u,¢) is known to be a
member of a restricted exponential family. Instead of o2, this more general setup has a
dispersion parameter ¢ (which may be known; see [McCuNeld 89] for further detail). The
family f(-) induces a function V(-) such that the variance of y is ¢V (u). However, it is
no longer the conditional mean p which is a linear function but rather the function 7.
The two are related through a link function g(-). The class can be extended to so-called
quasi-likelihood models by not specifying f(-) completely but by only asserting its mean
and its variance (as a function of the mean).

In the binomial proportion example, y is a binomial proportion with conditional mean
p = m and link function g(u) = log(p/(1 — p)). This latter quantity is modelled by some
linear combination of the explanatory variables, 7.

We note that n and consequently p are functions of the explanatory variables x. To
emphasize this point we will sometimes write these as n(x) and p(x). Typically all
functions f(-), n(x), and g(u(x)) are specified; interest lies in the choice of values for 3.

A different way in which the linear model (1) has been generalized is to write y as a
sum of smooth functions s;(-) affected by random disturbance

y=a+ Y sl +e @)

This model is called the additive model [HastTibs 90]. It retains the advantage of easy
interpretation of the linear model, but adds the increased flexibility of some nonlinear
impact of changes in the x;’s upon the value of y, with the unknown s;(-)’s now playing
the role previously belonging to the §;’s.

The additive model and the generalized linear model are brought together in general-
ized additive models [HastTibs 90]. These use the additive term

n(@) = o+ isxm ®)

of the additive model and otherwise have identical structure to the generalized linear
model.

3 Implementation

Our software implementation of the wide class of response models consists of software
components which mimic very closely the statistical concepts they represent. The object-
oriented facilities of Common Lisp [Steele 90] are used to create distinct classes of objects
which represent the statistical concepts discussed in Section 2. The strength of this

approach is that the statistical meaning and relationships between these different response
models is preserved and enforced through the class structures and their accompanying
functions. This clarifies the software for both the user and the developer.

As can be seen from the above discussion, response models are built from interpretable
components. Consequently we use a variety of model object classes whose components
mimic those of the response model. In particular, the class of a response model object is
determined by its systematic component as represented by the model formula y ~ n(x),
by the specific functional forms of n(x), by its stochastic component describing the nature
of the random variation in y, and by the link function ¢(-) which joins them.

The variables involved in a response model and the functional form of 7(-) are repre-
sented by formula objects. This describes the systematic part of the model. The formula
n(x) is directly related to a function p(x), where p(x) describes the property of the re-
sponse which we are modelling. Stochastic variation in y for a given @ is described in
terms of u(x), though perhaps differently for different classes of response model. This
random component of the model, corresponding to (4), is represented by a family object.
Interpretation of the model formula amounts to specifying the relationship between the
systematic component, described by n(x), and the random component, described in terms
of u(x) [McCuNeld 89]. This relationship g(u(x)) = n(x) is the link function (6), and is
represented by link objects.

Using these various components we create a hierarchy of model objects. For example,
we represent in software the fact that linear models are a special case of generalized linear
models by making the class linear-model a subclass of the class generalized-linear-model.
Subclasses inherit properties of their superclasses, since any particular instance of the
subclass is also an instance of the superclass. For example, both generalized-linear-model
and linear-model have a link component (6), but in the case of the linear model (3), the
link g(-) is restricted to be the identity.

Parallel to the hierarchy of models will be model fits — as distinct from models. Model
fits, represented by fit objects, result from fitting a model object to a data object using a
certain fitting procedure.

3.1 Formula objects

Response models have the characteristic that one variable, the response y, is separable
from the remaining variables, the ezplanatory variables © = (xy,...,x,). We take to be
common among statistical models the existence for each model of a model structure which
identifies the variables in the model and at least to some extent describes the systematic
relationship between them. The structure of the response model, in this sense, is provided
by a model formula y ~ n(x).

This structure is represented by class response-formula, which has slots identifying the
variables involved in the model, identifying the response variable from amongst these, and
specifying a function 7(-) of the explanatory variables.

It is clear from Section 2 that different types of function n(-) will play an important
role in specifying the structure of a response model. To represent the restrictions on the
response-formula for the generalized additive model, we define the subclass additive-formula,
instances of which enforce the requirement that n(x) is of form (8). The further subclass
linear-formula represents the more specific case (5) used in generalized linear models, linear

models, and Gaussian linear models.

3.2 Family objects

A class family-object represents in the abstract the stochastic component of the model.
In order to facilitate dispatching to appropriate methods, specific distributions f(-) each
have their own subclass of family-object with the following properties:

e The name of the family

e A variance function which produces the variance in this family for a single observa-
tion with mean g

e A deviance function which produces the contribution to the deviance of an observa-
tion y with expected mean .

A top-level variable with the same name as the family for f is defined which is the sole
instance of these subclasses. For example, for errors binomially distributed about the
mean u(x), there exists a subclass of family called binomial-family with name “Binomial”,
variance function V' (u) = pu(1 — p) and deviance function

D(p,y) = —2(ylog pu+ (1 — y)log(1 — p)),

and a variable binomial-family bound to an instance of class binomial-family.

3.3 Link objects

Link objects follow the same strategy as family objects. Subclasses of link-object corre-
spond to specific link functions g(+), have slots containing the name of the link, the link
itself, and the inverse g~!(-) of the link. The link and the link-inverse are represented
by a class of function objects which stores information on derivatives and other function
properties; in particular, first derivatives of the link and link-inverse, which are useful in
fitting the model, are available. In the same way as for specific distributional families,
there is defined a top-level variable bound to an instance of the specific subclass of link
of the same name. For example, there is a link-object subclass called logit-link with name
“Logit” and link function object g(u) = log(u/(1 — 1)), and a variable logit-link bound to
an instance of this subclass.

3.4 Model objects

The software representation of a particular response model is an object of class response-
model, which possesses the slot structure. This slot represents the relationship between
the explanatory variables and the response, and is restricted to contain an object which
is a response-formula.

The specific examples of response models which we described earlier have more struc-
ture yet, and these will be represented in software by subclasses of response-model. Using
the objects we have just outlined, the hierarchy below response-model is straightforward
to describe (see Figure 1). Class generalized-additive-model has slots structure (inherited

response-model
structure € response-formula

generalized-additive-model
structure € additive-formula
family
link

/\

additive-model generalized-linear-model
link = identity-link structure € linear-formula

\/

linear-model

gaussian-linear-model
family = gaussian

Figure 1: Class hierarchy of response models

from response-model), family, and link representing the systematic, the random, and the
link components of the model. For generalized-additive-model the structure slot must con-
tain an instance of class additive-formula. Slot family must have a specific family-object
subclass instance as its value; similarly for slot link.

The characteristic feature of additive models as a subclass of generalized additive
models is that the link function is the identity function. The link subclass identity-link
represents link g(u) = p, and the link slot for class additive-model always has the value
identity-link. An alternative specialization of generalized additive models is to further
restrict the class of formulae. By restricting the contents of slot structure to instances of
class linear-formula, we create the class generalized-linear-model.

The class which has both additive-model and generalized-linear-model as superclasses
is the classical linear-model, since this class inherits both the property that the link is
the identity, and the property that n(-) is linear. The further special case of a Gaussian
family gives rise to the common gaussian-linear-model.

The class of a model object can be used by generic functions to dispatch to the most
computationally efficient methods for a particular model class. For example, the fitting
procedure for a gaussian-linear-model will be more computationally efficient than for more
general models. Certainly we would write a method which applies to this special case
for the generic function that performs the fit. This behavior is accentuated by careful
creation of instances: if a program requests an instance of a linear-model which has the
gaussian-family, the appropriate gaussian-linear-model is returned; similarly, a request for a
generalized-linear-model instance with the identity-link will produce a linear-model instance.

response-model-fit
generalized-additive-model-fit

model € generalized-additive-model
estimates € function-estimate-vector

/\

additive-model-fit generalized-linear-model-fit
model € additive-model model € generalized-linear-model
estimates € linear-function-estimate-vector

\/

linear-model-fit
model € linear-model

gaussian-linear-model-fit
model € gaussian-linear-model

Figure 2: Class hierarchy of response model fits

3.5 Fit objects

The choice of a model class for a certain problem involves careful consideration on the
part of the analyst of the type and structure of the data. Utilizing a suitable class is
important to valid conclusions, and in many cases the data themselves may indicate that
the selected model is inappropriate. Accordingly not only model summaries but also
model assessment techniques are vital tools of the data analyst.

A major benefit of interactive statistical programming enviroments is they simplify,
and can even encourage, the iterative data analysis procedure of choosing a model class,
selecting and fitting a model from within that class, assessing the model, and when nec-
essary, selecting a different model or even a different model class.

To this end, we define in parallel to our model hierarchy a hierarchy of model fits,
which represent the fit of a model object to a data object by some fitting procedure. The
fit object contains fundamental quantities important to interpretation and assessment of
the fit, and there is collection of standard mathematical and graphical devices available
for this purpose which accept fit objects as input.

Residuals, and quantities derived from them, are central players in model assessment.
For the response models we’ve discussed above, there are a number of different resid-
ual quantities which have been used [McCuNeld 89, PierScha 86]. The generic function
residuals is capable of providing any of these from a fitted model object.

Models are often summarized by numerical quantities such as the fitted coefficients
and standard errors, and residual sums of squares. Some useful numerical summaries for
a given model fit are provided by the summary generic function, which returns an object

of the appropriate subclass of summary-object.

There are also a variety of useful plots for model assessment within the models we’ve
been discussing, and plots appropriate for a model under consideration can be produced
from an object representing a fit of that model.

4 An example

Landwehr, Pregibon, and Shoemaker [LanPreSh 84] present a generalized linear model
analysis of long-term survival of 306 breast cancer patients after surgery [Haberman 76].
The data consist of

e Survival, a binary variable which is 1 if the patient survived 5 or more years after
surgery, 0 otherwise

e Age, the age of the patient at the time of surgery
e Year, year of the patient’s surgery (minus 1900)
e Nodes, number of positive axillary nodes detected in the patient.

The response variable y; is Survival for patient i, and we take @; = (x1;, z9;, 23;) to be Age,
Year, and Nodes for patient i, respectively. Since the response is binary, pu(x) = E(y|x) =
probability that a patient with explanatory variable & will survive five or more years
(y =1). As a first step in analysis, we might consider a generalized linear model with

n(x) = a+ fxy + Para + Paxs

with the logit link g(u) = log(p/(1 — p)). The appropriate family is binomial. Supposing
that Cancer is a data structure to which our variables Survival, etc., are meaningful, we
can fit this as a generalized linear model by

(setf cancer-glm-1 (glm “Survival ~ Age + Year 4+ Nodes"

Cancer
:family binomial-family
link logit-link))

which returns a generalized-linear-model-fit object. Note that the keyboard expression of
n(x) omits the parameters. This is in keeping with the Wilkinson and Rogers model spec-
ification notation [WilkRoge 73]. The notation and its extensions (see [ChamHast 92])
are a convenient (and common) way to specify response models.

The above command structure hides much of the implementation. Closer examination
would reveal that the function glm requests that the generic function model return a
generalized-linear-model object, which object has a structure slot containing a linear-formula
object appropriate to the string provided. In particular, for our example, the linear-formula
object has slots identifying Survival as the response variable, and Age, Year, and Nodes as
explanatory variables.

Once glm has a model-object in its possession, it passes this object, the data, and a
fitting procedure (maximum likelihood, by default) to a generic function fit. Based on the

formula from the model, the fit procedure requests the data it needs by name from the
data object, performs the fitting procedure, and returns the appropriate fit-object. This
object is subsequently returned by glm. In our example, the returned object cancer-gim-1
is of class generalized-linear-model-fit, and can be queried for the estimates &, Bl, Bg, 33 of
the parameters, for values 7(x) and fi(z), and for the total deviance of the fitted model,
the latter obtained by summing D(ji(x;),y;) over all patients i.

We can use fitted model objects like cancer-glm-1 as input to summaries and plots.
If we do partial residual plots for cancer-glm-1, for example, we observe that the rela-
tionship between Nodes and the partial residuals for Nodes is quite nonlinear, suggesting
a transformation may be appropriate. Exploration of Nodes and the other explanatory
variables yields a more complex model involving a logarithmic transformation of Nodes
([LanPreSh 84]). We could alternatively have tried using generalized additive models via
the function gam.

5 Related work

In traditional statistical systems models have had no explicit software representation.
They are defined at each call for a fit. Sometimes there is an implicit current fitted model
which can be examined and changed by adding and deleting terms from its structure (eg.
GLIM [BakeNeld 78]). In other systems, many fitted models may exist simultaneously but
the model is again defined implicitly as part of the fit (eg. [AbraRizz 88|, [BecChaWi 88]).
A notable early exception to this approach is the econometric modelling system TROLL
([TROLL 82]) which in fact predates the common interactive systems mentioned above.
In TROLL, models are separate data structures involving many equations which relate
variables (endogenous and exogenous distinguished), parameters, and random quantities.
They can be fitted by various procedures and, because the random structure is specified,
once fitted these models are used to simulate future outcomes. Our approach to model
representation is closer in spirit to TROLL than to the more common statistical systems.

In distinguishing model fits from the models themselves, we depart from other authors.
Consider the approach taken in the book Statistical Models in S (SMS) [ChamHast 92]. In
SMS, there is a hierarchy of model fits corresponding to ours. A fit of the appropriate class
is constructed and returned by a model-specific fitting procedure, such as glm, based on
arguments specifying the formula, the data, and family and link objects. However, at no
point is there created a model object, per se, and consequently there is no model hierarchy.
This of course precludes the development of procedures which operate exclusively on
models (eg. nesting operations, combination operations, comparison operators, etc.). The
formulae of SMS have class formula, but this class specializes no further. By contrast a
hierarchy of formula classes plays a major role in the definition of our model hierarchy.
Section 6 below suggests extensions of formula to cover other statistical models.

Various flavours of object-oriented programming have been used to build software
representations for statistical concepts (eg. see [Oldford 87], [Pedersen 91], [Tierney 91],
[ChamHast 92], [Oldford 90], and the references therein). SMS is the first comprehensive
treatment of software representations of statistical response models and has certainly in-
fluenced our work (particularly on summaries of model-fits). Perhaps the major distinction
between our implementation and that in SMS or [Tierney 91] is a different interpretation

of object-oriented programming. In our implementation, all hierarchies of objects begin
with the most general of objects, and grow downwards through progressively more specific
classes. ‘Downward’ in this context refers to the direction of inheritance — from superclass
‘down’ to subclass. This is the classic approach described for example in SmallTalk-80
[GoldRobs 83]. In SMS and [Tierney 91], the hierachies are reversed: conceptually more
general classes inherit from the more specific ones. In particular, generalized-linear-model
is a subclass of linear-model. A strong argument against this nonstandard subtyping when
designing a class hierarchy can be found in [HalbO’Br 87]. Because linear models are con-
ceptually special cases of generalized linear models, we have chosen to have linear-model
appear as a dependent of generalized-linear-model. Then any instance of a linear-model
behaves exactly as a generalized-linear-model should the user wish it.

6 Other statistical models

We think of a statistical model as a relationship between variables that involves some
stochastic (or random) component(s). To capture this intentionally vague description, we
define a class called model-object to be the top of our model class hierarchy. The class
response-model previously discussed is a direct subclass of model-object.

The model-object class has a single slot called structure whose contents represent the
known relationship between the variables. Often the defining characteristic of more spe-
cific model classes will be a more restricted class for the contents of structure. In par-
ticular, the class response-model is a subclass of model-object for which the slot structure
is a formula that separates the response variable from the explanatory variables (i.e. a
response-formula). But for other models structure might be something more complex: a
graph representing the joint distribution of the variables (eg. [Whittake 89]); a system of
differential equations for structural equations models (eg. [TROLL 82]); and so on.

Other statistical models fit naturally into this framework. The class of tree-based mod-
els (eg. [BrFrOISt 84]), for example, would be a subclass of response-model. Other exam-
ples include non-linear regression [BateWatt 88], locally-weighted regression [ClevDevl 88],
and multivariate adaptive regression splines [Friedman 91]. Implementation of subclasses
of model-object which are not response models remains to be explored.

7 Concluding remarks

Constructing software models which match the corresponding statistical models in orga-
nization makes the software easier to understand. In particular, a coherent hierarchy of
model classes naturally representing their conceptual counterparts can be used easily by
other code from a variety of levels. While an interface at the level of the glm command
of Section 4 is possible even when the software is not structured this way, a less superfi-
cial implementation encourages evolution of more sophisticated interaction [OldfPete 88].
One can write clear and simple procedures which operate on objects in the way in which
we usually think of them. The class of individual objects in this environment in large
part defines what operations may be performed on them.

Formal software representations of abstract concepts like data, model, estimation pro-
cedure, and fit permit their manipulation in novel ways. Some examples illustrate the

point. A TROLL model can be estimated, decomposed, linearized, simulated, and boot-
strapped [TROLL 82|. Bates and Chambers [BateCham 87] also describe a bootstrap
resampling procedure in this context: given a model instance, an estimation procedure,
and a set of sample data sets, the bootstrap function estimates the model for each data
set in the set of sample data sets. In SMS there are tools for model searching which use
formula objects to bound the search.

With others we are developing a statistical system based on matching software con-
structs to statistical analysis concepts. We anticipate that the opportunity for further
research in this area is substantial.

References

[AbraRizz 88]

[BakeNeld 78]

[BateCham 87|

[BateWatt 88|

[BecChaWi 88|

[BrErOISt 84]

[ChamHast 92]

[ClevDevl 88]

[Friedman 91]

[GoldRobs 83]

[Haberman 76|

[HalbO’Br 87]

[HastTibs 90]

Abrahams, D.M. and F. Rizzardi (1988) BLSS: the Berkeley interactive statis-
tical system. W. W. Norton & Company, New York, NY.

Baker, R.J. and J.A. Nelder (1978) The GLIM System, Release 3, Generalized
Linear Interactive Modeling. Numerical Algorithms Group, Oxford.

Bates, D.M. and J.M. Chambers (1987) Statistical Models as Data Structures
AT&T Bell Labs Statistical Research Report. 6 pages.

Bates, D.M. and D.G. Watts (1988) Nonlinear Regression Analysis and its
Applications. John Wiley & Sons, New York, NY.

Becker, R. A., Chambers, J. M., and Wilks, A. R. (1988) The New S Language:
A Programming Environment for Data Analysis and Graphics. Wadsworth &
Brooks/Cole, Pacific Grove, CA.

Breiman, L., Friedman, J.H., Olshen, R., and C.J. Stone (1984) Classification
and Regression Trees Wadsworth International Group, Belmont, CA.

Chambers, J.M. and T.J. Hastie (1992) Statistical Models in S. Wadsworth &
BrooksCole, Pacific Grove, CA.

Cleveland, W.S. and S.J. Devlin (1988) Locally-weighted Regression: An Ap-
proach to Regression Analysis by Local Fitting. JASA 83, 596-610.

Friedman, J.H. (1991) “Multivariate Adaptive Regression Splines”, Ann. Stat.
19, 1-141.

Goldberg, A. and Robson, D. (1983) Smalltalk-80. The Language and Its Im-
plementation, Addison-Wesley, Reading, MA.

Haberman, S.J. (1976) “Generalized Residuals for Log-Linear Models”, Proc.
9th Intl. Biometrics Conf., Boston, 104-122.

Halbert, D. C. and O’Brien, P. D. (1987) “Using Types and Inheritance in
Object-Oriented Programming,” IFEE Software, Sept. 1987, 71-79.

Hastie, T.J. and R.J. Tibshirani (1990) Generalized Additive Models. Chapman
and Hall, London.

[HurlOldf 89

[LanPreSh 84]

[McCuNeld 89]

[NeldWedd 72]

[Oldford 87]

[Oldford 90]

[OldfPete 88|

[Pedersen 91]

[PierScha 86]

[Steele 90]

[Tierney 91]

[TROLL 82]

[Whittake 89]

[WilkRoge 73]

Hurley, C.B. and R.W. Oldford (1989) “A Software Model for Statistical
Graphics,” Technical Report STAT-89-13 (University of Waterloo, Department
of Statistics and Actuarial Science, Waterloo, ON). Also appears in: Statistical
Computing and Graphics, A. Buja and P.A. Tukey, eds., 77-94, Institute for
Mathematics and its Applications, University of Minnesota (1991).

Landwehr, J.M., Pregibon, D., and A.C. Shoemaker (1984) “Graphical Meth-
ods for Assessing Logistic Regression Models”, JASA 79, 61-71.

McCullagh, P. and J.A. Nelder (1989) Generalized Linear Models (Second Edi-
tion). Chapman and Hall, London.

Nelder, J.A. and R.W.M. Wedderburn (1972) “Generalized Linear Models”
JRSS (A) 135, 370-384.

Oldford, R. W. (1987) “Abstract Statistical Computing,” Bulletin of the In-
ternational Statistical Institute: Proceedings of the 46" session, 52, Book 4,
387-398.

Oldford, R. W. (1990) “Software Abstraction of Elements of Statistical Strat-
egy,” Annals of Mathematics and Artificial Intelligence, 2, 291-308.

Oldford, R.W. and S.C. Peters (1988) “DINDE: Towards more sophisticated
software environments for statistics,” SIAM Journal on Scientific and Statis-
tical Computing, 9, 191-211.

Pedersen, J. (1991) “Situations, Summaries, and Model Objects,” in Statistical
Computing and Graphics, A. Buja and P.A. Tukey, eds., 139-185, Institute for
Mathematics and its Applications, University of Minnesota (1991).

Pierce, D.A. and D.W. Schafer (1986) “Residuals in Generalized Linear Mod-
els” JASA 81, 977-986.

Steele, G. (1990) Common LISP: The Language (Second Edition). Digital
Press.

Tierney, L. (1991) “Generalized Linear Models in Lisp Stat”. Technical Report
No. 557, School of Statistics, University of Minnesota.

TROLL Documentation. Technical Report from the Center for Computational
Research in Economics and Management Science, MIT, Cambridge, Mas-
sacusetts.

Whittaker, J. (1989) Graphical Models in Applied Multivariate Statistics. John
Wiley & Sons, Chichester, England.

Wilkinson, G.N. and C.E. Rogers (1973) “Symbolic Description of Factorial
Models for Analysis of Variance” Applied Statistics 22, 392-399.

