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Abstract

High breakdown, without other measures of estimator resistance, is an inadequate goal for

regression estimators. This is shown by constructing an easily computed regression estimator with

50% breakdown. The estimator is essentially least squares.
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1. Introduction

Suppose we have the regression model

yi = xT
i β + ei i = 1, ..., n

where β ∈ <p is the parameter vector and (xT
i , yi) ∈ <

p+1 is the ith observation vector. Let

Dn = {(xT
i , yi) : i = 1, ..., n} denote the sample of n observations and b(Dn) be any estimator

of β based on Dn. Further let Dn,m ⊂ <
p+1 be any set of cardinality n such that Dn,m ∩ Dn has

cardinality m and let Dn,m be the set containing all such sets for £xed m and n.

The £nite sample replacement breakdown (Donoho and Huber (1983)) is de£ned to be ε ∗ =

m/n where m is the smallest integer such that

sup
Dn,m∈Dn,m

‖ b(Dn,m)− b(Dn) ‖= ∞ (1.1)

and ‖ · ‖ denotes the Euclidean norm.

Recently [Siegel (1982), Donoho and Huber (1983), Rousseeuw (1982)] there has been in-

creasing interest in the construction of regression estimators which have high breakdown. It is

generally felt that the resulting estimates will provide good starting values for more ef£cient ro-

bust estimation procedures [e.g., Andrews (1974)]. Alternatively, such estimates may be used for

exploratory data analytic purposes.

The purpose of the present note is to demonstrate the inadequacy of the de£nition (1.1) of

breakdown for regression estimators. We do this by proposing a new estimator which has break-

down of 1/2, but which is clearly unsuitable for data analysis. In addition, this estimator is equiv-

ariant to non-singular transformations of the explanatory variables, highly ef£cient at the standard

Gaussian model and trivially computed. Other high breakdown estimators, repeated medians (RM)

[Siegel (1979, 1982)], and least median square (LMS) [Rousseeuw (1982)], do not possess all of

those attributes.

The estimator exploits a peculiarity inherent in the de£nition of breakdown (1.1), namely, that

the supremum must be in£nite. Since the parameters being estimated are slope and/or intercept

parameters, most estimators will give in£nite estimates only if some of the |y i|’s → ∞. The pro-

posed estimator prevents this occurrence.
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2. The Estimator

Let y′ be the median of the yi’s and MAD be their median absolute deviation, median (|yi−y
′|).

An estimator b∗(Dn) may be constructed as a weighted least squares estimate with weightswi given

by

wi =











1 if |yi − y′| ≤ c ·MAD

0 otherwise,
(2.1)

where c is some constant satisfying 1 ≤ c < ∞. The weights ignore the x-data entirely. Even so,

we may prove that it has breakdown 1/2 (as n→∞).

We make the following assumptions on the elements of Dn:

A1. yi ∈ <, |yi| <∞ i = 1, ..., n

A2. xi ∈ <
p, ‖ xi ‖<∞ i = 1, ..., n

A3. x1, ...,xn are in general position, that is no (p+1) points lie on a (p− 1) dimensional linear

manifold.

And we introduce the following notation: let

(i) ‖ A ‖ denote the spectral norm of a matrix A,

(ii) Jm ⊂ {1, ..., n} of cardinality m and Jm its complement in this set be de£ned implicitly by

Dn,m = {zi : zT
i = (uT

i , vi) ∀ i ∈ Jm and zT
i = (xT

i , yi)

∀ i ∈ Jm} ⊂ <
p+1,

(iii) W (D) = diag(w1(D), ..., wn(D)) where wi(D)’s are weights as in (2.1) based on a data set

D,

(iv) X(D) and y(D) be the usual X matrix and y-vector constructed from a data set D,

(v) λj(A) the jth largest eigenvalue of A,

(vi) I(D) = {i : wi(D) = 1} ⊂ {1, ..., n},

(vii) [a] denote the largest integer less than or equal to a.
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We may now prove the following result.

Theorem: Given A1-A3, the weighted least squares estimator b∗(Dn) with weights given by (2.1)

has £nite sample replacement breakdown of

ε∗ ≥
n− [n/2]− p

n
. (2.2)

Proof: By A1-A3, ‖ b∗(Dn) ‖< ∞ and we need only examine ‖ b∗(Dn,m) ‖ in (1.1). By a

property of the spectral norm [Wilkinson (1965)]

‖ b∗(Dn,m) ‖ ≤ ‖ (XT (Dn,m)W (Dn,m)X(Dn,m))−1X(Dn,m)TW (Dn,m) ‖

· ‖ W (Dn,m)y(Dn,m) ‖ (2.3)

and

‖ (XT (Dn,m)W (Dn,m)X(Dn,m))−1X(Dn,m)TW (Dn,m) ‖2

= λ−1
p





∑

i∈Jm

wi(Dn,m)uiu
T
i +

∑

i∈Jm

wi(Dn,m)xix
T
i





≤ λ−1
p





∑

i∈Jm

wi(Dn,m)xix
T
i





= λ−1
p







∑

i∈Jm∩I(Dn,m)

xix
T
i





 . (2.4)

The inequality may be found for example in Lawson and Hanson (1974). By A3, (2.4) is £nite

provided the cardinality of Jm ∩ I(Dn,m) is greater than p. The cardinality of Jm is n −m. Let

that of I(Dn,m) be k. The cardinality of their intersection is guaranteed to be greater than p if

(n −m) + k − n > p or m < k − p. Since k ≥ n − [n/2] the last quantity is certainly £nite if

m < n− [n/2]− p. Also,

‖ W (Dn,m)y(Dn,m) ‖2=
∑

i∈Jm

wi(Dn,m)v2
i +

∑

i∈Jm

wi(Dn,m)y2
i

which is always £nite provided m <
[

n
2

]

. Therefore

‖ b∗(Dn,m) ‖ <∞ ∀Dn,m
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for all m < n− [n/2]− p and the theorem is proved.

Since ε∗ is bounded from above by 1
2
, as n→∞, ε∗ → 1

2
. Note also that the theorem could be

proven with the inclusion of an intercept term.

3. Discussion

In addition to having a high breakdown value, the estimator is equivariant to non-singular

transformations and easily computed. For c suf£ciently large in (2.1), the estimator is essentially

least squares and therefore highly ef£cient at the usual Gaussian Model. Further, c can be chosen

large enough so that, for practical purposes, the estimator is equivariant to location transformations

of the regression parameters.

However, it is clearly not a resistant regression estimator. While sup ‖ b∗(Dn) − b(Dn,m) ‖

is bounded for m < n − [n/2] − p, it may be quite large for m = 1 (£nite-sample-in¤uence or

sensitivity function). Figure 1 demonstrates that this can also be the case for the LMS estimator.

Here a single point essentially determines the line. Rousseeuw (1982) gives an example with

p = 2, where RM is substantially affected by 40% contamination but LMS is not. Clearly these

estimators differ on other resistance properties.

Breakdown describes a worst-possible-case scenario. Because of this it is often more easily

assessed than an estimator’s sensitivity curve (e.g., LMS). However, without assessment of other

resistance properties, it may be misleading. High breakdown implies bounded sensitivity but the

bounds may be high enough to be ineffectual.

At least two alternative de£nitions of breakdown are possible. The £rst would replace ∞ in

(1.1) with some constant k. Breakdown would now be a function ε∗(k) and more dif£cult to assess.

Moreover, breakdown would no longer be invariant to a linear transformation of β.

The second possibility is closer in spirit to the original £nite sample version of Andrews et al.

(1971). It consists of £xing the sets Dn and Dn,m to be investigated. In such cases ∞ is usually

replaced by k <∞.

Donoho and Rousseeuw (1983; personal communication) have suggested that the exact £t prop-

erty (EFP) of a regression estimator be investigated. Basically the set Dn is chosen to be such that

all (xT
i , yi) lie exactly on a plane. Dn,m is as before and b(Dn) is said to have the exact £t property

ε = m/n if m is the largest integer such that
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sup
Dn,m∈Dn,m

‖ b(Dn)−b(Dn,m) ‖= 0. Siegel (1979) and Rousseeuw (1983) proved that the RM and

LMS respectively have EFP of ε = 1/2.

Other possibilities for Dn and Dn,m should be investigated. It may be the case that estimators

which are reasonable on other grounds “break down” only for pairs (Dn, Dn,m) which rarely occur

in practice. It would be helpful to have breakdown type assessments for commonly occurring

(Dn, Dn,m) and exploratory techniques for recognizing those infrequent pairs (Dn, Dn,m) which

are dangerous to the estimator being used.

. .
. .

. ..
. .

y

x

LMS

Figure 1. The LMS estimate for a particular Dn,m.
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