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Abstract

Through motivating examples, we introduce the Euclidean distance matrix completion
problem, and explore its use in various fields in the literature. We then introduce edmc,
a function available in the R package edmcr, which solves the Euclidean distance matrix
completion problem, and the related sensor network localization problem, using a variety
of algorithms.

Working through examples using both real and simulated data, we show how each
of the algorithms implemented in edmc can be used to effectively complete a Euclidean
distance matrix, the pros and cons of each algorithm, and their use in various types of
completion problems. We end with a brief introduction to the theoretical background of
the algorithms, outlining some of the more technical details implemented in each.

Keywords: R, matrix completion problems, point configurations, high dimensional data anal-
ysis, dimension reduction, guided random search.

1. Introduction

Consider a set of n points in arbitrary dimension p, x1, ...,xn ∈ Rp. Let X = [x1, ...,xn]T

denote the matrix such that X[i, ] = xTi . Without loss of generality, assume the xi are centered
so that

∑n
i=1 xi = 0. The Euclidean distance between xi and xj is denoted

dij = ||xi − xj || (1)

and let D = [dij ] be the Euclidean distance matrix. Next, let D∗ = [d2ij ] be the square

Euclidean distance matrix, which can be used to derive the Gram matrix, G = XXT . Note
that the Gram matrix can be written as
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G = XXT

= XOOTXT

for any orthogonal matrix O. The Gram matrix G provides a point configuration from its
eigendecomposition that is unique up to an orthogonal rotation.

In practice, situations may arise where only some of the dijs are unknown - for instance, in the
case of sensor network localization (see for example Alfakih, Anjos, Piccialli, and Wolkowicz
(2011) and Ding, Krislock, Qian, and Wolkowicz (2010)) where distances between sensors
are only known if they are within a distance R, known as the radio range, of one another.
This would result in what is known as a partial distance matrix. Another such example can
be found in molecular biology, and more specifically the problem of molecular conformation
(see for example Hendrickson (1995)), where given a set of unknown distances and other
restrictions, the goal is to determine the underlying configuration of a (protein) molecule.

Given a partial distance matrix, the goal is completing it, a problem known as the Euclidean
distance matrix completion problem (edmcp). There are many methods for solving the edmcp,
see for example Alfakih, Khandani, and Wolkowicz (1999), Fang and O’Leary (2012), & Tros-
set (2000) for an introduction to the problem area and an in depth look into the methods we
will consider in later sections. None of these tools, however, are available in the programming
language R (R Core Team (2013)).

To bridge this gap, we introduce the edmcr package, publicly available on the Comprehensive
R Archive Network (CRAN). We introduce several useful algorithms included in edmcr which
allow the user to complete a partial distance matrix, and solve related problems. Each of
these algorithms have their own advantages and disadvantages, which we will explore.

This paper is structured as follows. In Section 2, a number motivating examples are introduced
that are closely related to the Euclidean distance matrix completion problem. These exam-
ples include problems in distance-based dimension reduction, sensor tracking, and molecular
conformation.

In Section 3, the function edmc, the main function for Euclidean distance matrix completion
in edmcr, is introduced. The algorithms which can be called from edmc include Alfakih et al.
(1999), Fang and O’Leary (2012), Trosset (2000), Krislock and Wolkowicz (2010), and Rah-
man and Oldford (2016) will also be introduced. The function sprosr, used for solving the
problem of molecular conformation, is also introduced. sprosr is an implementation of the
semidefinite programming-based protein structure determination algorithm of Alipanahi Ra-
mandi (2011).

In Section 4, a number of examples are introduced using both real and simulated data to
demonstrate the syntax and functionality of the algorithms in edmcr. In Section 5, the
mathematical details of the Euclidean distance matrix completion aglorithms are presented,
providing the background necessary to better understand the more advanced functionality
available in the algorithms. Section 6 offers some closing remarks.

2. Motivating examples
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Three related, yet distinctly different problems illustrate the Euclidean distance matrix com-
pletion problem. Their ordering ranges from cases with little inherent structure to cases
involving significant structure in the underlying configuration.

2.1. Distance-based dimension reduction

We begin with the simplest example of distance matrix completion by considering the link
between dimension reduction techniques and Euclidean distance matrix completion. In many
cases, dimension reduction is done by first considering a partial distance matrix (such as
one created by a neighbourhood graph), typically resulting in a sparse matrix containing
a small number of known distances. For instance, the Isomap algorithm of Tenenbaum,
De Silva, and Langford (2000) first creates a partial distance matrix using the distances
in a k-nearest neighbour graph, requiring only that the resulting graph be connected. The
remaining distances are then filled using the shortest paths between nodes along the graph.
A point configuration is then constructed using multidimensional scaling. Other examples
of distance-based dimension reduction algorithms include Laplacian Eigenmaps (Belkin and
Niyogi (2001)) and Locally Linear Embedding (Roweis and Saul (2000)).

Consider instead the following approach. Given a high dimensional point configuration, and
the corresponding k-nearest neighbour graph, suppose we treated these as known distances in
a Euclidean distance matrix. Then, instead of using the shortest path distances to fill in the
unknown distances, we instead make use of a Euclidean distance matrix completion algorithm
to complete the distance matrix, and embed it in a lower dimension. The lower dimensional
point configuration could then be extracted via simple eigendecomposition.

A similar idea would be to use the minimum spanning tree of the high dimensional point
configuration instead of the k-nearest neighbour graph. The minimum spanning tree is a
graph in which every node is visited once, with no cycles, and minimum edge weight of any
such graph, and is known to carry important clustering information (Gower and Ross (1969),
Friedman and Rafsky (1981), Friedman and Rafsky (1979)). We explore this idea using the
statue manifold data set used in Tenenbaum et al. (2000).

In the case of either a k-nearest neighbour graph or a minimum spanning tree graph, we
end up with partial distance matrix D that is relatively sparse. This allows for alternative
methods (such as that in Rahman and Oldford (2016)) to be used to complete the matrix.

2.2. Sensor network localization

In sensor network localization, the goal is to determine the positions of a set of sensors. Unlike
typical edmc problems however, additional information in the form of a set of anchors with
known positions are available for reference. Distances between sensors, as well as between
sensors and anchors, are known only if they are within some (Euclidean) distance of one
another, known as the radio range, denoted by R.

An example of such a problem is described in Rangarajan, Raich, and Hero (2008), where
access points (i.e. anchors) use received signal strength from wireless users (emitters, i.e.
sensors) to attempt to locate the positions of access points with unknown locations. Figure 1
illustrates the problem.

To model this problem as a sensor network localization problem, the received signal strength
is first converted to a distance. For emitter i and access point j, let sij represent the received
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Figure 1: A map of the 200 known access point locations (in blue). Also shown are access
points sampled by a single user (in red) at a certain moment in time, along with the strength
of the received signal strength in black. Rangarajan et al. (2008)

signal strength at the access point. Then,

dij = d0 ∗ 10(s0−sij)/(10np)

where s0 is the received signal strength at the access point at a reference distance of d0, and σ20
is the standard deviation of received signal strength. np is known as the “path-loss exponent”,
and is environment dependent. It can be viewed as a noise term, as it is generally unknown.

With these individual distances, the distance matrix D has the following form

D =

Dkk Dke Dku

Dek Dee Deu

Duk Due Duu


where subscript k denotes the known access points, u the unknown access points, and e the
emitters. Dkk represents the distance matrix containing the distances between the known
access points, Dke the distance matrix between the known access points and the emitters,
etc.

Since each emitter will only be within range of a subset of the known and unknown access
points, both Dek and Duk will be a partial distance matrix (denoted with a superscript ?).
Also, since there are access points with unknown locations, the distance matrices Duu and
Duk are both completely unknown. The result is the following partial distance matrix D? to
be completed, with the end goal being to reconstruct the complete matrix D from D?.

D? =

Dkk D?
ke ?

D?
ek ? D?

eu

? D?
ue ?


As a practical application, Rangarajan et al. (2008) consider data collected at the University
of California, San Diego (McNett and Voelker (2005)). The data represents received signal
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strength data for personal data assistants (PDAs) given to 275 freshman students. Over the
course of the experiment, 300 unique access points were sensed, however only 200 had known
locations.

The goal of the analysis was to locate the approximately 100 access points with unknown
locations. Figure 2(a) demonstrates the accuracy of the algorithm by first finding the position
of three access points whose positions were hidden from the algorithm. Figure 2(b) shows the
200 known access points in blue, as well as the estimated positions of the 100 unknown access
points in red.

(a) (b)

Figure 2: (a): The proposed positions (in red) of three access points (of known location) whose
locations were hidden from the algorithm. Actual locations are show in blue. (b) The proposed
positions of the 100 unknown access points (in red), and the positions of the 200 known access
points (in blue). Rangarajan et al. (2008)

Figure 3 illustrates the general problem. Here, blue circles represent access points with
known positions, red triangles access points with unknown positions, and grey squares emitters
with unknown positions. Solid lines represent known distances, while dotted lines represent
unknown distances, forming a partial distance matrix. The goal of the analysis is to find the
positions of the emitters and access points with unknown locations.

In addition to geo-tracking problems such as this, sensor networks have a large range of
applications, such as military/security applications (Lawlor (2005)), environmental habitat
monitoring (Mainwaring, Culler, Polastre, Szewczyk, and Anderson (2002)), and wildlife mon-
itoring (Szewczyk, Osterweil, Polastre, Hamilton, Mainwaring, and Estrin (2004)), amongst
others. There are many proposed methods for solving these problems, ranging from relax-
ations of semi-definite programming algorithms to iterative multi-dimensional scaling (see for
example Krislock and Wolkowicz (2011), Ding et al. (2010), or Rangarajan et al. (2008)).

2.3. Molecular conformation

The molecule problem looks to reconstruct a three-dimensional molecule (most often a pro-
tein structure) using the incomplete interatomic distances measured via nuclear magnetic
resonance (nmr) spectroscopy. While some interatomic distances may be unknown, there is
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Figure 3: The general problem addressed by Rangarajan et al. (2008).

a vast amount of structure that exists in a molecule that can be exploited, as nature gives
insights into the angles and distances at which certain atoms must bond. Having a priori
knowledge of the atomic structure of a molecule will allow for the determination of bounds
on the possible distances that can theoretically exist between atoms. Other phenomena such
as natural repulsion/attraction forces, and known atomic structure enforce natural bounds
on the possible distances that can exist between pairs of atoms.

Figure 4: A stereographic image of three attempts to replicate the crystal structure of a BPTI
protein. The actual crystal structure is superimposed in darker black. This example shows a
protein reconstruction with the least known structure of all considered in Havel and Wüthrich
(1985).

Given all these restrictions, the problem is to then (as accurately as possible) propose a series
of plausible configurations for the molecule - as a set of bounds rarely can completely specify
a distance matrix, there are likely many valid solutions to a single conformation problem.
There is a large volume of research done in this area, including Havel and Wüthrich (1985),
Wüthrich (1990), Glunt, Hayden, and Raydan (1993), Hendrickson (1995), Trosset (1997),
and Moré and Wu (1999).
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One of the first attempts to solve this problem was presented in Havel and Wüthrich (1985).
Using nuclear magnetic resonance imaging, they extracted intramolecular, interproton dis-
tances from the molecular backbone of various protein structures. As they had the exact
measurements (in Ångströms, Å), the data were modified such that each known distance was
placed in an appropriate range (i.e. distances shorter than 2Å were instead treated as an
unknown distance in the range [2,2.5)Å). In total, 10 data sets were considered, each with
varying levels of restrictions on bonding angles and distances placed on them. Figures 4 and
5 illustrate the results from two of the experiments.

Figure 5: A stereographic image of three attempts to replicate the crystal structure of a BPTI
protein. The actual crystal structure is superimposed in darker black. This example shows a
protein reconstruction with the most known structure of all considered in Havel and Wüthrich
(1985).

3. Solving edmc problems with R

Currently, there is no way to solve Euclidean distance matrix completion problems using
R. To fill this void, we introduce edmcr, an R package containing many algorithms to per-
form Euclidean distance matrix completion, and its various applications, including molecular
reconstruction and sensor network localization.

3.1. edmc

To streamline the implementation of several functions which can be used to complete Eu-
clidean distance matrices, we introduce edmc, the main function through which all of the
completion algorithms can be accessed. There are currently five different methods imple-
mented in edmc:

1. Semidefinite Programming (Alfakih et al. (1999))

2. Non-convex Position Formulation (Fang and O’Leary (2012))

3. Dissimilarity Parameterization Formulation (Trosset (2000))
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4. Guided Random Search (Rahman and Oldford (2016))

5. Sensor Network Localization (Krislock and Wolkowicz (2010))

The R implementation of each is discussed in the remainder of this section, and the mathe-
matical details and formulation for each can be found in Section 5.

The edmc function takes the following input variables

D An n×n Euclidean distance matrix to be completed, with unknown entries set
to NA

method The completion algorithm to be used. One of “sdp”, “npf”, “dpf”, “snl”, “grs”
... Additional input variables specific to the method used

Of practical importance in the implementation of edmc is to note that only two inputs are
specified - a partial Euclidean distance matrix D, and the desired completion algorithm method.
All other input variables are specific to the algorithm specified in method, and are not specified
in the edmc input list. The user should specify the required input variables (outlined for each
method below) by naming them directly during the call to edmc.

The output of edmc is also specific to the method used. The one output common to all is the
completed distance matrix D. The specific output of each method will be discussed below.

method = “sdp”

The Semidefinite Programming algorithm of Alfakih et al. (1999), denoted sdp, and coded in
the subroutine sdp, requires the following input variables to be specified in edmc

D An n×n Euclidean distance matrix to be completed, with unknown entries set
to NA

A A weight matrix, with aij = 0 implying dij is unknown. Generally, if dij is
known, aij = 1 although any non-negative weight is allowed

toler convergence tolerance for the algorithm. Default is set to 1e− 8.

resulting in the following list of output variables

D The completed n× n Euclidean distance matrix
optval The minimum value of the target function achieved during minimization

The sdp algorithm is appropriate for smaller completion problems, as it is computationally
quite expensive (O(n2)). However, the convexity of the search space generally results in a
global solution.

method = “npf”

The non-convex position formulation algorithm of Fang and O’Leary (2012), denoted npf, and
coded in the subroutine npf, requires the following input variables to be specified in edmc

Many of these input variables have default values (illustrated in the examples provided in
Section 4) that are sufficient for most minimization problems. As such, these input values
need not be specified during the call to edmc - only D, A, and d are required. The advanced user
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D An n×n Euclidean distance matrix to be completed, with unknown entries
set to NA.

A A weight matrix, with aij = 0 implying dij is unknown. Generally, if dij is
known, aij = 1, although any non-negative weight is allowed

d The dimension of the resulting completion
dmax The maximum dimension to consider during dimension relaxation
decreaseDim During dimension reduction, the number of dimensions to decrease at each

step
stretch The stretching factor applied to the distance matrix (see Section 5). The

default is set to 1 (i.e. no stretching is applied).
dimMethod One of“Linear”or“NLP”corresponding to the desired method of dimension

reduction (see Section 5).
toler convergence tolerance for the algorithm. Default is set to 1e− 8.

may be interested in changing these defaults in the event that the algorithm fails to converge
on a global solution. Section 5 outlines the technical background required to understand how
these optional input variables can be used.

In the case of utilizing the npf subroutine, edmc produces the following list of outputs:

D The completed n× n Euclidean distance matrix
optval The minimum value of the target function achieved during minimization

The npf algorithm is appropriate for any completion problem, as it is substantially faster
than sdp. This increase in speed unfortunately comes at the cost of convexity, so care must
be taken to ensure that algorithm arrives on a global solution, and not a local solution.

method = “dpf”

The dissimilarity parameterization formulation algorithm of Trosset (2000), denoted dpf, and
coded in the subroutine dpf, requires the following input variables to be specified in edmc

D An n× n Euclidean distance matrix to be completed, with unknown entries
set to NA

d The dimension for the resulting completion
lower An n× n matrix containing the lower bounds for the unknown entries in D.

If NULL (default), lower is set to be a matrix of 0s
upper An n × n matrix containing the upper bounds of the unknown entries in D.

If NULL, upper[i,j] is set to be the shortest path between node i and node j.
retainMST A logical input indicating if the current minimum spanning tree structure in

D should be retained. If TRUE, an mst-preserving lower bound is calculated.

For dpf, both D and d must be specified by the user. The remaining inputs are optional and
have set defaults. Their use will be described via example in Section 4. The dpf subroutine
produces the following list of outputs

D An n× n Euclidean distance matrix with embedding dimension d
optval The minimum function value achieved during minimization
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The default values of both lower and upper are set to NULL, internally setting the lower
bounds for all unknown values to 0, and setting the upper bounds using the triangle inequality.
However, there may be situations where tighter bounds may be imposed. For example, in
the case of molecular conformation, physical properties, such as the angle of the formed bond
between elements, may force the unknown distance to lie within some boundary, dL ≤ dij ≤
dU . In this case, upper can be used to specify these tighter bounds.

The minimum spanning tree is known to contain important information about a point config-
uration, especially clustering information (Gower and Ross (1969)). The minimum spanning
tree of a partial distance matrix can be preserved by imposing an appropriate lower bound
on the unknown distances. This can be done simply using the retainMST variable in edmc;
setting it to TRUE will preserve the minimum spanning tree in the partial distance matrix by
calculating the appropriate lower bound in lower for each unknown distance.

method = “grs”

When the method variable is set to "grs", edmc executes the guided random search algorithm
of Rahman and Oldford (2016) by calling the subroutine grs. The grs algorithm is used to
solve Euclidean distance matrix completion problems where only the minimum spanning tree
is known.

When grs is the specified method, two input variables are required

D An n× n partial Euclidean distance matrix to be completed containing only the
distances in the minimum spanning tree

d The desired embedding dimension

Completion of the matrix D results in two output variables

P An n× d matrix containing the positions of the n nodes in d dimensions.
D An n× n Euclidean distance matrix with embedding dimension d

In Section 4, we will address the ability of this algorithm to create point configurations in a
lower embedding dimension than the original partial Euclidean distance matrix.

method = “snl”

The sensor network localization algorithm of Krislock and Wolkowicz (2010), denoted snl, and
coded in the subroutine snl, requires the following input variables to be specified in edmc

D The partial distance matrix specifying the known distances between nodes. If
anchors is specified (and is a p×d matrix), the p final columns and p final rows
of D specify the distances between the anchors specified in anchors.

d The dimension for the resulting completion
anchors A p × d matrix specifying the d dimensional locations of the p anchors. If the

anchorless problem (i.e. a general edmcp) is to be solved, anchors = NULL

The snl algorithm requires that both D and d be specified as input variables. Unlike the other
algorithms the main purpose of the snl algorithm is to solve the sensor network localization
problem, however, it can also solve the Euclidean distance matrix completion problem by
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specifying the anchors input as NULL. As such, it takes an additional argument anchors,
which specifies d-dimensional positions of the anchors. The main target is to then locate (in
d-dimensional space) as many of the sensors as possible, resulting in the following output

X the d-dimensional positions of the localized sensors. Note that it may be the
case that not all sensors could be localized, in which case X contains the positions
of only the localized sensors.

The m × d matrix X contains the positions of the localized sensors. It is not necessarily the
case that all sensors can be localized, in which case they are not included in X, and therefore
we have m ≤ n, where n is the total number of sensors.

3.2. sprosr

Determining the structure of a molecule requires a specialized algorithm that can handle
the additional angle constraints often found in molecular conformation problems. In edmcr,
the protein problem can be solved using the sprosr function, an R implementation of the
semidefinite programming-based protein structure determination algorithm of Alipanahi Ra-
mandi (2011).

sprosr has three required and four optional input variables

seq A table containing the amino acid sequence of the protein in
CYANA .seq format

aco A table containing the angle constraint information in CYANA
.aco format

upl A table containing the distance constraint information in CYANA
.upl format

hydrogen_omission Should side-chain hydrogen atoms be omitted? TRUE/FALSE.
Default is FALSE

in_min_res User overwrite of the minimum residue number.
in_max_res User overwrite of the maximum residue number.

Each of seq, aco, and upl require a table following the form set out by CYANA (Güntert
(2004)). For seq, the sequence file (.seq) is a table of two columns - column one is the
abbreviated name of the amino acid, and column two is the corresponding residue number.
Table 3.2 provides an example.

MET 1
GLN 2
ILE 3
PHE 4
VAL 5

Table 1: The first 5 rows of a sequence (seq) file.

The aco input table contains angular constraints on the phi and psi angles for the amino acid
residues, and follows the format of the .aco CYANA file. It contains five columns - the residue
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number of the amino acid corresponding to the seq input variable, the name of the amino
acid residue, the name of the angle being constrained (either PHI or PSI), the lower limit of
the angle, and the upper limit of the angle, in degrees. Table 3.2 provides an example.

2 GLN PHI -95.0 -85.0
3 ILE PHI -149.0 -139.0
4 PHE PHI -129.0 -119.0
6 LYS PHI -117.0 -107.0
7 THR PHI -110.0 -100.0

Table 2: The first 5 rows of an angle constraint (aco) file.

Finally, the upl input table contains the distance constraints (in Ångströms) between amino
acid residues. It contains seven columns - the residue number, amino acid name, and atom
name of the first (columns 1-3) and second (columns 4-6) residues, and the constrained dis-
tance between them. Table 3.2 provides an example.

1 MET HA 2 GLN H 2.93
1 MET HB2 2 GLN H 3.86
1 MET HB2 63 LYS HA 5.50
1 MET HB3 2 GLN H 3.86
1 MET HB3 63 LYS HA 5.50

Table 3: The first 5 rows of an distant constraint (upl) file.

sprosr provides two output variables upon completion

X The three dimensional point configuration of the completed protein molecule
report A list detailing the total violations in the protein molecule

The X output is straight forward, it contains the three dimensional positions of the amino
acid residues in the completed protein molecule. The report output is a list detailing the
total violations in the protein, including the number (and total size) of the violations in the
equality constraints ($eq_err), the number of violations in both the lower ($lo_err) and
upper bounds ($up_err), the number of chiral violations ($chiral), the number of angle
violations in both phi ($phi) and psi ($psi), and the number of dihedral ($dihed) and
hydrogen bonds ($hbond) that violate their upper bounds.

3.3. getConfig

Each of the completion algorithms above return a Euclidean distance matrix, where in many
applications a point configuration is ultimately desired. Given a Euclidean distance matrix
D, we seek the corresponding point configuration matrix X such that dij = ||xi − xj ||.
In Section 1, the squared Euclidean distance matrix D∗ and the Gram matrix were defined.
To obtain a Gram matrix G from a squared Euclidean distance matrix D∗, first note that d∗ij
can be written as:
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d∗ij = ||xi − xj ||2

= xTi xi + xTj xj − 2xTi xj

= gii + gjj − 2gij

Thus, given a Gram matrix G, the corresponding squared Euclidean distance matrix is

D∗ = K(G) = 1gT + g1T − 2G (2)

where 1 is the column matrix of ones, and g is the column vector containing the diagonal
elements of G, i.e. g = [g11, g22, ...., gnn]T . This function has been implemented in edmcr
as gram2edm, and takes a Gram matrix and returns the corresponding squared Euclidean
distance matrix.

Inverting this equation, we arrive at a function which takes a squared Euclidean distance
matrix D∗ and returns the corresponding Gram matrix G

G = T (D∗) = −1

2
PD∗P (3)

where P = I− 1
n11T is an orthogonal projection matrix. This function is available in edmcr

as the function edm2gram.

From the Gram matrix, a simple eigendecomposition can be used to obtain a point config-
uration matrix X. Recall that this point configuration is unique only up to an orthogonal
rotation. Note also that a p ≤ n dimensional point configuration Xp is obtained by keeping
only the p largest eigenvalues, and setting all others to 0.

This entire process has been implemented in edmcr in the function getConfig, which takes
the input variables

D An n× n Euclidean distance matrix
d The desired embedding dimension

and returns

X An n× d point configuration matrix

Accuracy The accuracy of the eigendecomposition, measured as
∑d

i=1 λi∑n
i=1 λi

4. Examples

In this section, we show some simple examples to demonstrate the syntax of each of the
methods described in Section 3.

4.1. A simple Euclidean distance matrix completion problem

Consider the following partial Euclidean distance matrix (from Trosset (2000))
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0 3 4 3 4 3
3 0 1 ? 5 ?
4 1 0 5 ? 5
3 ? 5 0 1 ?
4 5 ? 1 0 5
3 ? 5 ? 5 0


with the following known completion in three dimensional space:



0 3 4 3 4 3

3 0 1
√

18 5
√

18

4 1 0 5
√

32 5

3
√

18 5 0 1
√

18

4 5
√

32 1 0 5

3
√

18 5
√

18 5 0


For comparative purposes, note that

√
18 ≈ 4.243 and

√
32 ≈ 5.657.

To solve the problem using edmcr, first define the Euclidean distance matrix in R as follows:

R> #Define the partial distance matrix

R> D <- matrix(c(0,3,4,3,4,3,

3,0,1,NA,5,NA,

4,1,0,5,NA,5,

3,NA,5,0,1,NA,

4,5,NA,1,0,5,

3,NA,5,NA,5,0), byrow=TRUE, nrow=6)

For solving standard Euclidean distance matrix completion problems such as this, the sdp,
npf, and dpf algorithms should be considered. Beginning with the sdp algorithm

R> #Define the adjacency matrix A

R> A <- matrix(c(1,1,1,1,1,1,

1,1,1,0,1,0,

1,1,1,1,0,1,

1,0,1,1,1,0,

1,1,0,1,1,1,

1,0,1,0,1,1), byrow=TRUE, nrow=6)

R> edmc(D=D, method = "sdp", A=A, toler=1e-8)

$D

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.000000 3.000020 3.999993 3.000020 3.999993 3.000011

[2,] 3.000020 0.000000 1.000051 4.321144 5.000003 4.453067

[3,] 3.999993 1.000051 0.000000 5.000003 5.656642 5.000002
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[4,] 3.000020 4.321144 5.000003 0.000000 1.000051 4.453067

[5,] 3.999993 5.000003 5.656642 1.000051 0.000000 5.000002

[6,] 3.000011 4.453067 5.000002 4.453067 5.000002 0.000000

$optval

[1] 5.406998e-10

Note that while a solution to the problem was found (since the optimal function value is
near zero), this matrix differs slightly from the known completion. The main reason for this
difference is the rank of the completed distance matrix. The corresponding Gram matrix
has five non-zero eigenvalues, meaning the completed squared distance matrix has rank five,
where the original solution had an embedding dimension of three. The inability to specify an
embedding dimension is one of the major drawbacks of the sdp algorithm, a problem that is
remedied by the other algorithms we consider, at the cost of convexity.

Next, consider the solution given by the npf algorithm

R> set.seed(48)

R> #Define the adjacency matrix A

R> A <- matrix(c(1,1,1,1,1,1,

1,1,1,0,1,0,

1,1,1,1,0,1,

1,0,1,1,1,0,

1,1,0,1,1,1,

1,0,1,0,1,1), byrow=TRUE, nrow=6)

R> #Default settings for some inputs (not required as input to edmc())

R> dmax = n - 1

R> decreaseDim = 1

R> stretch = 1

R> method = "Linear"

R> toler = 1e-8

R> edmc(D=D, method="npf", A=A, d=3)

$D

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 3.000000 4.000000 3.000000 4.000000 3.000000

[2,] 3 0.000000 1.000001 4.242615 5.000000 4.241516

[3,] 4 1.000001 0.000000 5.000000 5.656888 5.000000

[4,] 3 4.242615 5.000000 0.000000 1.000001 4.241561

[5,] 4 5.000000 5.656888 1.000001 0.000000 5.000000

[6,] 3 4.241516 5.000000 4.241561 5.000000 0.000000

$optval

[1] 3.894878e-11
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The resulting solution, unlike in the sdp subroutine, converges very nearly to the known
solution. This is due to the ability to specify the embedding dimension. This, however, comes
with its own set of difficulties. Suppose the embedding dimension of the example matrix is
unknown, and is instead specified as d = 2, resulting in the following completion

R> set.seed(48)

R> edmc(D=D, method="npf", A=A, d=2)

$D

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.000000 2.957321 3.711975 2.957320 3.711976 2.104172

[2,] 2.957321 0.000000 1.423176 3.660281 5.036896 4.790540

[3,] 3.711975 1.423176 0.000000 5.036896 6.377897 5.118735

[4,] 2.957320 3.660281 5.036896 0.000000 1.423176 4.790539

[5,] 3.711976 5.036896 6.377897 1.423176 0.000000 5.118735

[6,] 2.104172 4.790540 5.118735 4.790539 5.118735 0.000000

$optval

[1] 72.33753

Clearly, the algorithm is forced to settle on a local solution, reaching an optimal value of
72.34 - recall a solution exists only if a global minimum of zero is achieved. If it is believed
a solution actually exists in two dimensions, it may be worthwhile to attempt stretching, or
possibly increasing the number of dimensions considered during relaxation. However, a more
likely solution is to change the completion dimension.

Finally, consider the solution provided using the dpf algorithm

R> set.seed(98)

R> edmc(D=D, method="dpf", d=3)

$D

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 3.000000 4.000000 3.000000 4.000000 3.000000

[2,] 3 0.000000 1.000000 4.240979 5.000000 4.245210

[3,] 4 1.000000 0.000000 5.000000 5.659058 5.000000

[4,] 3 4.240979 5.000000 0.000000 1.000000 4.248187

[5,] 4 5.000000 5.659058 1.000000 0.000000 5.000000

[6,] 3 4.245210 5.000000 4.248187 5.000000 0.000000

$optval

[1] 1.878904e-09

Again, with the ability to specify a an embedding dimension, the dpf algorithm is able to
converge very nearly to the global minimum. However, similar to the npf algorithm, consider
what happens if the embedding dimension is unknown, and attempting to complete the matrix
with an embedding dimension of d = 2:
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R> set.seed(98)

R> edmc(D=D, method="dpf", d=2)

$D

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0 3.000000 4 3.000000 4 3.000000

[2,] 3 0.000000 1 3.967597 5 4.349922

[3,] 4 1.000000 0 5.000000 6 5.000000

[4,] 3 3.967597 5 0.000000 1 4.349923

[5,] 4 5.000000 6 1.000000 0 5.000000

[6,] 3 4.349922 5 4.349923 5 0.000000

$optval

[1] 8.456663

With an achieved minimum value of 8.46, the algorithm has again failed to converge near the
required global minimum of 0, indicating that the proposed solution is not a distance matrix.

4.2. Analyzing the Anderson/Fisher Iris Data

Consider completing the famous Iris data set, originally collected in Anderson (1935) and
analyzed in Fisher (1936). To investigate the relative performance of the Euclidean distance
matrix completion methods considered so far, take D to be constructed from the distances
between flowers in the Iris data. Each completion method produces D̂ for the case of knowing
only the distances in the minimum spanning tree.

Completion accuracy

To measure the accuracy of each completion, the relative difference in dissimilarities

RDD =
||D− D̂||2F
||D||2F

(4)

is calculated.

The top plot of Figure 6 shows the effect of percentage missing has on the computational time.
For each percentage, every method but SDP was applied to the same five different incomplete
missing at random matrices; the SDP method took so long that it was applied to only the
first of the five matrices. Not surprisingly computational time increases with the percentage
missing. Comparing methods, we see that the DPF method of Trosset (2000) is consistently
faster than the NPF method of Fang and O’Leary (2012), which in turn is consistently faster
than the SDP method of Alfakih et al. (1999). Computational times are given on a logarithmic
scale so these differences are substantial. Some variation in the times taken can also be seen,
especially for the larger percentages.

The minimal spanning tree case has the greatest percentage missing possible and appears
at the far right of each plot. All times to completion here appear to have dropped, with
NPF and DPF switching positions to make it fastest of the three methods. Since this is the
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Figure 6: Effect of increasing the percentage of missing distances on each method. Methods
are coded by colour and symbol shape. For each percentage, several different matrices with
different patterns of randomly selected missing data were used. In the top plot, each point
symbol represents the result of one such matrix with one method; alpha blending of colour is
used so that places where the values are essentially the same will appear more saturated due
to over-plotting and the blending of the colours. In the bottom plot, only the average values
are shown.

minimal spanning tree case, the two methods of Section ?? can be added. Not surprisingly,
DPFLB which differs from DPF only in having precomputed nonzero lower bounds for every
missing distance takes essentially the same time to complete as does DPF. More interestingly,
the constructive method C is orders of magnitude faster than all other methods.

The lower plot of Figure 6 shows the average accuracy with which the various methods re-
construct D. On this logarithmic scale lower values indicate greater accuracy so the accuracy
of every method decreases as the percentage missing increases – largely because the numer-
ator in (4) has more non-zero entries while the denominator remains unchanged. For every
percentage up to and including 85% missing, each method was applied to 50 different missing
at random matrices, the exception being SDP which, because of the time required, was only
applied to a single matrix each time. Beyond 85% only 10 different random matrices were
used for each of NPF and DPF. Again the methods can be ordered: NPF is consistently most
accurate and SDP consistently least accurate across all percentages missing.
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Distances as a function of percentage missing

Here we compare the reconstructed distances D̂ = [d̂ij ] with the actual distances D = [dij ].

Figure 7 plots the pairs (dij , d̂ij) for all i < j for a few of the missing percentages. Perfect
reconstruction would be all points on the y = x line; the box in each plot is the range of
the original distances and is identical in size across all plots; scales are identical for the same
percentage of missing distances.

For each case, NPF outperforms the other two – all distances appear within the box, appear
on either side of the y = x line and is nearer to this line in all cases. As the percentage
missing increases, the reconstruction of all three methods degrades. Both DPF and SDP tend
to produce ever larger distances in their reconstructions as the percentage increases. DPF does
produce some distances that are smaller than the original too. In contrast, SDP has a tendency
to consistently produce distances that are too large for every percentage, and produces much
larger distances than does DPF. Overall NPF provides the best reconstructed distances and SDP

the worst.

Turning to minimal spanning tree completions, Figure 8 shows the pairs (dij , d̂ij) for all i < j
for a single reconstruction for all five methods. The shapes of the first four (SDP, NPF, DPF,
and DPFLB) are surprisingly similar, each showing three different branches. All four have
almost all distances d̂ij > dij and many larger than maxij dij , with SDP producing the largest
distances, followed by NPF, then DPFLB. The last of these has larger distances than those of
DPF likely because of the lower bounds which ensure that DPFLB is MST-preserving.

In marked contrast, the constructive method C produces a completion whose distances d̂ij are
all within the range of the true distances dij and are much more nearly concentrated around
the y = x line. If anything, C seems more inclined to produce smaller distances than are
necessary. This might be corrected by having the vectors generated in Algorithm 2 not be
generated on a sphere uniformly but to favour directions that would increase distances to
other points already in the tree.

Point reconstruction

Next, consider reconstructing the Iris point configuration using only the distances known in
the minimum spanning tree. To standardize the comparisons between algorithms, the Iris
data is first transformed to its principal directions from a singular value decomposition of
X = UΛVT as XV. This projects each point xi onto a new coordinate system given by
the new variates V 1, V 2, V 3, and V 4. This is done by using the getConfig function on the
completed distance matrices.

First, create the partial distance matrix containing only the minimum spanning tree of the
Anderson Iris dataset, as well as the related adjacency matrix (for those algorithms who
require it)

R> set.seed(99)

R> #Read in the Data

R> Iris <- iris[,c(1:4)]

R> Iris <- Iris[-143,] #Iris row 143 and 102 are identical

R> #Compute a Distance Matrix
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85% removed

90% removed

92% removed

94% removed
SDP NPF DPF

Figure 7: Plots of the pairs of (dij , d̂ij) for all i < j for a single reconstruction of the Iris
distance matrix; red values are the original minimal spanning tree distances. Perfect recon-
struction would be all points on the y = x line; the box in each plot is the range of the original
distances and is identical in size across all plots; scales are identical for the same percentage
of missing distances.
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SDP NPF DPF DPFLB C

Figure 8: Plots of (dij , d̂ij) for all i < j for a single reconstruction when the matrix to be
completed contained only minimal spanning tree distances (shown in red); the y = x line
indicates perfect matching; the box in each plot shows the extent of the original distances.

R> IrisDistance <- as.matrix(dist(Iris))

R> #Compute the minimum spanning tree

R> IrisMST <- mst(IrisDistance)

R> #Create a new Distance Matrix Containing only the mst distances

R> n <- nrow(Iris)

R> D <- matrix(rep(NA,n^2), nrow=n)

R> diag(D) <- 0

R> #Fill in the entries in D with the Iris MST distances

R> for(i in 1:n){

R> D[IrisMST[i,1],IrisMST[i,2]] <- IrisMST[i,3]

R> D[IrisMST[i,2],IrisMST[i,1]] <- IrisMST[i,3]

R> }

R> #Create Adjacency Matrix

R> A <- matrix(rep(0,n^2),nrow=n)

R> A[which(!is.na(D))] <- 1

Now, with a partial distance matrix in hand, use each of the algorithms to complete the
matrix. Where possible, specify the embedding dimension to be four:

R> #Complete the Distance Matrix with each of the three completion methods

R> #NB: Long Run Time

R> IrisSDP <- edmc(D, method="sdp", A=A)

R> IrisNPF <- edmc(D, method="npf", A=A, d=4)

R> IrisDPF <- edmc(D, method="dpf", d=4)

R> IrisDPFLB <- edmc(D, method="dpf", d=4, retainMST = TRUE)

R> IrisC <- edmc(D, method="grs", d=4)

Finally, use the completed distance matrices to obtain a four dimensional point configuration
for each completion method using getConfig
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R> IrisSDPConfig <- getConfig(IrisSDP$D, 4)

R> IrisNPFConfig <- getConfig(IrisNPF$D, 4)

R> IrisDPFConfig <- getConfig(IrisDPF$D, 4)

R> IrisDPFLBConfig <- getConfig(IrisDPFLB$D, 4)

R> IrisCConfig <- getConfig(IrisC$D, 4)

Figure 9 shows the results of this experiment.

Of the methods considered, the point configuration produced by the guided random search
algorithm most closely matches the original Iris data set. The other algorithms produce a
star-shaped configuration which provide a good separation between species, but do a poor job
reconstructing the original point configuration. Of these, it seems as though the configuration
that was produced using the DPF algorithm with a specified mst-preserving lower bound
provides a slightly noisier shape that most closely resembles the original configuration. This
lends credibility to the concept of retaining the minimum spanning tree.

4.3. Distance-based dimension reduction

The statue dataset is a well known data set in dimension reduction due to the belief that
it represents a three dimensional manifold, gaining popularity due to its use in the original
Isomap manuscript (Tenenbaum et al. (2000)). It consists of 698 images in 64x64 greyscale
of a bust at various angles and lighting conditions. Viewing each pixel as a point in a given
dimension, we can view this data set as 698 point in 4096 dimensional space.

As discussed previously, some of the Euclidean distance matrix completion algorithms can also
be used for dimension reduction. In particular, the algorithms that are capable of preserving
the minimum spanning tree are most compelling, due to the clustering information contained
in the mst. To explore this idea, consider using the grs algorithm to reduce the dimension
of the statue data set from 4096 dimensions to three using only the minimum spanning tree.
For comparison, we will also use the isomap algorithm of Tenenbaum et al. (2000) using
a 6-nearest neighbour graph to be consistent with the original work. For this purpose the
Isomap function in the RDRToolbox Bartenhagen (2014) is used. The statue data is available
in edmcr. Figure 10, created using Loon (Waddell (2016)) illustrates the results.

R> library(RDRToolbox)

R> data(statue)

R> #Create partial distance matrix

R> out <- spantree(statue.dist)

R> statue.mst <- matrix(NA,nrow(statue),nrow(statue))

R> diag(statue.mst) <- 0

R> for(i in 2:nrow(statue)){

R> statue.mst[i,out$kid[i-1]] <- out$dist[i-1]

R> statue.mst[out$kid[i-1],i] <- out$dist[i-1]

R> }
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(a) Original (b) SDP

(c) NPF (d) DPF

(e) DPFLB (f) C

Figure 9: Iris data point configurations reconstructed in the four dimensions given by each
configuration’s principal coordinates. The three species of flower are distinguished both by
colour and by shape of the point symbols.
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R> #Dimension Reduction by isomap

R> out.isomap <- Isomap(statue.dist,3,6)

R> #Dimension Reduction by grs

R> out.grs <- grs(statue.mst,3)

Figure 10: The result of dimension reduction to three dimensions by running isomap & grs

on the statue manifold data set in 4096 dimension.

There is no reason to expect these images to be “matching” in any way - and they don’t -
especially since Isomap is making use of far more information than grs. However, there are
certainly similarities in the way that the faces were grouped. We can see in both, that darker
faces tend to be grouped together - in isomap, these are placed on the far right of the image,
while in grs, they are placed in the center. There is also an obvious fade from these dark
faces, to lighter faces - in isomap, this occurs from the right of the image to the left of the
image along the top, while in grs this occurs from the center of the image in both the right
and left directions. There is also clear grouping in the orientation of the bust in both images.

Also, note that while isomap is capable of producing only a single configuration, grs is capable
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of producing many such configurations, allowing for the complete exploration of the mst-
preserving solution space.

4.4. A simple sensor network localization problem

Consider a network containing four anchors, with known positions, and six sensors, where
distances between sensors (and sensors and anchors) are known only they are within a radio
range of 0.25 to each other. Since the anchors have known position, the distances between
anchors are also known.

R>#Anchor Positions

R> anchors

[,1] [,2]

[1,] 0.5131 0.9326

[2,] 0.3183 0.3742

[3,] 0.5392 0.7524

[4,] 0.2213 0.7631

R>#Radio Range

R> R

[1] 0.25

R>#Distance Matrix

R> D

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.00 NA 0.20 NA 0.06 NA 0.02 0.23 0.00 0.09

[2,] NA 0.00 0.05 NA NA 0.05 NA 0.21 0.22 NA

[3,] 0.20 0.05 0.00 NA NA 0.12 NA NA 0.16 NA

[4,] NA NA NA 0.00 NA NA NA 0.23 NA NA

[5,] 0.06 NA NA NA 0.00 NA 0.11 0.09 0.06 0.02

[6,] NA 0.05 0.12 NA NA 0.00 NA NA NA NA

[7,] 0.02 NA NA NA 0.11 NA 0.00 0.35 0.03 0.11

[8,] 0.23 0.21 NA 0.23 0.09 NA 0.35 0.00 0.19 0.16

[9,] 0.00 0.22 0.16 NA 0.06 NA 0.03 0.19 0.00 0.10

[10,] 0.09 NA NA NA 0.02 NA 0.11 0.16 0.10 0.00

Note the form of the distance matrix D. Rows/columns 7-10 correspond to the distances be-
tween the anchors and the sensors (in rows/columns 1-6), and the other anchors (rows/columns
7-10). Since the anchors have known positions, the distances between anchors is always known
- there are no unknown entries in the lower right 4 × 4 corner. Distances between anchors
and sensors, on the other hand, are known only if the sensors are within the radio range of R.
This problem can be solved using edmc as follows

R> edmc(D, method="snl", d=2, anchors=anchors)

[,1] [,2]

[1,] 0.4359152 0.7483225

[2,] 0.3870077 0.6819505
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Of the six sensors to be placed, the algorithm was only able to localize the positions of two
sensors. For a relatively sparse matrix, this is to be expected. This problem can also be run as
an “anchorless” problem, in which case it is treated similarly to the edmc problems considered
previously. Unlike the other algorithms however, snl returns the positions of only those
sensors that were localized, resulting in the potential of only a partially-completed distance
matrix. Running the example above as an anchorless problem results in the following

R> edmc(D, method="snl", d=2,anchors=NULL)

[,1] [,2]

[1,] 0.016934663 0.048956965

[2,] -0.004757603 -0.030583106

[3,] -0.007601688 0.156167720

[4,] 0.007282167 -0.193730966

[5,] 0.041458581 0.027923602

[6,] -0.053316120 -0.008734216

In this case, of the ten sensors, the algorithm was able to localize six, and their positions are
given in the returned matrix X.

4.5. Reconstructing a protein molecule

To demonstrate the syntax and illustrate the output variables of sprosr, consider recon-
structing a demo protein molecule from CYANA (Güntert (2004). The data has been made
available in edmcr. As the protein molecule is relatively large, only the first five positions are
shown as output.

R> data(sprosr_upl)

R> data(sprosr_aco)

R> data(sprosr_seq)

R> out <- sprosr(sprosr_seq, sprosr_aco, sprosr_upl)

out$X

The individual elements of the report output variable can be accessed by appending the $

operator to the element desired. The first five rows (where appropriate) of each element are
displayed below.

out$report$eq_err

out$report$lo_error
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out$report$up_error

out$report$chiral

out$report$hbond

out$report$dihed

5. Methodology

As before, D∗ represents a squared Euclidean distance matrix, now with some entries possibly
unknown. Let A be an adjacency matrix such that aij = 1 if dij is known, and 0 otherwise.
In this way, we can make use of the Hadamard (element-wise) product D∗ ◦ A whose only
non-zero values will be the known entries in D∗. This allows the completion problem to be
stated as follows:

∆0 = arg min
∆∈D−n

||A ◦ (D∗ −∆)||2F (5)

where the norm taken is the Frobenius Norm, defined as ‖|M||F =
√
trace(MTM). With a

solution ∆0 representing a completed (square) Euclidean distance matrix, we need only find
a Gram matrix G = XXT , which can be done using the linear operator K defined previously.
With a Gram matrix, a simple eigendecomposition allows us to obtain a point configuration.

5.1. Semidefinite programming algorithm

One of the classic algorithms in the Euclidean distance matrix completion literature is that
of Alfakih et al. (1999), who propose a semidefinite programming approach to solving the
problem. To do so, they modify equation 5 to work with a positive semi-definite matrix S
instead of a squared distance matrix D∗.

Alfakih et al. (1999) show that a squared Euclidean distance matrix D∗ can be transformed
to a positive semidefinite matrix S (and vice-versa), using the following operators:

Tv(D∗) = VTT (D∗)V = −1

2
VTD∗V

Kv(S) = K(VSVT )

where P = VVT , where V ∈ Rn×(n−1) whose columns form an orthonormal basis for the
subspace {x ∈ Rn : xT e = 0}, satisfying the following two properties:

VT1 = 0

VTV = In−1
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These operators have been implemented in edmcr as the edm2psd and psd2edm functions. In
each, a default value of V has been provided which satisfies the conditions specified above.
However, the user is free to provide their own V as input as well.

Equation 5 can be written in terms of a positive semi-definite matrix S as follows:

S0 = arg min
S∈S+n−1

||A ◦ (D∗ −Kv(S))||2F (6)

The solution for this problem is a squared distance matrix, ∆0 = Kv(S0). This formulation is
the basis of the implementation of Alfakih et al. (1999), who show that the search space S+n−1
can be expanded to the less restrictive set P+

n−1, the set of real (n−1)× (n−1) positive semi-
definite matrices, allowing the problem to be solved using well known methods in semi-definite
programming. Thus, the problem can be formulated as

Minimize f(S) = ||A ◦ (D∗ −KV (S))||2F
subject to: a(S) = c

S � 0.

where the constraint a(S) = c allows for the constraint that the known entries in S be
preserved to be enforced during completion. This formulation results in a convex search space
(Alfakih et al. (1999)), thus the minimum achieved is by definition the global minimum. The
convexity of this algorithm does come at a price, as the run time for the algorithm is on the
order of O(n2), which makes it very slow for even moderately sized problems. The embedding
dimension can also not be specified, resulting in completions with large embedding dimension.

5.2. Non-convex position formulation

Fang and O’Leary (2012) propose an algorithm which works with the point configuration
X instead of the squared distance matrix D∗, allowing for the embedding dimension of the
completion to be specified. In doing so, the run time of the algorithm is on the order O(np),
where p is the dimensionality of the point configuration, which comes at the cost of convexity
of the algorithm. In considering the point matrix X, Fang and O’Leary (2012) solve a modified
completion problem

Minimize
G∈G+n

||A ◦ (D∗ −K(G))||2F (7)

subject to: rank(G) = p.

Recall that a Gram matrix G can be transformed to the space of squared distance matrices
using the K operator. Also note that the rank of the Gram matrix has been fixed in the
formulation, allowing for the desired completion dimension to be specified (which was an
issue with the SDP formulation). Fixing the embedding dimension p allows the problem to be
written in terms of a point configuration X

Minimize
X∈Rn×p

fA,D(X) = ||A ◦ (D∗ −K(XXT))||2F . (8)
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Due to the lack of convexity of the search space, Fang and O’Leary (2012) introduce a number
of techniques in an attempt to give the algorithm a higher chance of reaching the global
minimum.

First, a random start is employed for each run. Through empirical evidence, Fang and O’Leary
(2012) randomly start their algorithm by creating a pre-Euclidean distance matrix F̂ = [f̂ij ],
where

f̂ij =
fij
sij

where fij is the shortest path between node i and j using the known distances, and sij ∼
TN(1.5, .3), TN being a truncated normal distribution with domain [1,kij ], where kij is the
number of segments in the shortest path between nodes i and j. Note that a pre-distance
matrix is a matrix F that is both symmetric and hollow.

Also through empirical observation, Fang and O’Leary (2012) implement stretching, which is
a numerical scaling of the point configuration X generated from the spectral decomposition
of F̂. For a vector s, stretching would result in the matrix sX. While it is noted that there
is no theoretical basis for stretching in this context, Fang and O’Leary (2012) did observe an
increased chance of landing on the global minimum in some instances where it was employed.

Finally, and perhaps most importantly, is the implementation of dimension relaxation. By
artificially inflating the dimension of the point configuration, the NPF algorithm may be able to
reach the global minimum with a higher probability. For instance, in the higher dimensional
space, there may be a way to pass between local minima that would have been converged
on in lower dimensional space on our way to the global minimum. Fang and O’Leary (2012)
address three issues in implementing their dimension relaxation scheme. We present those
issues here, and illustrate how they are handled in edmcr.

1. What is the largest dimension that should be considered? This is handled by the input
variable dmax in edmcr. The default value of the highest dimension is set to be n − 1,
where n is the number of nodes in X. For instances where this is very large, a smaller
dimension can be chosen.

2. How fast should the dimension be reduced? This is handled using the input variable
decreaseDim in edmcr. Generally, a slower rate of reduction is preferable, however this
results in a longer computation time. The largest jump allowable is to go directly from
the higher dimensional space to the lower dimensional space, but Fang and O’Leary
(2012) show that this results in inaccurate completions. The default is set to be 1.

3. How should the dimension be reduced? Fang and O’Leary (2012) provide two solutions:

• Principal Component Analysis

• Nonlinear Dimension Reduction

This is handled using the input variable dimMethod, which takes one of “Linear” or “NLP”,
with the default set to “Linear”.

While the first method is well known - simple multidimensional scaling - the second dimen-
sion reduction technique requires some discussion. To decrease from dimension d′ to d, the
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nonlinear dimension reduction is done through optimization, where the following program is
solved:

Minimize
W

||W2||2F

subject to: fA,D(W ) < 0

where W = [W1, W2] ∈ Rn×d′ is a configuration in d′-dimensional space and W1 has dimension
d, where d < d′.

5.3. Dissimilarity parameterization formulation

The problem in Trosset (2000)is formulated by focusing on the set:

Cn(A ◦∆?) = {∆ ∈ Cn : A ◦∆ = A ◦∆?} (9)

which contains all of the completions of the partial dissimilarity matrix A◦∆?, and where Cn
is the set of n×n dissimilarity matrices. Next, let D−n (p) denote the n×n Euclidean distance
matrices from p dimensional point configurations.

Then, a solution to the p dimensional embedding problem exists only if Cn(A◦D∗)∩D−n (p) 6=
∅. This intersection is shown to be non-empty in Trosset (2000) if and only if the following
minimization has a global minimum of zero

Minimize
G,∆

||G− T (∆))||2F (10)

subject to: G ∈ S+n and rank(G) ≤ p
∆ ∈ Cn(A ◦D∗)

Note that while this formulation is similar to the others we have considered, there is a large
distinction in that that the masking matrix A and the known distances A ◦D∗ now appear
as part of the constraints given by the set of allowed dissimilarity matrices Cn(A ◦D∗). This
will allow us to impose restrictions on the unknown values.

Letting
Cn(∆L,∆U ) = {∆ ∈ Cn : δLij ≤ δij ≤ δUij}

where ∆L = [δLij ] and ∆U = [δUij ] are both in Cn, we see that formulation (10) is a special case
of

Minimize
G,∆

||G− T (∆))||2F (11)

subject to: G ∈ S+n and rank(G) ≤ p
∆ ∈ Cn(∆L,∆U )

where ∆L and ∆U are fixed matrices chosen such that A ◦∆L = A ◦∆U . That is, when
dij is known, the upper and lower bounds are set equal to dij . Whenever aij = 0, then the
default value of the bounds are δLij = 0 and δUij = +∞. An advantage of this formulation
is that tighter bounds can be imposed on the unknown dij , restricting the space of possible
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solutions. For example using the structure of the graph given by A, upper bounds δUij can be
determined for all unknown δij by simply invoking the triangle inequality.

Trosset (2000) use the L-BFG-S (Zhu, Byrd, Lu, and Nocedal (1994)) optimization algorithm
to efficiently solve problem (11), which we will denote by DPF to emphasize its dissimilarity
parameterized formulation. Again, this formulation is non-convex. Similar to Fang and
O’Leary (2012), Trosset (2000) introduces a random start algorithm to increase the probability
of convergence to the global minimum.

Retaining the minimum spanning tree

As mentioned previously, it may be desirable to retain the minimum spanning tree during the
completion of a Euclidean distance matrix. Since the dissimilarity parameterization formula-
tion allows for a non-zero lower bound to be implemented for all known d∗ij , if a lower bound
D∗L can be found such that for any unknown d∗ij , having d∗ij > d∗Lij

results in the preservation
of the underlying minimum spanning tree. Such an algorithm is presented in Algorithm 1.
This algorithm is implemented in edmcr in the mstLB function, which takes a (partial) Eu-
clidean distance matrix D and returns a matrix containing the mst-preserving lower bounds
for each dij , regardless of whether dij is known.

5.4. Guided random search

In the guided random search algorithm, since only distances of the minimum spanning tree
are known, the search space of possible completions is quite large. To exploit this, we simply
construct a completion by locating points xi ∈ Rp (p being the embedding dimension) one at
a time, while checking that the (partial) minimal spanning tree is preserved as each point is
added.

More formally, we define Xk = [x1, . . . ,xk]
T to be a k × p matrix whose rows are point

locations x1, . . . ,xk ∈ Rp. The locations are chosen so that the minimal spanning tree from
the Euclidean distances of these k locations in Rp is identical to that of k connected nodes
from the minimal spanning tree A ◦ D. The matrices X1,X2, . . . ,Xn are constricted by
growing (and preserving) the minimal spanning tree one node at a time. The distance matrix
from Xn provides an mst-preserving completion.

The construction begins by choosing the node of maximal degree from the minimal spanning
tree of A ◦D and locating it at x1 = 0. The second node to locate will be that of maximal
degree amongst those connected to the first. If the dissimilarity between these two nodes
is, say, δ12, then the location of x2 is chosen at random from a uniform distribution on the
surface of a sphere Sp−1 in Rp of radius

√
δ12 centered at x1 (assuming squared distances

for the completion matrix). The two points x1 and x2 are trivially a subtree of the minimal
spanning tree. The remaining nodes with connections to x1 are then added in similar fashion.

As each location is proposed, its (squared) distance to all other placed points is calculated
and the resulting distance matrix checked to see whether the minimal spanning tree (so far)
is preserved. If it is, the point is accepted; if not, points are generated until one is acceptable.
When new nodes are added, they are chosen amongst those without locations that share an
edge in the minimal spanning tree with nodes already located. At each step, available nodes
of highest degrees are added before nodes of low degree in A ◦D; since these are harder to
place, they appear earlier.
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Algorithm 1 MST lower bounds algorithm
Structures

tree: T = (V,E) is a spanning tree with vertex set V = {v} and edge set E = {e};
edges: e will be a set of two indices {i, j} = nodes(e) and have a weight wt(e) = δij ≥ 0;
∆L = [δLij ] is the matrix of dissimilarity lower bounds to be determined;

procedure splitTree(T, splitEdge) . T is a spanning tree
restEdges← edges(T )− {splitEdge} . Remove splitEdge from the edge set of T
(v1, v2)← nodes(splitEdge)
V1 ← {v1}; E1 ← {e ∈ restEdges : v1 ∈ nodes(e)} . E1 could be empty
V2 ← {v2}; E2 ← {e ∈ restEdges : v2 ∈ nodes(e)} . E2 could be empty
while restEdges 6= ∅ do

e← restEdges[1]
restEdges← restEdges− {e}
if nodes(e) ∩ nodes(E1) then

E1 ← E1 ∪ {e}
else

E2 ← E2 ∪ {e}
end if

end while
V1 ← V1 ∪ nodes(E1); V2 ← V2 ∪ nodes(E2)
return {T1 := (V1, E1), T2 := (V2, E2)} . Return the two trees

end procedure

procedure MSTLowerBounds(T,∆L) . Recursively determines the lower bounds
if edges(T ) 6= ∅ then . Ensure there are edges left in T

maxEdge← arg maxe∈edges(T ) wt(e) . Split on the biggest edge
Trees← splitTree(T,maxEdge)
for v1 ∈ nodes(Trees[T1]) do

for v2 ∈ nodes(Trees[T2]) do
∆L[v1, v2]←∆L[v2, v1]← wt(maxEdge) . Set the lower bound

end for
end for
for Tree ∈ Trees do

∆L ← MSTLowerBounds(Tree,∆L) . Recursively get lower bounds
end for

end if
return ∆L . Return the matrix of lower bounds

end procedure
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Algorithm 2 describes the method in detail, which we denote by C. More technical details of
this algorithm can be found in Rahman and Oldford (2016).

6. Concluding remarks

Through a series of motivating examples, we introduced the problem of Euclidean distance
matrix completion, and its use in a number of fields. The R package edmcr, and the main
function edmc containing several well known edmc algorithms, were the introduced to solve
these problems in R.

First, the generic Euclidean distance matrix completion problem was considered in which a
given distance matrix with some unknown distances is given. The target solution is to then
complete the matrix, while retaining a proper Euclidean distance matrix. For this purpose,
three algorithms were introduced, the sdp algorithm of Alfakih et al. (1999), the npf algorithm
of Fang and O’Leary (2012), and the dpf algorithm of Trosset (2000). Each of these algorithms
were shown to have their own strengths and weaknesses through simple examples.

Next, the sensor network localization problem was considered, where the goal was to to
localize the positions of sensors with unknown positions. There is two major differences
between this problem and general Euclidean distance matrix completion problem - there is a
number of anchor points with known positions, and distances are only known between sensors
and between sensors and anchors if they are within some radio range R in Euclidean distance.
To solve this problem, the sensor network localization algorithm of Krislock and Wolkowicz
(2010) was implemented in the snl function.

Next, the potential role of Euclidean distance matrix completion in dimension reduction was
considered, drawing comparisons to the popular Isomap algorithm. Instead of filling in un-
known distances with shortest paths, these distances were instead treated as being unknown,
resulting in a partial Euclidean distance matrix. Euclidean distance matrix completion al-
gorithms were used to complete the partial distance matrix. It was shown that the guided
random search algorithm of Rahman and Oldford (2016) and the mst-preserving alteration of
Trosset (2000) performed adequately in this regard using both the Iris and statue data sets.

Finally, the problem of molecular conformation was considered. To solve this problem,
the function sprosr was introduced, an R implementation of algorithm developed by Ali-
panahi Ramandi (2011). Through the use of a simple demo molecule provided by CYANA,
the specialized input syntax and the information provided as output were demonstrated.

edmcr represents the first attempt at Euclidean distance matrix completion, sensor network
localization, and molecular conformation in R, significantly broadening the range of problems
that can be solved.
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