Eikosograms for teaching probabilistic independence and its modelling.

W.H. Cherry and R.W. Oldford University of Waterloo

October 9, 2002

Abstract

This the paper where we look at the use of eikosograms to show independence.

1 Introduction

Teachers of probability have long used relative areas to teach probability. In Cherry and Oldford (2001) we argue for the use of a diagram, which we have called and eikosogram, to teach the fundamentals of probability. In this paper we employ the eikosogram to explore the topic of conditional independence.

2 Eikosograms

Figure 1: The eikosogram for one and for two variables.

3 Observing independence

Must look at all three variables on the vertical axis. There are four cases to consider

3.1 Case 1: All three diagrams are flat.

This is the case of mutual independence.

Figure 2: Multiple categories for the conditioning variable.

Figure 3: Various dependency relations (a) inconsistent dependence, (b) consistent dependence, (c) conditional independence, (d) as in (c) but X & Z are interchanged.

3.2 Case 2: one 4-flat, two (2,2)-flats

Note that it is impossible to have three 2-flats

3.3 Case 3: two (2,2)-flats, one no-flat

3.4 Case 4: three no-flats

4 Log-linear models

It is more common to parameterize the probability of the contingincy table by the probabilities of the cells of the table with p_{yxz} denoting the probability Pr(Y = y, X = x, Z = z). In the examples considered above, each variable takes on only two values, for example Y = y and Y = n, thereby yielding 8 cells having probabilities p_{yxz} . So as not to confuse the values of the variables with the variables themselves, we will now switch to more standard notation and have each binary variable take on the values 1 and 0 corresponding to the values y and n, respectively. This means, for example, that

$$p_{010} = Pr(Y = 0, X = 1, Z = 0) = Pr(Y = n, X = y, Z = n)$$

Figure 4: One 4-flat does not imply mutual independence of Y, X, and Z.

Figure 5: Mutual independence: any two 4-flats imply the third is a 4-flat; three 4-flats if and only if Y X and Z are mutually independent.

In terms of our original notation:

$$\begin{array}{lll} a = p_{011} + p_{111} & e = p_{111}/a & \text{ or equivalently } & p_{111} = a \times e & p_{011} = a \times (1-e) \\ b = p_{001} + p_{101} & f = p_{101}/b & p_{101} = b \times f & p_{001} = b \times (1-f) \\ c = p_{010} + p_{110} & g = p_{110}/c & p_{111} = c \times g & p_{011} = c \times (1-g) \\ d = p_{000} + p_{100} & h = p_{100}/d & p_{100} = d \times h & p_{000} = d \times (1-h) \end{array}$$

4.1 log-linear parameterization

For $y \in \{0, 1\}, x \in \{0, 1\}, z \in \{0, 1\}$

$$p_{yxz} = p_{000}^{(1-y)(1-x)(1-z)} p_{001}^{(1-y)(1-x)z} p_{010}^{(1-y)x(1-z)} p_{011}^{(1-y)xz} p_{100}^{y(1-x)(1-z)} p_{101}^{y(1-x)z} p_{110}^{yx(1-z)} p_{111}^{yxz}$$

Taking logs and gathering like terms together we have

$$log(p_{yxz}) = u_0 + u_Y y + u_X x + u_Z z + u_{YX} y x + u_{YZ} y z + u_{XZ} x z + u_{YXZ} y x z$$

where the us are simply the coefficients of the corresponding terms and so are functions of the p_{yxz} s. The complete set of equations are

$$log(p_{000}) = u_{\phi}$$

Figure 6: One 4-flat and two (2,2)-flats.

Figure 7: Two (2,2)-flats, one no-flat.

These so-called 'u-terms' are the new parameters and are given the usual design interpretations with u_Y , u_X and u_Z each being the main effect of the corresponding variable, u_{YX} , u_{YZ} and u_{XZ} the two factor or first-order interaction terms, and u_{YXZ} the three factor or second order interaction term.

It is easily seen that

$$u_{\phi} = log(p_{000})$$

$$u_{Y} = log(p_{100}/p_{000})$$

$$u_{X} = log(p_{010}/p_{000})$$

$$u_{Z} = log(p_{001}/p_{000})$$

$$u_{YX} = log(p_{000} p_{110}/p_{010} p_{100})$$

Figure 8: No flats. No independent variables.

Figure 9: No flats. One marginal independence. No other independence

$$u_{YZ} = log(p_{000} p_{101}/p_{001} p_{100})$$

$$u_{XZ} = log(p_{000} p_{011}/p_{010} p_{010})$$

$$u_{YXZ} = log(p_{001} p_{010} p_{100} p_{111}/p_{000} p_{011} p_{101} p_{110})$$

Appendix

Parameter values for the figures.

Figure 10: No flats. Two marginal independences. No other independence

Figure 11: No flats. Three marginal independences. No other independence

Figure	a	b	с	d	e	f	бŊ	h
3(a) 3(b) 3(c) 4 5 6 7 8 9 10 11	2/7 2/7 2/7 10/33 1/3 2/9 1/7 1/4 1/3 1/6	8/35 8/35 8/35 8/35 4/11 1/6 1/9 1/7 1/4 1/6 1/3	1/7 1/7 1/7 5/33 1/3 2/9 3/7 1/4 1/3 1/6	12/35 12/35 12/35 2/11 1/6 4/9 2/7 1/4 1/6 1/3	4/5 4/5 4/5 7/10 7/10 2/3 1/3 3/4 2/3 1/6	1/2 1/2 7/10 7/10 2/3 2/3 1/2 1/2 2/3	3/10 3/5 4/5 7/10 7/10 3/10 1/6 1/4 1/4 5/6 5/6	7/10 1/5 1/2 7/10 7/10 3/10 1/6 1/6 1/6 1/4 1/6 1/3

References

Cherry, W.H. and R.W. Oldford (2002). "On the poverty of Venn diagrams for teaching probability: their history and replacement by Eikosograms." (*submitted for publication*)

Cox, D.R. and N. Wermuth (1996). *Multivariate Dependencies*. Chapman and Hall, London.

Lauritzen, S. (1996). Graphical Models. Oxford University Press, Oxford.

Whittaker, J. (1990). Graphical models in applied multivatiate statistics. John Wiley & Sons, Chichester.