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Abstract

This the paper where we look at the use of eikosograms to show independence.

1 Introduction

Teachers of probability have long used relative areas to teach probability. In Cherry and Oldford (2001) we argue for
the use of a diagram, which we have called and eikosogram, to teach the fundamentals of probability. In this paper we
employ the eikosogram to explore the topic of conditional independence.

2 Eikosograms
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(a) Marginal of Y (b) Y depends on X (c) Y independent of Z

Figure 1: The eikosogram for one and for two variables.

3 Observing independence

Must look at all three variables on the vertical axis.
There are four cases to consider

3.1 Case 1: All three diagrams are flat.

This is the case of mutual independence.
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(a) Y depends on X (b) Pr(Y|X) declines with X (c) Y independent of X

Figure 2: Multiple categories for the conditioning variable.
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Figure 3: Various dependency relations (a) inconsistent dependence, (b) consistent dependence, (c) conditional independence, (d)
as in (c) butX & Z are interchanged.

3.2 Case 2: one 4-flat, two (2,2)-flats

Note that it is impossible to have three 2-flats

3.3 Case 3: two (2,2)-flats, one no-flat

3.4 Case 4: three no-flats

4 Log-linear models

It is more common to parameterize the probability of the contingincy table by the probabilities of the cells of the table
with pyxz denoting the probabilityPr(Y = y;X = x; Z = z). In the examples considered above, each variable takes
on only two values, for example Y = y and Y = n, thereby yielding 8 cells having probabilities p yxz. So as not to
confuse the values of the variables with the variables themselves, we will now switch to more standard notation and
have each binary variable take on the values 1 and 0 corresponding to the values y and n, respectively. This means,
for example, that

p010 = Pr(Y = 0; X = 1; Z = 0) = Pr(Y = n; X = y; Z = n)
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Figure 4: One 4-flat does not imply mutual independence of Y , X , and Z .
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Figure 5: Mutual independence: any two 4-flats imply the third is a 4-flat; three 4-flats if and only if Y X and Z are mutually
independent.

In terms of our original notation:

a = p011+ p111 e = p111=a or equivalently p111 = a� e p011 = a� (1 � e)

b = p001 + p101 f = p101=b p101 = b� f p001 = b� (1� f)

c = p010 + p110 g = p110=c p111 = c� g p011 = c� (1 � g)

d = p000 + p100 h = p100=d p100 = d� h p000 = d� (1� h)

4.1 log-linear parameterization

For y 2 f0; 1g, x 2 f0; 1g, z 2 f0; 1g

pyxz = p
(1�y)(1�x)(1�z)
000 p

(1�y)(1�x)z
001 p

(1�y)x(1�z)
010 p

(1�y)xz
011 p

y(1�x)(1�z)
100 p

y(1�x)z
101 p

yx(1�z)
110 pyxz111

Taking logs and gathering like terms together we have

log(pyxz) = u0 + uY y + uXx+ uZz + uYXyx+ uYZyz + uXZxz + uYXZyxz

where the us are simply the coefficients of the corresponding terms and so are functions of the pyxzs. The complete
set of equations are

log(p000) = u�
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Figure 6: One 4-flat and two (2,2)-flats.
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Figure 7: Two (2,2)-flats, one no-flat.

log(p100) = u� + uY

log(p010) = u� + uX

log(p001) = u� + uZ

log(p110) = u� + uY + uX + uYX

log(p101) = u� + uY + uZ + uY Z

log(p011) = u� + uX + uZ + uXZ

log(p111) = u� + uY + uX + uZ + uYX + uYZ + uXZ + uYXZ

These so-called ‘u-terms’ are the new parameters and are given the usual design interpretations with uY , uX and uZ
each being the main effect of the corresponding variable, uYX , uY Z and uXZ the two factor or first-order interaction
terms, and uYXZ the three factor or second order interaction term.

It is easily seen that

u� = log(p000)

uY = log(p100=p000)

uX = log(p010=p000)

uZ = log(p001=p000)

uYX = log(p000 p110=p010 p100)

4



Y

X & Z

Z

X & Y

X

Z & Y

Y

X

Y

Z

Z

X

Z

Y

X

Y

X

Z

Figure 8: No flats. No independent variables.

Y

X & Z

Z

X & Y

X

Z & Y

Y

X

Y

Z

Z

X

Z

Y

X

Y

X

Z

Figure 9: No flats. One marginal independence. No other independence

uYZ = log(p000 p101=p001 p100)

uXZ = log(p000 p011=p001 p010)

uYXZ = log(p001 p010 p100 p111= p000 p011 p101 p110)

Appendix

Parameter values for the figures.

5



Y

X & Z

Z

X & Y

X

Z & Y

Y

X

Y

Z

Z

X

Z

Y

X

Y

X

Z

Figure 10: No flats. Two marginal independences. No other independence
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Figure 11: No flats. Three marginal independences. No other independence

Figure a b c d e f g h

3(a) 2/7 8/35 1/7 12/35 4/5 1/2 3/10 7/10
3(b) 2/7 8/35 1/7 12/35 4/5 1/2 3/5 1/5
3(c) 2/7 8/35 1/7 12/35 4/5 1/2 4/5 1/2
4 2/7 8/35 1/7 12/35 7/10 7/10 7/10 7/10
5 10/33 4/11 5/33 2/11 7/10 7/10 7/10 7/10
6 1/3 1/6 1/3 1/6 7/10 7/10 3/10 3/10
7 2/9 1/9 2/9 4/9 2/3 2/3 1/6 1/6
8 1/7 1/7 3/7 2/7 1/3 2/3 1/4 1/6
9 1/4 1/4 1/4 1/4 3/4 1/2 1/4 1/4
10 1/3 1/6 1/3 1/6 2/3 1/2 5/6 1/6
11 1/6 1/3 1/6 1/3 1/6 2/3 5/6 1/3
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