
A Constraint-Oriented Programming
Model with Application to Statistical

Graphics.

R.W. Oldford *
Department of Statistics & Actuarial Science

University of Waterloo
Waterloo, Ontario N2L 3G 1

Canada.

1 Introduction.
Computational processes are traditionally thought of as uni-directional. One
begins with a collection of inputs, performs some calculations on these inputs,
and produces one or more outputs. Here we consider a different computa-
tional model where the direction of computation is inferred from constraints
imposed on the variables involved. Under this model variables are connected
by a relation, or constraint, such that once values of some number of vari-
ables are known, the values of the remaining are determined by the relation.
What the relation is between variable values is the reponsibility of the user;
how these values are determined is the responsibility of the program object
representing the constraint. Moreover, the constraint is active at all times.
That is, as the values of some variables change, the constraint is responsi-
ble for updating the values of others appropriately. A software system that
allows the user to specify relations of interest, and which then determines
the calculation paths as needed, we describe as constraint-oriented. In this

•Research supported by grants from the Natural Sciences and Engineering Research
Council of Canada.

1

paper some applications of this constraint-oriented programming methodol-
ogy to statistical analysis are explored. In particular, we present a software
representation for a constraint-oriented methodology and through examples
explore a number of constraints that would be useful in a statistical context.

In the next section, a brief introduction to constraint-oriented program-
ming is given. Examples give the basic ideas. Section 3 explores a variety
of examples that are of interest to the statistical community. Section 4 is a
technical section where the software representation for a general constraint is
proposed and some technical issues discussed. Section 5 raises some known
concerns.

Throughout the paper the parlance of object-oriented programming will
be assumed. For precise definitions and further elaboration on object-
oriented programming see the books by Keene [Keene 89] and Steele
[Steele 90].

2 Constraint-oriented programming.
The fundamental building blocks of this computational model are constraints.
These are small program objects that represent a relationship between vari-
ables which must be satisfied by the values the variables obtain. Conse-
quently both constraints and variables are represented as objects which are
instances of a class called constraint, and of a class called variable, respec-
tively. Minimally, the class variable has a slot (or field) called value, say,
where its current value is stored, and a slot called constraints which contains
the list of constraints in which it participates. Similarly, a constraint has
a slot called constrained-objects which identifies the collection of variables
whose values are related according to the constraint. Other attributes and
behaviours of these classes, and related subclasses, will be defined as needed
in the course of the discussion.

In this section three simple examples are used to introduce the basic
elements of constraint-oriented programming. A more complete introduction
can be found in Leier [Leier 88].

2

2.1 A simple two constraint example.

The equation
x+y=z (1)

specifies a relationship between three variables- x, y, and z. Given the values
of any two variables, the value of the third is completely determined. The
equation 1 can be represented by four objects: one for each variable x, y,
and z, and one for the constraint 1. The constraint object is responsible for
setting the value of the third variable given the values of the other two.

The constraint object here is a simple adder constraint. Amongst other
things it contains one function for each variable which will set the value of
that variable given the values of the other two. Consequently, the user need
only specify the relationship between x, y, and z as an instance of the adder
constraint class with x and y as addends and z as their sum. Then once any
two of the three variables are given values the instantiated adder object sets
the value of the third variable by calling the appropriate function.

Since each variable is represented as a data structure, we can easily imag-
ine that any variable could participate in more than one constraint. For
example,

(2)

is another constraint, say a multiplier constraint, involving x as well as two
new variables u and v. Now given the values of any three independent vari-
ables (e.g. u, x, .and z; not x, y, and z), the values of the remaining two are
determined by the operation of the two constraints together (one for each of
equations 1 and 2). If many constraints relate a number of variables then
the collection of constraints and variables form a constraint network.

The network in this example is shown in Figure 1 where each constraint
is a black-box calculator and each variable is a circle connected to the ap-
propriate constraints. When the value of a variable is set in the network, it
informs all constraints in which it participates that it has a new value to be
processed. Each of these constraints updates the values of the variables they
constrain. These variables in turn inform the other constraints in which they
are involved, and in turn these constraints set yet other variables, and so on.
This continues until the effect of the original variable set has propagated as
far as possible through the network.

3

Figure 1: A simple constraint network.

To illustrate, suppose that in the example of Figure 1 we begin with no
variables having values. Local propagation proceeds as follows. Setting y = 3
causes the adder constraint to process this information. Because neither of x
or z have values at this point the adder constraint can set no further values.
Now suppose the user sets u = 5. Then the multiplier constraint is informed
and it attempts to process the new value of u. As before, there is insufficient
information to determine the value of either v or x and, because u is not
involved in any other constraint, the network propagation stops. Not until
the user gives the value of a third variable, say z, is the network solved.
Suppose then that the user assigns z = 10. The adder constraint is informed
of this new value from z and sets x = z - y = 7. Since x now has a value,
it informs all constraints in which it is involved except the one which set its
value. Hence, the multiplier constraint is now informed of a value to process
from x and it sets the value of v = 1.4. The variable v does not participate
in any further constraints and the propagation ends. All constr.aints are
satisfied and the network is solved.

2.2 Temperature conversion
Consider a classic example in the constraint-programming literature. Sup-
pose we have a single equation that relates the values of two variable quanti-
ties C and F representing the temperature measured in degrees Celsius and
degrees Fahrenheit, respectively:

9 * C = 5 * (F- 32). (3)

For any given value of C we can solve this equation for the value of F =
1.8 * C + 32 and for any given value of F we can solve this equation for
the value of C = 5 * (F- 32)/9. Consequently this relationship could be
expressed as a single constraint. However, we are not likely going to want

4

Figure 2: A Celsius-Fahrenheit converter.

more than a single realization of this relationship so defining a new class of
constraint to model it seems more than it merits. Instead, by using the more
primitive constraints of the previous example we can represent the relation
3 by the constraint network shown in Figure 2.

A new kind of constraint is introduced in Figure 2. The square boxes
represent instances of a constant constraint - the values in these boxes cannot
be changed and are passed on to any variable attached to them. Further, it
was necessary to introduce five new internal variables (u through y) to hoJd
the results of intermediate calculations. These are of no intrinsic interest to
the user. As with the previous example, a value of either variable, For C,
will propagate through the network to update the value of the other variable,
C or F as appropriate.

One of the most attractive features of constraint-oriented programming
is the ability to add new constraints to an existing network with minimal
fuss. The user of the Celsius-Fahrenheit converter need only know that the
two variables, F and C , are constrained to obey the relationship between
degrees Fahrenheit and degrees Celsius - how this is achieved is immaterial.
To express temperatures in Kelvin degrees, he or she need only introduce
those constraints which relate Kelvin degrees, K say, to Celsius degrees, C
(as inC = K +273.15) . This could be achieved by a single program statement
like

make-adder(K, make-constant(273.15), C).

Figure 3 highlights the addition this single statement makes to the constraint
network. Because the variable C now participates in two constraints in the
redefined network, the user is now able to express a Kelvin measurement on
the Celsius and on the Fahrenheit scale.

This interactive incremental definition of constraint networks makes them
very attractive for exploratory analysis. The user need not be concerned with

5

Figure 3: A Kelvin-Celsius-Fahrenheit converter.

Figure 4: Temperature conversion with thermometer displays.

the action, or even the definition, of the complete network. Rather, interest
will focus on small pieces of the network at any given time.

In the present example, one is probably interested only in how the mea-
surement of temperature on one scale appears on another scale. How these
changes are effected is of no interest. A familiar means of displaying this
information is to have a simple bar chart behave as a thermometer would on
each of the different scales. For the Celsius-Fahrenheit converter this is shown
in Figure 4. Each thermometer is a graphic whose bar (mercury) height is
proportional to the reading on· the corresponding variable C or F. As the
Figure indicates, this can be implemented as a monitor constraint. Whenever
the value of C changes then this information is passed on to the thermometer
since it is a constraint like any other. Indeed, the thermometers might also
accept input. That is, the user could point to the graphic on the display
and move the bar of the thermometer up or down. This would change the
value of C which would in turn be propagated to the other thermometer as
well. (Clearly, two identical true thermometers would show the same height
whatever the scale. The difference here is that each thermometer could be

6

displaying a different range of possible results.)
Because the thermometer graphic is itself a constraint the user could in

fact probe the value of any variable with it. Regardless of how complex the
underlying constraint network, the probe on C would be installed with a
simple command like

bar-monitor(C).

3 Applications to statistical systems.

The potential applications of this programming methodology to statistical
analysis systems is vast and largely unexplored. In this section some of the
more obvious uses are presented.

3.1 Statistical Graphics.
The earliest constraint-oriented systems were developed to display interactive
graphics [Suth 63,Borning 81,Gosling 83,BornDuis 86], 1 so it should come
as no surprise that constraints would have a variety of uses in a statistical
graphics system. In this section we survey some of these uses.

Throughout this section we will assume that the model for the statisti-
cal graphics involved is a hierarchical one where all elements of the display
are addressable as in the 1988 model by Hurley and Oldford [HurOld 88a,
HurOld 88b,Hur0ld 91]. This allows us to constrain any piece of the graphic.

3.1.1 Graphics Probes.

Perhaps the most obvious collection of useful graphical constraints are those
which probe the data and display their values in a graphic. As suggested
in the temperature conversion example of Section 2, these could be graphics
which both display the data and allow the data to be changed as a result
of changes in the display. It is easy to imagine using these probes to inter-
act with parameters of any program object - tuning constants, parameter
estimates, iteration values, convergence tolerances, and so on.

1 Brief reviews of these and other constraint systems can be found in Leier's 1988 book
[Leier 88].

7

The underlying constraint, a graphics-probe, is relatively simple: the value
of a variable is constrained to equal the value of some variable in the graphic
- which variable depends on the graphic inv~lved. Whenever this variable
changes, the graphic is told by the constraint to redraw itself with the new
information. If the graphic variable of interest is not identifiable as a data
structure then the constraint is a little more complicated (but not much) and
may require more specializations for different graphics.

The range of possible graphics is immense but the number of distinct
archetypes is few (despite lawyers' arguments to the contrary). A minimal
collection for our purposes would include text-boxes, slider-bars, bar-monitors,
and needle-meters or dials. Vector-valued data can be monitored as a single
unit by displaying an array of any one of these graphics. This would require
only a slightly more complex version of the simple graphics-probe constraint.

Peculiar to statistical analysis are graphics-probes that display some sta-
tistical feature of the data. Many of these will be one-way probes - that is,
the graphic will operate as a monitor of the data rather than as an input de-
vice to effect changes in the data. Some examples are histograms and other
density plots, index-plots, qqplots, and fitted curves and lines. For instance,
suppose that the data being monitored are residuals from some fit, then we
would like to see the change in these various plots as the some aspect of the fit
was changed. Other graphics-probes might be bi-directional as in the display
of a fitted line where moving the line on the display changes the estimates of
its slope and intercept (and possibly attributes of its fit to the data).

On occasion the probe will be monitoring changes over time: either time
defined by the user repeatedly changing variable values in the network, or
as defined by the value of a variable which increases with each "clock tick".
Monitoring a simulation as it proceeds [Borning 81] and animating the be-
haviour of an algorithm [BornDuis 86] are two examples of the latter notion
of time. In either case, it is sometimes of interest to record the entire record
of the changes over time. The graphic would then display the entire trajec-
tory of the data being monitored; each new value would add information to
the display rather than replace it. A classic example is the simple time-series
plot where a new line segment is added to the right-most end of the plot as
the data value is updated by the network.

The simple graphics-probe is intended to be used with any graphic capable
of redrawing itself given new information. Consequently, any arbitrary glyph

8

could be displayed and updated- weather-vanes, stars, chernoff faces, classi-
fication trees, and so on. It would thus admit to a wide range of application
- from pure pedagogic demonstration, to data analysis, to methodological
research in Statistics.

3.1.2 Linked Displays.

The first use of constraints in statistical computing was by McDonald in his
1986 "Arizona" system to effect linking of points in two or more graphical
displays [McDonald 86]. Here as one point changes colour, points that are
linked to it change colour as well (or shape, or size, or whatever). McDonald
did this by introducing a simple constraint he called a leader-follower con-
straint. Since each point in the plot represented a single data case, the data
case was the "leader" and the various point-symbols representing that case
were the "followers". Attributes like colour were defined as part of the case
so that whenever the case changed its colour all the point-symbols "followed"
in suit redrawing themselves with the new colour.

In the Views system of Hurley and Oldford [HurOld 88a,Hur0ld 88b,
HurOld 91] no such drawing information was attached to the case. It resided
only on the point-symbol object which was a "view" of that case. Individ-
ual point-symbols could appear in more than one plot so that linking was
achieved because it was the same point-symbol in each plot. However, on
occasion two (or more) plots would be constructed that displayed different
variables of the same cases but which did not share the same point-symbols.
Consequently the plots were not linked. To link them, each pair of point-
symbols that displayed the same case would need to be merged into a single
point-symbol. Once linked, if it was decided that the linking should be bro-
ken then in one of the two plots the point-symbols would need to be replaced
by new point-symbols.

As in the Arizona system, in Views we could constrain the point-symbols
that share the same case. However, having display attributes like colour on
the case unnecessarily clutters the case object and muddies the distinction
between the case object and its display. To maintain this distinction, we
forego placing display information on data objects and instead constrain
only the point-symbols involved. Any constraint on the point-symbols is
now "leader-less" so that a leader-follower constraint becomes inoperative.

9

A more appropriate constraint is one we call a broadcast -constraint. In
its simplest form, it connects an arbitrary number of variables and ensures
that each has the same value. In particular, the value of the last variable
to alert the constraint is broadcast to all other variables whose the values
are changed accordingly. Thus point-symbols connected by a broadcast-
constraint all have the same drawing-style.

Often scatterplots are linked to other statistical plots. For example, a
bar of a histogram could be linked to a point-symbol for each case included
in the count of the histogram bar. Then colouring the histogram bar red
would cause all points to which it is linked to be coloured red as well. But
what about the other direction - from the point-symbols to the histogram
bar? Could we mark some points in a scatterplot with a single colour and
watch where they appear in the histogram? Neither a leader-follower nor a
broadcast-constraint would achieve this behaviour.

One way around this is to display a histogram, not as a collection of bars
but rather, as a collection of bins where point-symbols are piled up to give
the count in that bin as in [Stuetzle 87]. Then the display of each point-
symbol in the scatterplot could be constrained to match the display of a
point-symbol in the histogram (using the views system, they could in fact
be the same point-symbol). Now colouring the point-symbols in one plot
would be reflected in the other. Of course, in the histogram, there will be
some sorting of the point-symbols in each bar so that point-symbols of the
same colour are together within the bar. Unfortunately this has changed the
display of the histogram.

A similar solution, but one more in keeping with traditional display, is
for a histogram bar that bins n points together, to be composed of n smaller
bars one atop the other, each one corresponding to a single point-symbol in
the scatterplot. Again like colours are grouped together within the bar.

An alternative to both that uses fewer data structures (display objects and
constraints) is to employ a many to one constraint connecting the n point-
symbols to the single bar of the histogram. In particular, the constraint to
be employed is one we call a polling-constraint. Its application is illustrated
in Figure 5.

A polling constraint connects an arbitrary number of variables, say n,
whose values are to be polled and the results reported to an (n + 1)st variable.
That is, the values of then objects are sorted and the number of times each

10

Figure 5: A polling-constraint between point-symbols and a histogram bar.

value appears is counted. Then, the total number n, the different values that
were obtained, and the number of times each one was attained, are passed
onto the (n + 1)st variable. Information flowing in the reverse direction forces
unaminity from the value of the (n + 1)st variable to each of the n remaining
variables, exactly as would a broadcast-constraint.

In the example of Figure 5, n point-symbols of different shades are con-
nected to a single bar of a histogram. The polling-constraint polls the point-
symbols and gives the information on numbers of each shade to the histogram
bar which in turn draws itself with fractions of its bar of each shade according
to the information it received. If the histogram bar is highlighted directly,
then the information flow would be in the reverse direction and the point-
symbols which are connected with that bar would all become highlighted.

As different kinds of statistical graphics are linked, no doubt more kinds
of constraints will be developed.

3.1.3 Graphical Layout.

More in keeping with the work by Sutherland [Suth 63] and by Horning
[Horning 81] are constraints on the layout of the components of a graphic.
This early work was concerned with the layout of geometric figures. In the
Views system [HurOld 91], constraints are used to maintain the proper rela-
tionship between regions of a plot.

For example, suppose we draw a scatterplot having two axes and a point-
cloud. In the Views system, these three different graphics are put together
in a single plot by assigning each one to a different rectangular region of the
display. Figure 6 shows these three regions. They are drawn to fit in their
respective regions.

11

x-axis

Figure 6: Three regions of a scatterplot.

The three regions are data structures that are constrained to stay aligned.
In particular, the vertical coordinates of the y-axis must equal those of the
point-cloud region , and the horizontal coordinates of the x-axis must equal
those of the point-cloud region. Then as any one of the regions changes
- stretches or relocates - the other regions (and the graphics inside them)
follow suit. Note that some dimensions are unrestricted so there is nothing
preventing the user from moving the y-axis left and right or the horizontal
axis up and down.

In the layout design, our objective was to provide enough restrictions
that the plot is still sensible yet leave the user enough degrees of freedom
to rearrange the display to suit the problem. Constraints provide a simple
mechanism for just that.

3 .2 Constraints on Calculations.
One can also organize purely calculational results via constraints. For exam-
ple, consider the simple family of order-preserving power transformations of
the variable x > 0 given by

y= {

X>. if,.\ > 0
ln(x) if,.\= 0
-(x>.) if,.\ < 0.

(4)

This equation can be modelled as a single constraint on the three variables
x, y, and .X. Note that it is completely reversible -given any two variable
values, the constraint can determine the third .

In exploratory analysis one is often interested in the shape of the sam-
ple density. By coupling the constraint defined by equation (4) with two

12

Figure 7: Monitoring the effect of transformation of the data.

graphics-probes, we can interactively investigate the effect of various trans-
formations on the shape of the sample density. In Figure 7, a set of values
for .A are arranged in Tukey's ladder of re-expressions as a graphics-probe on
.A, and a histogram is attached to as a probe on the transformed data y. The
user would see only the ladder and the histogram. When a different value of
.A is selected, the information proagates through the network to cause a new
his togram to result. Other graphics-probes like a qqplot or an index-plot
could be added simply by attaching further probes to the transformed data
variable.

With just this simple constraint and a few graphics-probes many inter-
esting possibilities emerge. For example, two power-transform constraints
could be hooked in parallel allowing transformations on two data vectors x
and y to yield x>- 1 and y>- 2 which could in turn be constrained to be displayed
together in a scatterplot. Ladders on each of .A 1 and ,\2 will allow the user
to select values which straighten the plot. Similarly, the transformed data
could be used as the input to virtually any statistical procedure.

Consider another example. Suppose we have three variables x, y, and w,
and we wish to perform a weighted least-squares fit of y on x using weights
w. We could represent this as a single constraint between these variables
and two new variables yhat and e, being the estimated means and residuals
which result from the fit. Now as x, y, and w change, the fitted values and
residuals will change. Again using probes of various sorts, the user could
easily experiment with new weighting schemes (down weighting, deleting se-
lected points, introducing new variance functions to produce weights, and so
on), different transformations of either x or y (simply by placing a power-
transform constraint betwen each variable and the weighted-least-squares fit
constraint), and even with different values of x or y.

13

While simple and relatively unimportant in themselves, these examples
do illustrate the potential power of this approach. Namely that many small
network fragments can be linked together via constraints to provide powerful
new interdependent tools for data analysis. Note that we are not suggesting
that all algorithms be rewritten in terms of contraints. However, it would
be very useful to have algorithm fragments written this way to encourage
interactive exploration of both the data and the algorithms.

4 The software model.

There are many ways that one could represent constraints in software (e.g.
see [Gosling 83], [Sus Steel 80], and [Borning 81] for three different represen-
tations). Historically, the choice of representation used by various authors
has depended upon the domain of problems they are considering and on the
implementation language they use. More generally, Leier shows that all exist-
ing numeric constraint systems (pre 1988 at least) can be specified in terms of
his constraint-programming language called Bertrand [Leier 88]. Bertrand is
designed to be a computationally complete constraint-programming language
in which to specify any numeric constraint-system. The resulting system will
be extensible and its constraint networks solved efficiently. The intention is
to allow constraint-programmming languages to be used as general purpose
languages without resort to escaping to some underlying host language like
LISP or Smalltalk.

While Leier's work is important, the software representation that we
adopt for constraints is an extension of Steele's model for constraints
[SusSteel 80]. There are a number of reasons for this . First, the Steele's
approach is simple to implement. Second, unlike Leier we prefer to work
in a host language that already has many attractive programming features,
namely Common Lisp [Steele 90], so that "escape" to the implementation
language is an attractive feature. Constraints are just another programming
approach that seems to simplify certain problems. Consequently, we hope
to introduce constraints with a minimal amount of disruption to existing
software. Third, as is evident from considering the application of constraint-
oriented programming to statistical graphics, it is not clear that we would
like to restrict consideration to numeric constraints alone. Occasionally the

14

-- -------

"values" we will be constraining will be of arbitrary type.

4.1 Steele's model.

Steele's model is the one we used in the examples of the introductory section
on constraints. There are two kinds of general data structures: variables
and constraints. Variables are used to connect constraints to one another
and constraints restrict variables - each maintains a pointer to the other.
Each variable has a value (potentially) which can be set by the user or by
any constraint in which it participates. Once some variables have known
values, the network determines the values of other variables by firing the
connected constraints. This means of constraint-satisfaction is described in
Section 2 and is known as local propagation of known states, or simply local
propagation.

In addition to setting the value of a variable, Steele also records on the
variable its source of information for the value. So if the user set the value,
then perhaps the string "user" is attached as the informant of the variable;
if the value is set by a constraint, then the identity of the constraint is the
informant. This has two principal uses. First, should anyone be interested
in the reason some variable has a particular value, an explanation can be
constructed by following the informants back through the network one step
at a time. Second, it provides a simple mechanism to avoid conflict and to
propagate information throught the network. If the variable already has a
value, then only the informant of that variable is allowed to change the value
of the variable. Should another informant attempt to change the value then
an error is flagged. Propagation is carried out by having each variable inform
every constraint in which it participates, except the one that just set its value,
that it has a new value. Each constraint updates its other variables' values
as appropriate.

Once enough variable values are set by the user, the remaining are de-
termined by the network. Should new-values be desired for some variables
which were set by the user, the values of one or more of the original variables
the user set must be retracted. This is most simply done by beginning with
one of the original variables, one that we are willing to allow to be changed,
and forcing it to lose its value. Like a numerical value, this loss of informa-
tion is propagated throught the network so that the variable of interest no

15

longer has a value and can now be set by the user.

4.2 Constraints and kaleidostates.
As can be seen from the examples on statistical graphics, it is not clear that
the participants in a constraint should be simple variables which take on a
single value. For a point-symbol, we might constrain its colour, shape, and
point-size to be the same as another point-symbol but only its colour to be the
same as a third point-symbol. This could be implemented as four constraints:
one for each of the attributes constrained to be identical between the first
two point-symbols and a fourth for the colour constraint between the first
and third point-symbols. Alternatively, we might prefer a single constraint
between the first two point-symbols that simultaneously constrains all three
attributes at once. Other examples are easily constructed.

In our application, neither a variable nor its value are simple. A con-
straint "variable" is an arbitrary object and its "value", or what is being
constrained, is also arbitrary. More generally, what aspect of the object is
being constrained and what state that aspect is in depend on both the ob-
ject and the constraint. So for some constraints the colour of a point-symbol
is the state of interest, for others it is the entire collection of attributes one
might call the drawing-style of the point-symbols, and for still others it could
be the data case to which the point-symbol refers.

To emphasize this polymorphic view of the variables of a constraint our
variables are called kaleidostates. In our implementation, kaleidostate is a
class that can be mixed into any class as appropriate. It defines the slots and
methods that are needed for any object to participate in any constraint. In
this way, the user can build and use constraints without needing to under-
stand the details of implementation and satisfaction of constraints.

Each kaleidostate will have a different state depending upon how it is
viewed some constraints will see one state (e.g. colour = black), others will
see another state (e.g. case = "John Doe"). This difference is captured by
another class of objects we call a state-lens. A constraint interacts with a
kaleidostate entirely through a state-lens.

The kaleidostate is to be mixed into whatever class of objects are of
interest to be constrained. Consequently its structure is kept simple and is
set out in Figure 8. The constraints slot contains a list of all the constraints

16

kaleidostate

constraint

Supers:
constraints:
state-lenses:

None
A list of constraint objects.
A list of state-lens objects.

Figure 8: The kaleidostate class.

Supers:
participants:

state-types:

None
A list of objects which participate
in the constraint.
A list containing the state-type of
each participant.

Figure 9: The constraint class.

that the kaleidostate is currently participating in and the state-lenses slot is
a list containing the state-lens used to view that kaleidostate - these lists
are not necessarily of the same length. A number of functions are defined to
operate on these two lists.

Similarly, constraints are also rather straight-forward objects as outlined
in Figure 9. The role of each participant will depend entirely on the con-
straint. The state of the participant is determined by the state-lens through
which it is being viewed by the constraint. The state-type in the same posi-
tion of the state-types list as the participant in the participants list is used
to determine the state-lens.

The class constraint is an abstract class which is never instantiated. It is
simply a mixin class representing the most general features of a constraint.
For a given application, specialized subclasses of this class like graphics-probe
or adder are constructed and these are instantiated.

4.3 State-lenses.
A state-lens is meant to determine the definition of the state of a kaleidostate.
Consequently, it must contain all the information necessary to interact with
a kaleidostate in accessing and updating the state. The slots of a state-lens

17

state-lens
Supers:
state-type:
update-info:

setter:
update-function:
get-function:
act-on-update-function:

None
Unique name for the state-type.
Value of last piece of information
passed through this lens.
Identity of source of update-info.
>.(ks, I, i)
>.(ks, I)
>.(ks, I, s)

Figure 10: The state-lens class.

are given in Figure 10.
The slot state-type is a "hook" to allow the state-lens to be easily referred

to by the user and by constraint objects alike. Its value is just a unique but
meaningful label to be of use in looking up the appropriate state-lens on the
object -no two state-lenses of the same state-type ever appear on the same
kaleidostate. The slot update-info stores the information that was last passed
through this state-lens to update the kaleidostate.

In our model, the information passed from one node in a constraint net-
work to another is not necessarily the value of any state of any kaleidostate
in the network. Rather it is information to be processed by kaleidostate
and constraint alike. Consequently, there is a function stored on the update-
function slot of the state-lens that takes three arguments - the kaleidostate
ks, the update information i, and the state-lens I. This function is called to
update the state of the kaleidostate ks. Similarly, the function which returns
the state of the kaleidostate ks as seen through the state-lens I is stored as
the value of the slot get-function.

Finally, on the slot act-on-update-function is stored a function of three
variables which is called after the update of the state. This is a simple
"hook" to allow an action to take place that depends on the kaleidostate
ks, the state-lens I, and the setter s. In a graphics-probe for example, the
act-on-update-function always has the graphic (a kaleidostate) redraw itself.
Similarly, objects like least-squares-fit which are constrained could be asked
to recalculate themselves once the update has taken place.

Kaleidostates are updated by calling a generic function update-state. For

18

•

slot-lens
Supers:
slot-name:
reader:

writer:

update-function:
get-function:

state-lens
N arne of constrained slot.
Function used to read the value of
the slot.
Function used to set the value of
the slot.
Uses writer function or slot-value.
Uses reader function or slot-value.

Figure 11: The slot-lens class.

an update to be performed, the pass of information must be considered a
legal one. This is determined by the truth value of a predicate function called
"legal-pass-p" which has three arguments: the kaleidostate, the informant of
t he update, and the state-type. For example, in Steele's model this function
would evaluate to TRUE if there was no previous setter of the state or if that
setter was identical to the present informant. Here we have more flexibility
in exploring what are appropriately "legal" passes of information. If the
pass is legal, then the update is performed by calling the update-function
stored on the state-lens. This done, the action-on-update is called. Finally,
all constraints that the kaleidostate participates in, with the exception of
the one which just called for the update, are informed that the kaleidostate
has a new state. Had the update-info been the same as before, then no
update would be performed (legal or not), and no fur~her constraints would
be contacted. A similar process is followed for "lose-state".

Often interest lies only in constraining the value of a single slot. A spe-
cialization of state-lens is built to accommodate this pattern of use. Figure 11
shows the new slots that are added to the class slot-lens. Slots not mentioned
in Figure 11 are as defined for state-lens.

5 Other considerations.
The performance of local propagation is simple and fast but it has its limita-
tions. First it may not be fast enough for highly interactive graphics. Luckily,

19

Figure 12: A simple constraint network containing a cycle.

for many of the applications discussed here, slowly interactive graphics would
be enough. The ease with which one can add an arbitrary graphics link far
outstrips the annoyance of waiting seconds (or even minutes!) for the new
graphic to be updated. That said, it is still important to be able to compile
networks of constraints (without losing its structure so that its topology could
be altered at any time and the network recompiled) Principal contributions
in this area have been made by the work of Sutherland, Horning, Gosling,
and Leier amongst others (again see (Leier 88] for an overview). Second, and
worse, local propagation does not always work!

As an example, consider the simple network constraining the values of
four variables as displayed in Figure 12. Given the value of A and B the
values of C and T can be obtained by local propagation. But if instead we
are given the values of A and C, then local propagation cannot determine
the value of either B or T. Lest the reader believe this to be a highly
artificial example, it is usually cast as A and C being the end-points of a
line-segment,AC, and B is the mid-point of that line segment (T is only a
temporary variable representing the vector AB).

The problem is highly related to that of finding efficient constraint sat-
isfaction techniques in order to compile the network. Cycles in the network
ere at the root of many of the difficulties. Again a number of methods have
been suggested for dealing with this and other problems in the topology of
the network. These need to be investigated and applied if possible in the
present representation. We note only that for many of the applications we
envision, the networks appear to be small and acyclic so that the problem is
minimal.

20

6 Concluding remarks.

At best, the present paper is a sketch of some preliminary work that has
been carried out on the use of constraints in statistical software. More detail
on the software model could be given but that would be beyond the scope of
this exploratory presentation. Nevertheless, on the basis of this preliminary
investigation constraint-oriented programming seems to hold much promise
for applications in statistical analysis.

From the opposite direction, new insight into constraint-oriented lan-
guage design might be gained from consideration of statistical analysis as an
application area. The nature of statistics is such that numerical and non-
numerical constraints both come into play. Many recent statistical methods
are computationally intensive and are often built from small independent al-
gorithms. Could algorithms, or algorithm fragments, be effectively modelled
in a constraint-oriented fashion so that the "new" algorithms are more easily
constructed and studied? Can/should the constraint system accommodate
calculations with feedback? How, and by how much, can we speed things up
in a non-numeric, or partially-numeric, constraint-system?

References

[Borning 81) A. Borning. (1981) The Programming Language Aspects
of ThingLab, a Constraint-Oriented Simulation Laboratory.
ACM Trans. on Prog. Lang. and Systems. 3 pp. 353-387.

[Born Duis 86) A. Borning and R. Duis berg. (1986) Constraint-Based Tools
for Building User Interfaces. ACM Trans. on Graphics. 5, No.
4, pp. 345-374.

[Gosling 83] J. Gosling (1983) Algebraic Constraints. Ph.D. dissertation.
Dept. of CS at Carnegie-mellon University. (Alsoavailable as
a technical report CMU-CS-83-132.) Pittsburgh PA.

[HurOld 88a) C.B. Hurley and R.W. Oldford (1988) Views: A hierarchical
model for statistical graphics. Technical Report STAT-88-17
from Dept. of Stats. and Act. Sci., University of Waterloo.
Waterloo Ontario.

21

-------- ----------- -----------

[HurOld 88b] C.B. Hurley and R.W. Oldford (1988) Views: A hierarchical
model for statistical graphics. Video Technical Report STAT-
88-18 (25 mins.) from Dept. of Stats. and Act. Sci., University
of Waterloo. Waterloo Ontario.

[HurOld 91] C.B. Hurley and R.W. Oldford (1991) A Software Model for
Statistical Graphics. In Computing and Graphics in Statistics
(edited by A. Bujas and P. Tukey), Volume 36 in IMA Vol-
umes in MAthematics and its Applications. Springer-Verlag
New York.

[Keene 89) S.E. Keene. (1989) Object-Oriented Programming in COM-
MON LISP: A Programmer's Guide to CLOS. Addison-
Wesley, New York.

[Leler 88] W. Leier (1988) Constraint Programming Languages: Their
Specification and Generation. Addison-Wesley, New York.

[McDonald 86] J.A. McDonald (1986) An Outline of Arizona. presented at
the Annual Meetings of the ASA, Chicago IL.

[Steele 80] G.L. Steele, Jr. (1980) The Definition and Implementation of
a Computer Programming Language Based on Constraints.
Ph.D. dissertation. Dept. EECS at M.I.T. (Also available as
a technical report MIT-AI TR 595.) Cambridge MA.

[Steele 90] G.L. Steele, Jr. (1990) COMMON LISP: The Language (2nd
Edition). Digital Press.

[SusSteel 80] G.J. Sussman and G.L. Steele, Jr. (1980) Constraints - A
language for expressing almost-hierarchical descriptions. AI
Journal14 pp. 1-39.

[Stuetzle 87] W. Stuetzle (1987) Plot Windows. Journal of the American
Statistical Association, 82(398), pp. 466-4 75.

[Suth 63] I.E. Sutherland (1963) Sketchpad: A Man-Machine Graphi-
cal Communication System. Ph.D. disseration, M.I.T., Cam-
bridge MA.

22

SUMMARY.

Constraint-oriented programming has been a research topic in Computer
Science since at least 1963. Advances in computer technology has allowed it
to become a more active area in the last decade. In this paper an introduction
to constraint-oriented programming is given. A general software model for
constraint-oriented programming in an object-oriented system is presented
here. The model is an extension of one first proposed by Sussman and Steele
[SusSteel 80] and implemented and investigated by Steele [Steele 80].

The key premise in our constraint model is that constraint systems pass
arbitrary pieces of information around a network, not simply "values". The
information can be numeric or non-numeric. Consequently, the state of a
constrained variable is determined by the constraint, the variable, and the
updated information. This notion is captured in the model by the introduc-
t ion of a software object which we call a state-lens.

Some potential applications in statistical analysis systems are discussed
with particular emphasis on the use of constraints in statistical graphics. A
number of constraints that are useful in this regard are presented.

23

		2015-04-27T16:10:34-0500
	com.apple.idms.appleid.prd.535834526575454c6e39614a75445858576c554b57513d3d

