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Abstract

In this paper a broad definition of symbolic computing is adopted
and explored in the context of its application to statistical science. It
is argued that the present statistical research in symbolic computing is
excessively narrow and could (and should) be broadened considerably.
These points are made by reviewing some of the history of symbolic
computing, both generally and in the statistical literature, and by con-
sidering a variety of examples of symbolic computation in statistics.

1 Introduction

“Already at the time when the first stored program electronic comput-
ers were proposed, it was recognized that computation with symbolic
expressions was in principle as feasible as computation with numbers.
Nevertheless, symbolic computation did not develop as fast as numeri-
cal since it was not at all obvious what symbolic computations were of
interest, what machine features would help, or how such computation
should be programmed. In the last few years, the subject of symbolic
computation has been developed at an increasing pace.”

∗In September 1997, I gave an invited presentation entitled “The spectrum of symbolic
computation in statistics” at a workshop on Symbolic Computation in Statistics held
at the Centre de Recherche de Matheématiques of the Université de Montreal, organized
by Jamie Stafford. This is an unfinished initial draft of a paper based on that talk. It
should be regarded as fragmentary working notes for such a paper – Sections 2.1 through
3.1 are most polished and provide a summary of the history which may yet be of value to
readers though, now, 25 years after it was written. (RWO Fall 2022)
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Written nearly forty years ago (CACM 1960, page 163), these words ring
familiar today. In statistical science, symbolic computation seems poised at
a threshold of exciting possibility yet, perhaps disturbingly, the questions
raised above remain difficult to answer.

In this paper I explore some of the possibilities and consider these and
like questions as they apply to statistical science. Some history of symbolic
computation in general provides the backdrop for this discussion. The early
stage of that history is similar to the present stage of symbolic computation
in statistics and there is much to learn from it.

For example, as was done then, we must be careful to distinguish non-
numerical mathematical computation from the more general notion of sym-
bolic computation – the former being a subset of the latter. To confound
the two at this time would be to focus symbolic computation prematurely
on the mathematics of statistics.

Throughout the paper the question is raised as to whether we have the
beginning of a significant new area of research in statistical computing. If
so, then we might ask what are the important questions and directions of
such research? Again the historical record to date suggests some important
patterns.

The paper has three principal parts: Section 2 on symbolic computation
in general, Section 3 on non-numerical mathematical computation in sta-
tistical research, and Section 3 on other areas of symbolic computation in
statistics.

2 Symbolic computation.

Here, some history of symbolic computation is visited with an eye towards
drawing lessons that can be applied to symbolic computation in statis-
tics. Particular, though by no means exclusive, attention is given to non-
numerical mathematical computation. This area has received the most at-
tention in the recent statistical literature as researchers (especially mathe-
matical statisticians) have made increasing use of computer algebra systems
in their work. Some, notably Andrews and Stafford (199?), have begun to
pursue non-numerical mathematical computation in statistics as a research
area in its own right and it is to this kind of research that this first part of
the paper is primarily directed.

for it is here that much of the recent statistical literature has focussed
its attention. It is the use of computer algebra systems by mathematical
researchers in statistics that has given rise to much of the present interest
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in symbolic computation found in the mainstream statistical literature.
It is largely the recent use of computer algebra systems by mathemati-

cal researchers in statistics that has generated much of the present interest
in symbolic computation in the statistical literature and so this historical
review deals mainly, though not exclusively, with work related to such sys-
tems.

– the experience in computer algebra would seem particularly relevant
to non-numerical mathematical computation in statistics

By 1986, computer algebra had matured to the point that a review of
its principal themes and accomplishments and also its open problems and
future directions was in order. These too are summarized in the first part to
raise the issue of possible correspondences with research on non-numerical
mathematical computation in statistics. The first part closes with some
reminders on the progress on symbolic computation in areas other than
non-numerical mathematical computation.

2.1 The broad view.

Continuing the opening quote, the breadth of symbolic computation is ap-
parent:

“The interest has stemmed from three sources: Automatic program-

ming systems which both require symbolic computation in the compil-

ers and which are necessary if symbolic computations are to be pro-

grammed without excessive labour, artificial intelligence or heuristic

programming which requires symbolic computation, and finally from

attempts to make computers carry out non-numerical mathematical

computation such as those involved in obtaining analytic solutions to

differential equations and in proving theorems by machine.”

The first area requires programs which are able to read other programs
and to write new ones – one can think of a compiler as such a program.
Excessive labour is avoided if the programmer can write at a comfortable
level of abstraction, expressing a problem’s solution in more natural terms,
and have another program construct the corresponding set of instructions for
the computation. The second area involves trying to write programs which
mimic reasoning processes carried out by humans and as such has a great
need for the computational manipulation of symbols. Early but now familiar
applications were programs which played games like chess. The third area is
the one most closely matched to traditional research topics in statistics and
hence the one now seeing the greatest attention in the statistical literature.
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The boundaries between these three areas were essentially non-existent.
Mathematical reasoning after all is just a kind of human reasoning, and
programming language abstractions are important to compilers and human
programmers alike, whatever the application. Developments in one area
continually fed developments in another.

2.1.1 Early programming languages.

Consider, for example, programming language design. A landmark devel-
opment was the capability to process lists of indefinite length and possibly
unrestricted elements (e.g. including one list as an element of another). List
processing operations are mainly concerned with the construction and main-
tenance of arbitrarly nested list structure including putting information on,
deleting it from, or just finding it somewhere on, an arbitrary component
of the list structure. Such capabilities were important to other applications
like compiler writing, manipulation of formal algebraic expressions, linguis-
tic data processing, and most work in artificial intelligence. According to
Sammet (1969 page 383) all these applications could be “lumped together
under the general title of symbolic manipulation.”

The first language designed for list processing was IPL, developed by
Newell, Simon, and Shaw (see Newell and Simon, 1956) which, as IPL II, was
first implemented in 1957 and continually improved until 1959 (IPL-V). The
motivation came from the problem of proving theorems in the propositional
calculus but the designers intended it to be used to address any ill-structured
and complex problem that required human intelligence. So, in addition
to proving theorems, IPL was soon used for other applications like chess-
playing programs and, most notably, GPS the so-called “General Problem
Solver” of Newell and Simon (1961) to which the rule-based expert systems
so prevalent in the 1980s can trace their roots.

The first comprehensive programming language for symbol manipulation
began development in 1959 under the direction of J. McCarthy at the MIT
Artificial Intelligence Group. Called LISP (an acronym for list processing),
the language was

“. . . designed to facilitate experiments . . . whereby a machine could be

instructed to handle declarative as well as imperative sentences and

could exhibit ‘common sense’ in carrying out its instructions . . . [T]he

LISP system . . . came to be based on a scheme for representing the

partial recursive functions of a class of symbolic expressions.”

J. McCarthy (1960), p. 184.
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Writing in 1969, J.E. Sammet described LISP as

“. . . unusual, in the sense that it clearly deviates from every other type
of programming language that has ever been developed. . . . However,
there has been a considerable practical usage of LISP by a certain group
of devotees, who have done interesting work using it for symbolic in-
tegration and other forms of algebraic manipulation, theorem proving,
solving geometry analogy problems, and contract bridge bidding, etc.
. . .

. . . The great advantage of LISP is its ability to express in a meaning-

ful way solutions to problems which people cannot handle any other

way and to express them in a form which is natural to that class of

problems.”

J.E. Sammet (1969), pp. 406-407, and 410.

A distinguishing feature of LISP is that the internal representation of its
programs is the same as that of its data (viz. as lists). This made LISP
unique amongst high-level languages in that it was possible to write a pro-
gram which could: create another program and execute it, or operate on
another program, or even operate on itself.

Originally designed for “common sense” reasoning LISP quickly became
an important and elegant language for research on non-numerical mathemat-
ical computation. In 1961, the first system for symbolic integration called
SAINT was written in LISP by Slagle (1961, 1963). Slagle’s approach in
SAINT was to use general-problem solving methods similar to those of GPS.
Among the techniques of integration available to it, a promising method
was found, tried, and if the technique failed SAINT would backtrack and
try another one. SAINT introduced “semantic” pattern matching whereby
appropriate procedures were invoked when a match occurred. SAINT was
regarded as a triumph for artificial intelligence.

Perhaps because of the strong influence of the lambda calculus of Church
(1941) in its design, LISP was also highly regarded as a language ideally
suited to the development of theoretical computer science vis-a-vis a general
theory of computability (Sammet, 1969, p. 416).

This clear focus on symbol processing allowed LISP to become an impor-
tant language for research in computer algebra, artificial intelligence, and
programming languages. Indeed, the boundaries between the three areas are
easily blurred by users of LISP (e.g. Abelson and Sussman, 1985, Norvig,
1992).

Another important programming language concept is that of string pro-
cessing, where strings are sequences of characters and have indefinite ex-
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tent. Many operations will be similar to list processing but now the focus
is squarely on searching for patterns within a string and transforming these
into different patterns. The first string processing language was COMIT
(Yngve 1957) whose fundamental executable unit was a rule which would
transform one string into another by specifying the target and replacement
patterns for the current string. The patterns could be quite complex as
strings were organized in COMIT to have as constituents either individ-
ual characters or whole words. Programs were sequences of such “rewrite”
rules, the concept being introduced for the first time by COMIT. Although
designed for professional linguists in their research, COMIT was also used
in such applications as programs for symbolic differentiation, theorem prov-
ing, and bridge bidding. Though criticized for having poor list handling
capabilities, COMIT’s string manipulation features became the model for
such capabilities in other languages (e.g. SNOBOL, Formula ALGOL, the
CONVERT pattern matching extension to early LISP).

Ultimately, the application of statistical science requires numerical com-
putation and no programming language has served longer or has figured
more prominently in scientific computing than has FORTRAN. Interest-
ingly, the first sentence of the 1954 document describing the initial language
specification reads

“The IBM Mathematical Formula Translating System or briefly, FOR-

TRAN, will comprise a large set of programs to enable the IBM 704

to accept a concise formulation of a problem in terms of mathematical

notation and to produce automatically a high-speed 704 program for

the solution of the problem.”

November 10, 1954, as quoted by J.E. Sammet (1969), page 143.

Although numerical evaluation is the goal, there is clear recognition that
the problem and its solution be specifiable in terms natural to the problem
area (here mathematics) and that the symbolic expression be manipulated
automatically (i.e. compiled) to produce the necessary machine instructions
for evaluation. The anonymous authors of this report felt compelled to
justify this approach arguing, for example, that coding and debugging time
will be considerably reduced and that the investigation of mathematical
models will be more feasible.

Significantly missing from FORTRAN’s design were string and list pro-
cessing facilities. Early attempts were made to provide these through sub-
routine calls and include FLPL (Gelernter et al, 1960), and DYSTAL (Sakoda
1965).
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Another significant development from this period is that of languages
specially developed for discrete-event simulation. Two of today’s best known
systems are GPSS (Gordon 1961) and SIMSCRIPT (Dimsdale and Markowitz
1964). Such systems introduced interesting language features as well.

In GPSS, block diagrams representing the system to be simulated form
the basis for the subsequent program, each line roughly referring to a block
in the flow chart. Basic data elements reflected the nature of the problem:
transactions (representing units of traffic), equipment acted on by transac-
tions (including facilities, storages, and logic switches), and blocks (describ-
ing the logic of the system). The approach focuses on actions, with little
user attention given to particular data structures.

In contrast, the SIMSCRIPT model was based on describing the system
to be simulated in terms of entities, attributes of these entities, and sets of
entities. Programs describe the system in terms of these structures and the
actions to be taken on them.

A novel approach was taken by SIMULA (Dahl and Nygaard 1966). SIM-
ULA extended ALGOL adding significant elements of list-processing and,
more importantly, the concept of a collection of programs called processes
which (conceptually at least) could operate in parallel. A process would
both carry data and execute actions – an encapsulation which, together
with its inheritance capability, marks SIMULA as the first object-oriented
programming language.

2.1.2 Earliest computer algebra systems

About the same time that FORTRAN was being designed, the first pro-
grams on non-numerical mathematical computation were presented. Inde-
pendently, Nolan (1953) and Kahrimanian (1954) developed programs which
could perform analytic differentiation. At the time there was no widespread
recognition of non-numerical mathematical computation as being of inher-
ent interest – note, for example, that the work of Kahrimanian (1954) was
presented at a symposium on “automatic programming”.

By 1959, interest in this broad view of symbolic computing had devel-
oped sufficiently that the Association for Computing Machinery (the ACM)
held a symposium on the topic, and devoted a special issue of the Com-
munications of the ACM to the symposium papers. A great many authors
presented papers describing, for the most part, programs which solved par-
ticular problems (typically mathematical ones) symbolically. Some of the
excitement of the symposium (as well as some eerily familiar hyperbole) can
be seen in a section heading like “A Program That Does 9 Chapters of Prin-
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cipia in 9 Minutes” (over 350 theorems on an IBM 704) from Wang (1960,
page 224).

Solving particular mathematical problems via symbolic computation soon
gave way to the development of more general systems that were designed to
be helpful in solving any of a wide variety of mathematical problems. To
be truly helpful to the user, these programs needed to be able to perform a
variety of operations that are not unlike those which a mathematical worker
might perform in solving a problem. Indeed, the closer these operations
were to those of the mathematician, the more useful they became. If one
could add to this an interface which allowed the user to concentrate more on
solving the problem than on proper use of the system, then a truly powerful
tool for mathematical use would result.

The first reasonably general system was ALGY (Bernick, Callendar &
Sanford, 1961). ALGY employed a notation like FORTRAN’s but had no
arithmetic defined, no looping control, and no control transfers. Its op-
erators included: the (re)naming of an algebraic expression, the removal
of parentheses from an expression which performed the necessary algebraic
multiplication and grouping of identical terms, substitution of one or more
expressions in another, factoring of polynomials of one variable, and expan-
sion of products of sine and cosine functions into sums of sine and cosines of
multiple angles. ALGY was “the first system to provide multiple capabilities
on a general class of expressions in one system” (Sammet, 1969, page 474).

The next systems pushed the integration of non-numerical mathematical
computation with an existing numerical mathematical language permitting
both types of computation in a single system. The obvious base language
was FORTRAN and the pioneer in this area was FORMAC, begun in 1962
at IBM in Boston by Sammet and Tobey (1962, 1964).

The FORmula MAnipulation Compiler, or FORMAC, was a preprocess-
ing extension of FORTRAN IV and designed to look as much like it as pos-
sible. FORMAC was intended to handle only those mathematical problems
which “require large amounts of tedious algebraic manipulation by hand”
(Sammet, 1969, p. 475) and did not provide, for example, general list- or
string-handling capabilities. FORMAC added a number of types and oper-
ators that were not available in FORTRAN including symbols which could
be assigned mathematical expressions as their values, rational and mixed
mode arithmetic, and a few symbolic combinatorial functions. Many func-
tions provided direct user control on symbolic expressions. These included
simplification methods (i.e. expansion of expressions, forcing common de-
nominators, and separating expressions into terms, factors, exponents, etc.),
substitution methods (i.e. replacing one partial expression by another within
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a larger expression; if many such substitutions are carried out at once, the
user can specify whether these are to be done in parallel, or sequentially),
and expression analysis methods (i.e. probing an expression for the coef-
ficient of a given power, the highest and lower powers, or the expression’s
numerator or denominator and searching for sub-expressions), and partial
differentiation (to arbitrary order). Moreover, any symbolic expression could
be evaluated at numerical values of its variables. By 1967, a PL/1 version
(PL/1-FORMAC) existed which additionally was capable of some symbolic
integration and some support for simplification and display.

According to one of its authors, Sammet (1969, p. 490), FORMAC’s
most significant contribution to technology was its successful adding of non-
numerical computation facilities “as a language to an existing language used
for numerical scientific problems.” FORMAC was a practical system that
“could be easily learned and used to solve specific analytic problems arising
in the course of engineering and mathematical work.” It helped “steer people
away from numerical analysis and back to analytic solution of problems.”

Another extension of FORTRAN which saw some use in statistical re-
search was ALTRAN, an early version of which was developed by 1964 at
Bell Laboratories at Murray Hill. ALTRAN contributed little new to sym-
bolic technology as it was written to take advantage of an existing collection
of FORTRAN subroutines for handling polynomial functions called ALPAK
(see CACM 1966 and Sammet, 1969). ALTRAN added new data types
for polynomials, rationals, and rational functions of polyomials and state-
ments involving these were preprocessed into FORTRAN calls to ALPAK.
ALTRAN saw little use outside Bell Laboratories.

By 1966 (see e.g. CACM 1966) there were many systems for non-
numerical mathematical computation many of which were based on a num-
ber of general purpose list-processing languages developed by this time (e.g.
Formula ALGOL, LISP, L6, SLIP, and REFCO). LISP languages stood out
in this regard, providing the basis for such systems as CONVERT, FLAP,
and MATHLAB.

2.1.3 Early interface considerations

Scientific programming languages were begun so that computation might
be expressed relatively easily in a language as much like mathematics as
possible. As hardware technology developed some research focussed on de-
veloping “input/output capabilities”, or “interfaces” in today’s language,
that would further ease the scientific use of the computer.

Early developments included “on-line” systems for numerical mathemat-
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ical computation: from small useful languages like BASIC (Beginner’s All
purpose Symbolic Instruction Code), CPS (Conversational Programming
System) and JOSS, to an interactive version of FORTRAN called QUIK-
TRAN. Some systems like MAP (Mathematical Analysis Program) were
designed to be used by persons having little or no knowledge of comput-
ers. Consequently, they could be overly anthropomorphic using English ex-
pressions, like MAP’s “I CAN FIT FUNCTIONS OF THE FORM . . . ”, to
interact with the user. (It is interesting to note that in Sammet’s (1969) dis-
cussion of these languages most example programs deal with statistical cal-
culations such as means, standard deviations, and least-squares estimates.)

MAP is of particular interest for, in addition to the usual mathematical
fuctionality, it provided commands to integrate, differentiate, and convolve
mathematical expressions, albeit numerically. By 1967, planned improve-
ments for MAP included adding symbolic differentiation and substitution
functions as well as graphical output.

The first complete “on-line” system for non-numerical mathematical
computation was MATHLAB (Engelman, 1964). Actions that could be
taken on mathematical expressions included substitute, factor, expand, inte-
grate, differentiate, and solve. Unfortunately, the typed i/o and English-like
output (e.g. “THANKS FOR THE EXPRESSION”) rendered MATHLAB
ineffective. MATHLAB also provided the first program to symbolically in-
tegrate rational functions (see Engelman 1971). The program made use of
pattern-directed heuristic transformations to reduce the integration problem
to one for which an algorithm existed. Engelman, in Hayes-Roth et al (1983,
p. 39), describes MATHLAB as an expert system.

One way to create a more natural mathematical interface is to increase
the usable character set to include mathematical symbols. Sammet (1969)
describes some of the early numerical mathematical languages which did just
this. An example is AMTRAN (Automatic Mathematical TRANslation)
which, in addition to a standard keyboard, had a special keyboard and dis-
play scope which allowed Greek letters and mathematical symbols like

∑
,

∞,
∫

, ∂, 4, and ∇ to be part of its character set. One of AMTRAN’s basic
goals was “To use the natural language of mathematics as a programming
language without any arbitrary restrictions whatsoever” (Reinfelds, et al
1967 p. 469 as quoted by Sammet 1969, p. 258). Contrast this approach
to that of APL (Iverson, 1962) which extended the character set to include
a novel collection of operators permitting programming in a terse mathe-
matical style suited to array manipulation. APL enjoyed great success in
statistics (e.g. Anscombe 1982) until largely supplanted by interactive sta-
tistical systems.
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Begun in 1961, the Culler system (also called Culler-Fried) provided
scientists and engineers with a system that allowed display and easy manip-
ulation of real and complex valued functions (see Culler and Fried, 1965).
Immediate graphical feedback and “push-button” programming were the
system’s key features. Convenient manipulation was achieved by a software
organization based on the central role of functions in classical analysis and
by special hardware including an electronic display scope and, for input,
two specially designed keyboards. Operands were entered using an alpha-
numeric keyboard and operators via a separate keyboard of push-buttons,
one per operator. In an early hardware version of operator overloading (or
generic functions), each keyboard had several levels of operation: I Real
functions or vectors, II Matrices, III Display operations, IV Complex Func-
tions or vectors, and V & VI Systems Management and Data Transfer.
Pushing the plus button could add vectors if on level I and matrices if
on level II; the meaning of each button depended on the level. Note that
arguments could be “functions” and although represented numerically (as
x and y vectors), the combination of graphical display and of buttons for
differentiation and integration (albeit numerically) would contribute to the
illusion of working directly with the analytic objects. Whole programs could
be written within the system, assigned by the user to a button, and subse-
quently invoked by pushing that button. The Culler system was extended as
LOLITA by Blackwell (1967) to include some list processing and symbol ma-
nipulation facilities. LOLITA could be used to produce such non-numerical
mathematics programs as differentiation rules.

Another numerical mathematical system that could immediately display
its results was DIALOG (Cameron et al, 1967; see also Sammet 1969) which
relied on an electronic stylus to build programs from characters displayed
on the screen. Reading one character at a time, DIALOG would only make
available to the user for selection those characters which could legally appear
next in the program statement. Functions could be plotted on the display
and the location of the stylus on the screen sensed to provide numerical
input from the display.

The first computer algebra system to make use of such specialized equip-
ment was the MAGIC PAPER system (Clapp and Kain, 1963; Clapp et al,
1966). It used a keyboard which could switch between Latin and Greek
letters, a push-button panel of system commands, a display screen for out-
put of equations, a light pen to select command arguments from the screen,
and two foot switches that allowed the user to view tables of transformation
that could be applied to the selected expression! MAGIC PAPER introduced
scrolling to interface design; the user would work within a single “scroll” –
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entering equations, editing them, performing actions on them, etc. – and
could move forward or backward one equation at a time by “advancing” or
“rewinding” the scroll. Scrolls could also be saved for further work later.
No automatic simplification was employed. Instead the user could apply
mathematical operators to expressions, make substitutions, combine terms,
combine fractions, simplify products and fractions, move expressions to the
other side of an equal sign, and apply a selected simplifying transform from
a table (e.g. changing (a + b)2 to a2 + 2ab + b2). The user could add new
transformations to this table and, as in the Culler system, could define new
procedures to be assigned to the push-buttons. Expressions could also be
evaluated numerically.

A near contemporary, the Symbolic Mathematical Laboratory of Martin
(1967) used standard hardware components (i.e. keyboard, light-pen, dis-
play scope, calcomp plotter) to build an interactive system that displayed
and printed expressions in essentially standard mathematical form (e.g. us-

ing
∑∞

i=1,
d2

dt2
X(t), etc.). Expressions were manipulated either by using the

light pen to select commands from the display scope, or by typing in com-
mand expressions directly from the keyboard in a syntax similar to FOR-
TRAN (although the system was implemented entirely in LISP). In either
case, expressions could be selected from the display to be arguments to any
command. The system was capable of symbolic differentiation, definite in-
tegration, finding limits, and solving equations (as far as possible). The user
had much control over rearranging expressions, selecting subexpressions, and
simplification. There also appears to have been a command for automatic
simplification.

By 1967, then, the seeds of future interfaces had been sown.

2.1.4 Patterns

The common objective here is the development of computational tools which
enhance a scientist’s ability to solve relevant problems of a mathematical
nature. The ideal pursued is well described by the “magic paper” metaphor.
The scientist expresses him or herself in a natural way as if scratching out
ideas on magic paper. This paper is such that the scientist may probe,
simplify, or transform, any scratching on it and the result would be magically
expressed in a way natural to the scientist for this problem. All the while,
the technology takes care of tedious details and calculations which would
otherwise distract the user from gaining insight into the scientific problem.

Human-computer interfaces are to be designed to encourage discourse
at a level natural to the scientist. This means using notation, displays,
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and interactive i/o so as to effect the illusion of dealing directly with the
mathematical concepts. Whether the underlying implementation is strictly
numerical (e.g. Culler) or non-numerical (e.g. Symbolic Mathematical Labo-
ratory) is unimportant to the user, provided the interface is convenient and
the results mathematically sound.

While standard mathematics provides the concepts and operations to
form the basis of these systems, implementation forces their explicit repre-
sentation and this leads to new problems and sometimes to new solutions of
old problems. Expressions and equations become concrete data structures
which can be probed, re-expressed, simplified, expanded, and transformed.
These operations and others (e.g. automatic symbolic integration) also re-
quire separate explicit representation. Implementation stimulates new com-
putational and mathematical research.

The activity these systems are meant to support is an open-ended one,
often tentative and exploratory. The environment must therefore be much
the same. Organizing the software explicitly around the relevant mathemat-
ical concepts seems to pay off. User manipulation of mathematical concepts
are then more easily matched by programmatic manipulation of software
constructs. The user should be able to make such modifications, preferably
on the fly, and to extend the system as appropriate, minimally by defining
new procedures.

These requirements place certain demands on the programming lan-
guage. Manipulation of symbols, strings, and list structures figure impor-
tantly, and, especially in scientific applications, numerical computation and
graphics. Most important is having the means to build new data and pro-
cedural abstractions as required. This helps in the design of the system,
its maintenance, and its extension. A language capable of writing programs
which can themselves write programs (new procedures and data structures)
is valuable as it encourages the abstraction and automation of process.

2.2 Computer Algebra

By the late 1960s, non-numerical mathematical computation was becoming
a separate field of research. By 1986, it had sufficiently matured that a
review of its major accomplishments and research milestones seemed in order
and was published in the discipline’s new Journal of Symbolic Computation
(Caviness, 1986). As the name of the journal suggests, this research area
has been taken to be synonymous with symbolic computation by those in
it as well as by most statisticians (and mathematicians). It seems to be
worthwhile, then, to briefly consider these achievements.
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In reviewing the period 1966-1986, Caviness (1986) identifies the follow-
ing to be among the most important achievements in computer algebra:

1. Practically fast algorithms for computation of polynomial GCDs and
factorization. These are algorithms for multivariable polynomials hav-
ing integer coefficients. Caviness (1986) is careful to separate the prac-
tical from the theoretical. Algorithms described here have some poor
theoretical properties – such as worse case computing time that is ex-
ponential in the degrees of the polynomial! Nevertheless, they seem to
perform well enough for those cases encountered in practice. So well
that “without these advances, computer algebra as we know it today
simply would not exist” (Caviness, 1986, p. 219). Achieving the “best
asymptotic computing-time bound” may not be necessary.

2. Theoretical results in GCD computation and polynomial factorization.
Here Caviness describes results on the number of divisions required by
Euclid’s algorithm when applied to rationals and Gaussian integers.
Factoring multivariable polynomials (integer coefficients) or finding
the roots in polynomial time were important theoretical problems. The
solutions of these problems, and some of their practical drawbacks or
restrictions, are described.

3. Algorithmic polynomial ideal theory. Polynomial ideals provide a use-
ful framework for studying many important computational problems
including solution of systems of polynomial equations and simplifica-
tion. An important set of basis polynomials for any ideal, the Gröbner
basis, is constructed en route to solving some problems. Such con-
structive algorithms and theoretical work describing their complexity
constitute important progress.

4. Decision procedures for logical theories. The important developments
here are theory and algorithms which take an expression involving
quantifiers ∃ or ∀ and find a logically equivalent one having no quan-
tifiers. The resulting expression is now effectively decidable.

5. Integration and summation in finite terms. Watershed work here is
that of Risch (1969, 1970). Prior to this, indefinite integration was
attacked as a search problem much as it was in SAINT. The first
partial implementation of the Risch integration algorithm was due to
Moses (1967) in a follow-up to SAINT called SIN which eliminated
search but, being unable to back up and try another method, would
sometimes fail to solve a problem it could have. With the work of Risch
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and others algorithms were developed which worked on most functions
of interest (e.g. algebraic, logarithmic, or exponential extensions of
rational functions) and would either return the indefinite integral or
determine that there was no closed-form integral available which could
be expressed in terms of elementary functions. According to Caviness
(1986, p. 224), the Risch integration algorithm, its’ improvements,
and implementations “played a major role in the early acceptance
of computer algebra systems as useful and interesting tools”. Still,
implementations with good “human engineering factors” required an
interplay between heuristic (i.e. elementary calculus methods) and
algorithmic methods.

6. Algorithms for solving differential equations in closed form. These are
relatively recent accomplishments with the first breakthrough appear-
ing in Kovacic’s (1979) algorithm for solving second-order linear ho-
mogeneous differential equations. The n’th order problem was solved
two years later (Singer, 1981). As with integration, the key to solution
was the development of an appropriate algebraic theory and setting
for the problem.

7. Production of computer algebra systems. “[C]omputer algebra would
not exist as we know it today without . . . the development of computer
algebra systems” (Caviness 1986, p. 226). Those having had the
most impact at this time were MACSYMA (e.g. Martin and Fateman
1971) for the broadest mathematical coverage implemented, REDUCE
(e.g. Hearn 1971) for its coverage and portability, ALDES/SAC-2
(Collins and Roos 1986) for its careful and complete documentation of
its algorithms, and muMATH (e.g. Stoutmeyer 1985) because it would
run on a PC. Lastly, Caviness hoped that the recent commercialization
of computer algebra systems would result in well documented and
maintained systems.

With the exception of the last item the focus is decidedly on algorithms (e.g.
see also Davenport et al, 1993, or Buchberger et al 1985). The appropriate
mathematical theory provides a setting for finding and assessing algorithms;
implementation sorts out which of these are, or can be made, practically
useful. This pattern is applied to a few broadly useful, and consequently
important, mathematical problem areas.

To most outsiders, however, that which has had greatest impact is the
delivery of these algorithms in software systems that can be easily under-
stood and used. Today’s familiar computer algebra systems all date from
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this time period.
The first implementation of REDUCE appeared in 1967 and a version

was available to the public by 1970. REDUCE is a relatively small and
portable system that has enjoyed wide popularity. It is easily extended and
its wide user community has contributed many freely available packages.
Principally designed by A.C. Hearn, REDUCE has undergone many changes
and extensions since (e.g. see Hearn, 1987, or Fitch 1985). IRENA (Interface
between REduce and NAg) is a relatively recent extension which allows the
REDUCE user to call numerical methods from the NAG library (see e.g.
Dewar 1989, or Davenport et al 1992). IRENA is presently distributed by
NAG.

In contrast, MACSYMA (e.g. see Pavelle and Wang, 1985) is a relatively
large system developed from 1969 to 1982 by the Project MAC group (MAC-
SYMA stands for Project MAC SYMbolic MAthematics program). A team
effort from the beginning, MACSYMA developed largely by incorporating
new or improved algorithms into it as they developed. The result is a pow-
erful broadly based non-numerical mathematical system. Like REDUCE,
MACSYMA is written entirely in LISP although like essentially all other
computer algebra systems the user language is more “ALGOL-like”. In the
late 1970s MACSYMA became a commercial product. Though based on rel-
atively early MACSYMA, a public domain version called MAXIMA, is also
available that runs on the public-domain AKCL (Austin-Kyoto Common
Lisp).

The first computer algebra system written specifically for microcomput-
ers was muMATH, written by D. Stoutmeyer and A. Rich in the late 1970s.
The same team then produced DERIVE, a menu-based system, as the suc-
cessor to muMATH. Both systems are relatively limited in scope but have
been praised as easy to learn and as good introductory systems for teaching
(e.g. Glynn 1989 targets young teenagers!). DERIVE became commercial
in 1988.

By 1980, it was felt by some that the time was ripe to redesign a computer
algebra system from scratch to take “advantage of the software engineering
technology that [had] become available” in the approximately 10 years since
the design of REDUCE and MACSYMA (Geddes et al 1982). Principal
design goals of the Maple system included compact size, portability, and
efficiency (e.g. Geddes, 1984). The low-level language of choice was C
and Maple was soon available on Unix systems, Macintoshes, and PCs. The
high-level user language had “Algol68-like” syntax that was felt to be “more
suitable for describing algebraic algorithms” (Geddes et al 1982). Maple
was generally available in 1983 and soon became a major competitior to

16



Wo
rk
in
g
no
te
s

REDUCE and MACSYMA. Maple became a commercial product in 1989
(Char et al, 1986, 1992).

In the late 1970s to early 1980s, SMP was developed by S. Wolfram and
others (Wolfram et al 1983) but became largely superseded in 1988 by the
launch of Mathematica. Again Wolfram was the key developer (Wolfram
1988). Mathematica began life as a commercial product and was quickly
marketed by Wolfram with much fanfare, being bundled as part of the base
software suite for Steve Jobs’s NeXT machine. Marketing aside, Mathe-
matica ran on a variety of platforms and, most importantly, gave careful
consideration to its user interface, providing exceptional graphical capabil-
ities well beyond that available at the time from other computer algebra
systems. Other systems, like Maple (e.g. see Char et al 1992), have since
devoted considerable effort to providing their own high-quality graphical
interface. Like Maple, Mathematica is implemented in C.

Perhaps no other computer algebra system has been praised more highly
(including Caviness 1986) or over a longer period of time than has AXIOM
(Jenks and Sutor 1992), known previously as SCRATCHPAD (e.g. see Jenks
1984, Sutor 1985). AXIOM is the culmination of research at IBM’s T.J. Wat-
son Research Center in Yorktown that began in the mid-1970s. Like other
systems AXIOM has many mathematical capabilities, including interactive
dynamic two and three-dimensional graphics of functions – much attention
has been paid to the interface design. Like REDUCE and MACSYMA, AX-
IOM is coded in a dialect of LISP (COMMON LISP, see Steele 1990) but
has its own user language that includes a compiler.

Where AXIOM differs so dramatically and importantly from the oth-
ers, however, is in its fundamental structural design. This has important
consequences for its use. AXIOM is designed from the ground up to model
the fundamental mathematical objects directly in the software. Data struc-
tures in AXIOM include Groups, Rings, Fields, Algebras, and Vector
Spaces. These, and many other such classes of mathematical objects, are
related in the software in a class inheritance hierarchy that directly matches
the basic algebraic structure (e.g. an Algebra is necessarily also a Ring).
The user can write algorithms that operate at this level. For example, one
might write an algorithm in AXIOM to solve equations of polynomials where
the polynomials are defined over an arbitrary Field; code correct at this level
would then work for any field whether it be “floating-point numbers”, say,
or “power series”. Computational realizations of sophisticated mathemati-
cal objects can be constructed in AXIOM just as one would construct them
conceptually in mathematics. It is precisely this ability which has generated
the consistent praise and excitement surrounding AXIOM/SCRATCHPAD.
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A somewhat dated comparison of most of these systems is given in
Harper et al (1991). Notably missing from this comparison is SCRATCH-
PAD. Though not formally compared, the authors felt compelled to mention
SCRATCHPAD in passing because “it is a powerful system which is likely
to become popular if it becomes widely available.”

2.3 Other developments

Symbolic computation, in the broad sense, has also made remarkable de-
velopment outside of computer algebra. Research areas like artificial intel-
ligence, programming languages, and interface design have all made impor-
tant contributions. As in the early history, assigning credit exclusively to
one area or another would be difficult and possibly misleading.

The key to symbolic computation is abstraction – the ability to build
software abstractions, to give them visual representation, to manipulate
them programmatically and interactively. The abstractions are to model
concepts, programming or scientific, that are natural to the problem at
hand. The goal is to provide the illusion of dealing directly with those
concepts.

The first programs were sequences of machine instruction executed se-
rially in an imperative fashion. With the first “high-level” languages these
instructions became more abstract, more distant from the physical machine
characteristics. With the ability to write subroutines or functions within
the language, a new algorithmic or procedural kind of imperative program-
ming became possible. Examples include FORTRAN, C, and LISP. Some
researchers interested in developing and maintaining large programs devel-
oped a mathematically cleaner (i.e. easier to prove program properties) style
of programming called functional programming. In this style of program-
ming every procedure, or function, is able to access only those parameters
passed to it and return the value of the function applied to these parameters
(e.g. no changes by side-effect). An example is earlyLISP.

In some problems, it is easier to describe what needs to be done rather
than how to do it. The declarative style of programming has the user specify
what is to be done and the language is responsible for ordering tasks so as
to accomplish it. An example is rule-based programming. Here a collection
of rules (e.g. if-then rules) are specified along with a goal. Execution is
carried out by an “inference engine” that chains through these rules typically
backwards from the goal (or forward from the conditions), finding rules
which apply (i.e. pattern matching), backing up from those which fail,
until ultimately a series of rules can be produced which lead from fulfilled
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conditions to the achievement of the goal. These rule-based systems, dating
back to the 1960s, were used as the basis for the “symbolic reasoning” of
many expert systems (e.g. Shortliffe, 1976, see also Hayes-Roth et al 1983
who include MACSYMA as an expert system).

Another type of declarative programming is logic programming. Here the
idea is that a collection of axioms form a data-base of “facts” expressed in
some uniform way typically, as in PROLOG (e.g. see Sterling and Shapiro,
1986), as a collection of relations. One programs by adding relations to the
database and by forming queries about new relations. These relations are
patterns of known functions, symbols, and “logic variables”. The latter act
as named wildcards to be used in matching one pattern with another. The
pattern matching is called unification. Queries asked can be quite abstract
with the result being a collection of conditions for which the query would
be true (which can also be quite abstract). The result is a logical proof of
the query, constructed automatically by the system.

Also declarative, and somewhat familiar to spreadsheet users, is constraint-
oriented programming. Here the idea is to specify constraints amongst a
number of program objects. The set of constraints form a network and
changing the state of any of object causes information to be propagated
through the netwoek so as to update the states of the remaining constrained
objects. For some problems, this is the natural means of expressing the
known structure. The idea appears first in Sutherland’s (1963) SKETCH-
PAD system for computer-aided design. Important early constraint systems
include ThingLab (Borning 1977, 1981) and Constraints (Steele 1980, Suss-
man and Steele, 1980). See also Leler (1988) for a general overview of the
area and definition of the constraint programming language Bertrand.

2.3.1 Object Oriented Programming

An important style of programming having both imperative and declara-
tive features is object-oriented programming. Defining characteristics can be
taken to be: the existence of template data structures called classes which
containing named fields called slots, instances of classes called objects, in-
heritance relations between classes, and procedures called generic functions
which dispatch to different methods depending on the class of their argu-
ments. Together these provide powerful means of abstraction.

Properly done, classes isolate common structure in a single piece of code
that can be accessed by newly defined code through inheritance. Complex
concepts can be identified with classes and related one to another through
the inheritance mechanism (e.g. recall AXIOM). Generic functions define
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a general behaviour which can be specialized as appropriate. For example,
‘+’ might be used to capture general notion of “addition” and so execute
different code (methods) depending on whether the arguments are numbers,
matrices, or perhaps even vector spaces. At execution, the system selects
and executes the most specific method for the argument(s) given.

Many different designs exist for object-oriented programming languages.
At present, important differences are whether methods can dispatch on the
class of a single argument (typically implemented as ‘message-passing’) or
on multiple arguments (the generic function approach), and whether class
inheritance is single (one parent, multiple children) or multiple (multiple par-
ents, multiple children). These differences follow the history of the object-
oriented language development.

Things begin with SIMULA, where data and methods are encapsulated
together in a single object. Single inheritance is possible and methods in-
herited from a superclass can be overridden by a subclass. These ideas
were picked up by Kay (1969) and developed further during the 1970s with
others at Xerox PARC to produce the explicitly object-oriented language
SMALLTALK (-72, -76, -80) (Goldberg and Robson, 1983). Here methods
are invoked by sending a message to the object; following the single inher-
itance path, the most specific method of that name is found and executed.
Steele (1976ab) showed how this style of programming could be implemented
in LISP.

The first system to support multiple inheritance was the LISP based
system called Flavors from MIT (e.g. Cannon 1980, Weinreb and Moon
1980, Moon et al 1983, Moon 1986). Multiple parents appeared as “mixins”,
classes representing roughly orthogonal behaviours which might be ‘mixed
into’ (as multiple parents) to provide the selected behaviours for any new
class. This added enormous power but meant that method lookup was no
longer straightforward; the class inheritance hierarchy was now a directed
(acyclic) network as opposed to a tree as in single inheritance. Flavors also
allowed modification to existing methods via, for example, so-called ‘before’
and ‘after’ methods which were executed before and after the ‘primary’
method. These are very useful but together with multiple inheritance meant
that detemination of the approriate method would need to be determined
dynamically at run-time.

Another LISP based system called LOOPS out of Xerox PARC (Bobrow,
1982) was much like Flavors in using multiple-inheritance and message-
passing. A significant difference is that LOOPS also offered rule-based pro-
gramming, and active-values (a value of an object slot which executed a
program whenever the slot was accessed).
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Multi-methods, methods which dispatch on the classes of multiple ar-
guments, were introduced by the COMMON LISP based CommonLoops
(Bobrow et al, 1986, Stefik and Bobrow 1986). Method determination is
more complicated and the message passing metaphor is replaced by that of
a generic function. Relieved of message passing’s strong association with
a single object, generic functions are developed independently as abstract
actions. In many applications, such as mathematics, this seems the more
natural metaphor.

This research culminated in the COMMON LISP object system CLOS
(Bobrow et al. 1988) appearing in the ANSI standard language (Steele
1990) and supported by all commercial vendors of COMMON LISP. CLOS
supports multi-method multiple inheritance object-oriented programming.
For an overview, example applications, and comparison with other object-
oriented programming languages, see Paepcke (1993). For a quick compari-
son see Appendix A of Kiczales et al (1991).

It can be argued that CLOS has moved significantly beyond object-
oriented programming. Besides basic ‘primary’ methods, CLOS supports
‘before’, ‘after’, and ‘around’ methods. It is the first language to introduce
a metaobject protocol (Kiczales et al, 1991) which opens the system itself up
allowing the user to adjust the language design to better suit their needs. For
example, implementation of generic functions, classes, object instantiation,
methods, and method-combination can all be specialized by the user if so
desired. This provides the researcher with extraordinary power to explore
the use of software in symbolic computation.

2.3.2 Interfaces

The feature of SMALLTALK which most captured people’s attention was
its integrated direct manipulation interface. A large graphical display and a
mouse allowed the user to interact directly with the objects; pop-up menus
meant fewer typed in commands and more immediate interaction. The
immediacy of the interface together with the ability to inspect, copy, or
edit program objects gave the impression of an environment consisting of
objects which could be manipulated. This was a stunning accomplishment
at the time.

Xerox PARC was the home to SMALLTALK development and it is not
surprising that most of the ideas seen today (and some not yet seen!) in
windowed environments everywhere were first developed at PARC. High res-
olution bitmapped displays were combined with the dynamic computation
available in LISP to produce the first ‘exploratory programming environ-
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ments’ (see Teitelman and Masinter 1981, Sheil 1983). The goal was to pro-
vide programmers with ‘power tools’ designed to maximize their efficiency
(the real bottleneck) rather than the machine’s.

Tools well in advance of their time included data structure inspectors,
source code editors tailored to the language, stack backtrace inspectors,
program steppers, network file-browsers, and bitmap editors. At the type-
in level, the dwim (“do what I mean”) editor completed symbol names and
offered corrected spelling. If a program failed, computation would be sus-
pended, source code produced in an editor (possibly with an unknown sym-
bol highlighted and a suggested correction), the code changed on the fly by
the programmer (all local values would be available for execution of any part
of the displayed source), and the computation restarted from where it left
off. Other programming tools included interactive graphical displays of pro-
gram structure which could dynamically highlight procedures as they were
executed and calculate the amount of time spent within each procedure. 1

Programming ‘power tools’ require the ability to write programs which
symbolically manipulate other programs according to a clear model of the
target programming language. As the model improves, say from as simple
text tokens to one which incorporates the language syntax to one which in-
cludes language semantics, the tools become more powerful, say from source
code bookkeeping to program structure editors to symbolic interpreters and
program verification. The next step in this sequence was to go beyond a
model of the language and to model recognized programming patterns as
well. This approach is perhaps best typified by the Programmer’s Apprentice
project at MIT (e.g. Rich 1981, 1990). In this project, a library of standard
programming forms culled from experienced programmers is set up. Called
plans, these programming forms include familiar mathematical objects (e.g.
functions, sets, etc.), abstract tools for describing algorithms (e.g. digraphs,
threads), and named programming concepts and techniques (e.g. “search
loop”, “accumulation loop”, “trailing pointer”, etc.) The library of plans is
used by the experienced programmer to build new programs; the system, as
a good apprentice, provides the details to the programmer for approval.

1Other advances at Xerox by the early 1980s include the first “office automation sys-
tem” with file-folders, etc., a wysiwyg word processing system (which included mathemat-
ical symbols) and the first hypertext system Notecards.
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3 Symbolic computation in Statistics

In the spring semesters of 1965 and 1966, Martin Schatzoff delivered a grad-
uate statistics seminar at Harvard entitled “Machine Aided Statistical Mod-
elling”. The objective was to better exploit the computer in the teaching
and the practice of statistical data analysis or, more concretely, to “pro-
vide a high-degree of statistically meaningful man-machine interaction” (my
emphasis, see Schatzoff 1968 page 194).

At the time, there were libraries of statistical programs widely available
but these had unforeseen negative effects. First, they encouraged users to fit
all problems to suit the available software which was in Schatzoff’s words “of
limited value in attacking a wide class of data analysis problems”. Second,
Schatzoff noticed that they actually effected a de-emphasis in the teaching
of statistical computation and data analysis!

Because statistical analysis requires “human decision making in the com-
putational sequence”, on-line interactive systems seemed better suited. Con-
versely, it was hoped that by attacking problem areas like statistical analysis,
which required rapid interaction, “valuable problem solving approaches not
previously available” would result.

Of the three systems used in his course, two were created by Schatzoff
and others at IBM’s Cambridge Scientific Center. Both were interactive
command language systems capable of data manipulation, random sample
generation, data transformation, and some plotting facilities. Both systems
were “couched in terms familiar to the statistician” and included the ca-
pability to write named procedures. Both were to be used in teaching and
research. The important difference between the two lay in their focus.

The first system, COMB (Console Oriented Model Building, Schatzoff
1965), was tailored to residual analysis of two-way fixed effects anova models.
Consequently it had additional commands for various statistical tests and
residual plots peculiar to fitting and assessing this model (including adding
or dropping an interaction term). COMB also had a more english-like inter-
action with the user. Besides teaching purposes, COMB was intended for
research on residual analysis.

The second system, COSMOS (Console Oriented Statistical Matrix Op-
erator System) is possibly the first interactive general purpose statistical
computing system. COSMOS focussed on matrix operations, both basic
and those of significant interest in statistics such as cross-product matrix
and sweep calculations promoted by Beaton (1964). COSMOS also provided
selection of subsets of the data according to satisfying a specified Boolean
condition. It was intended that the user would use these “familiar” building
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blocks for statistical model building and data analysis.
One aim was to “encourage statisticians to analyze data themselves at

computer consoles, and to experiment with new techniques of data anal-
ysis” – hence the strong preference for an open-ended system over use of
closed canned programs. Interestingly, COSMOS was also intended to help
“provide a data bank consisting of real data from a variety of application
fields.”

The third system used in the course was the Culler system seen earlier in
Section 2.1.3. Through a series of one-button pushes Schatzoff’s class could
construct and display density and distribution functions, draw samples from
those distributions, and display cumulative sample functions on appropri-
ate scales (e.g. normal probability). They would introduce outliers into
samples and observe the effect on any display before and after Winsorizing,
trimming, or rejecting outliers. Schatzoff (1968, p. 206) writes: “Utilization
of the Culler system in this manner provided considerable insight into the
operation of the indicated techniques as well as lively classroom discussion,
which would frequently lead to suggestions which could be implemented
spontaneously by pushing a few buttons. Such sessions were generally in-
formative and enjoyable.”

From our point of view, the important insight is Schatzoff’s clear em-
phasis on bringing the machine closer to the statistician through statisti-
cally meaningful and immediate interaction. Though numerical calculations
were the ultimate outcome, they were provided by directly interacting with
computational representations of statistical concepts. In this way, COMB,
COSMOS and Schatzoff’s use of the Culler system are very similar to early
symbolic computation efforts for applied mathematical purposes.

The first non-numerical mathematical computation paper appearing in
the statistical literature seems to be Chambers2 (1970). In now familiar
words, Chambers (1970) is interested in automating “voluminous and te-
dious, but mechanical” mathematical manipulations – in this case of mul-
tivariate power series expansions as used in multivariate statistical theory.
ALPAK is tried but soon abandoned; among other things it is unable to han-
dle arrays whose dimensions are symbolic. Instead Chambers writes his own
system called SYMPOL. SYMPOL is capable of handling polynomials of ar-
bitrary order, arithmetic operations, differentiation, and generalized tensor
products. Arrays of polynomials are handled and can be manipulated in the
same way as arrays of variables; rules on scalar polynomials are extended

2A statistics graduate student at Harvard during the time of Schatzoff’s course but
not, apparently, an attendee. (Personal communication, Chambers, 1998.)
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to symmetric arrays of polynomials. And finally, the formulae produced are
said to be more compact, readable, and closer to conventional notation than
those produced by ALPAK, ALTRAN, or FORMAC (see Section 2.1.2).

By 1970, then, we already see novel symbolic computation research and
systems directed specifically toward statistics. Together these two early
papers cover the spectrum of symbolic computational needs in statistical
research, application, and teaching. Moreover, to quote Chambers (1970)
and to echo Schatzoff (1968):

“[O]ur computing needs will lead to systems which have a differ-
ent emphasis than those developed for other applications. At the
same time the systems will often have wider applicability than
just to statistical research.”

3.1 Non-numerical mathematical computation.

In statistical papers, non-numerical mathematical computation often arises
as a means to solve some highly specified statistical problem. Maynard and
Chow (1972) provides an early example. These authors needed the mean
squared error of a complicated estimator. They had available to them a
technique to produce a series expansion whose first few terms would suffice
as an approximation. However, algebraic derivation of the terms by hand
would be long and tedious. Instead, the desired result was had by writing
an ALTRAN program.

This use is typical of that found in the statistical literature. A specific
problem arises in some research and is addressed by writing a tailor-made
program that implements a known algorithm which would otherwise have
been followed by hand. To date, most statistical papers involving non-
numerical mathematical computation are of this kind (e.g. check statistical
references found in Kendall’s 1993 review paper).

In contrast, in Quednau (1976) it is as if the problem was selected be-
cause computer algebra systems existed. Quednau’s interest is in making
more statistical models available to the practitioner. While the theory, here
likelihood methods, had been developed in general the details would typi-
cally need to be worked out for any new model developed and a program
written to yield the numerical results. Typical practice would be to restrict
the choice of models to those for which programs existed and were acces-
sible (typically normal models). Quednau (1976) expanded this choice by
providing a system of programs which would “generate automatically the
subroutines necessary for performing a special likelihood ratio test.”
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More specifically, the user supplied the density or spectral function in
symbolic form of each population from which observations had been drawn
and then identified those parameters hypothesized to be equal. Subrou-
tines were then generated symbolically which would calculate negative log-
likelihoods and their derivatives. These were then to be used in conjunction
with some numerical minimization routine to perform the necessary analysis.
The system was written in PL/I-FORMAC and produced PL/I code.

Quednau (1976) is notable for two things. First, the problem attacked is
of wide interest; most statisticians would like to have access to that type of
software. Second, the problem area does not end with symbolic computation
but with numerical evaluation based on realized data. Consequently, the
target population of users is quite large.

These first three papers – Chambers (1970), Maynard and Chow (1972),
and Quednau (1976) – demonstrate three distinct possibilities for non-numerical
mathematical computation in statistics. Maynard and Chow (1972) use a
system to solve their problem. Chambers (1970) develops a symbolic compu-
tation system to provide tools to researchers in a particular area. Elements
of SYMPOL could be useful outside this research area. And Quednau (1976)
integrates the symbolic and the numeric to provide tools that could see wide
use in practice.

With their increased availablity in the 1980s, we see increased use of
computer algebra systems in statistical science (e.g. see Kendall, 1993).
Systems used include REDUCE, MACSYMA, Maple, and Mathematica. No-
tably absent, to date, is AXIOM/SCRATCHPAD (although John Nelder’s
endorsement appears on the cover of the AXIOM manual). The motivation
is often to avoid tedious but well understood calculation.

More ambitious use is what Steele (1987) calls the ‘honest path of [com-
puter algebra] application’ (in this case MACSYMA). Steele (1987) suggests
that a computer algebra system be used for encouragement rather than
proof. Rather than a “frontal assault on the general problem”, the system
is engaged with the problem through exploration of a significant example.
Moreover, the system should not be reserved only for the hard problems,
but also for performing mathematical calulations which could be performed
with “much humbler tools”. An example of this kind of use is described in
Steele (1987).

Following this honest path, one is soon led to constructing computational
abstractions useful to the problem at hand. Pursuing problems related to
the statistical analysis of shape has led Kendall in a series of papers (see
Kendall 1993 for references) to develop some rather general computational
abstractions in REDUCE and Mathematica for the stochastic calculus based
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on the Îto formula. Kendall(1993) also describes the work of others in this
area who, interestingly, have built quite different computational structures.
This experience leads Kendall (1993) to draw a clear distinction between
“the use of computer algebra packages to support investigations . . . and their
use to implement structure” (his emphasis).

Andrews and Stafford (1993) use Mathematica to capture and exploit
the mathematical structure common to derivation of asymptotic expansions
of functions of sums of independent and identically distibuted random vari-
ables. The motivation is traditional: relegation of tedious calculational de-
tail to the software, here freeing researchers “to concentrate on the structure
of the calculation rather than on the detail of term-by-term evaluation” (An-
drews and Stafford, 1993, p. 627). The implementation strategy is similarly
straightforward: “emulate techniques that one would normally carry out by
hand” (Stafford et al, 1994, p. 244). The structure implemented is intended
to be general enough so as to raise the level of discourse for researchers
in this area – “Here the presentation of new statistical results appears as
examples instead of entire publications” (Stafford and Andrews, 1993, p.
716).

In the implementation, one sees computational abstractions which match
concepts peculiar to this specialized research area (e.g. BarnNeilCorr,
Conditionalscore, Delta, etc.). More general sounding abstractions such
as GenExpand, or ParameterDerivative exist but their meaning is restricted
to this specialized research domain. Very general statistical abstractions are
also captured, among them RV to define a random variable, Law to define
a probability law, and Likelihood as a curious choice to define the log-
likelihood of a law. Some attention is also given to presentation of the
results in a format which is relatively standard for the research area.

Stafford and Bellhouse (1997) have implemented similar Mathematica
procedures to compute complicated algebraic expressions which can arise in
sample survey theory. This work has led them to consider algorithms for
automatically generating all partitions of a finite set.

3.2 Other developments.

In the 1960s, batch mode statistical systems gathered together libraries of
statistical routines and made them more easily accessible to a wide variety
of users. These provided the user simpler means to specify the problem and
output tailored to the problem, a level of abstraction above the subroutines
themselves but only just. Systems familiar today dating from this time
include BMDP, SPSS, and SAS.
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From the mid-1960s through the late 1970s many ‘interactive statistical
systems’ were developed.3 To encourage the illusion of immediacy, clear and
crisp communication between the user and the system was required. The
verbosity prevalent in batch-oriented systems could not be tolerated (e.g.
see Ryan et al, 1975 on Minitab). Pseudo-natural language was rejected
in favour of statistically meaningful commands like regress or cancorr as
seen for example in ISP (Interactive Statistical Processor, Bloomfield 1977).
Programming capabilities in these systems essentially stopped at sequential
execution of the system commands. Any new functionality would require
programming in some underlying language like FORTRAN. As pointed out
by Guthrie (1975), this meant that statistical analysts would often choose to
use only those statistical procedures offered by the system, the result being

“Even the statistician’s operating language, context and syntax,
became formed from the names of available programs and func-
tions. In order to regain his individuality, it became necessary
for the thinking statistician to teach computers to do his wishes
. . . That is, he had to learn to program or hire a programmer.”
. . . Guthrie (1975, pp 8-9)

An early exception was the econometric modelling system called TROLL
(Time Reactive On Line Laboratory). Begun 1n 1966, by 1969 TROLL al-
lowed the user to write named ‘macros’, which could take arguments and
execute sequences of commands. Eisener and Hill (1975) describe how, to-
gether with TROLL’s BASIC-like algebraic manipulation facility (including
symbolic differentiation), they were able to program in TROLL to produce
new commands (e.g. robust regression) relatively quickly. Even so, the de-
signers had not foreseen the macro facility being used as a programming
language and it was a rather crude one as a result.

Eisener and Hill (1975) planned to rectify that in a redisign by intro-
ducing a three layer programming model. The base component would be a
collection of subroutine libraries callable from the next component, an al-
gorithmic language with APL-like semantics and ALGOL-like syntax. The
final component was a control language in which users and programmers
alike could define new commands. ... like Chambers later?

compiler compilers ... chambers
Together with A distinguishing feature of these systems was their im-

medi Most early systems provided little more than a statistical command

3Too many to survey here as even a cursory look over the proceedings of the annual
symposia on Computer Science and Statistics: the Interface from this period would show.
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language. Because the interaction was immediate, care needed to be taken
to simplify input and output so as to keep the communication clear and crisp
between the user and the system (e.g. Ryan et al, 1975 on Minitab). Some-
times the statistical commands could be very high-level reflecting recent
research interests (e.g. ISP – Interactive Statistical Processor, Bloomfield
1977).

programming ... statistical abstract. troll ... data abstraction
p (see Minitab’s earl by, like the early interactive Minitab system (Ryan

et al 1975) provided a simplified statistical command language Some of these
systems like Minitab (Ryan et al 1975) and ISP (Interactive Statistical Pro-
cessor, Bloomfield 1977) provided little more than a statistical command
line interface. Others like TROLL (Time Reactive On Line Laboratory)
recognized early on the need to provide the user some programming capa-
bilities and found themselves Each computational innovation spawns a suite
of new systems – from time-shared network computers, to the low cost but
memory constrained ‘mini-computers’, to the more ubiquitous but severely
constrained early personal computers, to the increased availability of high-
resolution screens, to today’s revived4 interest in internet based systems.
Older systems adapt as best they can with each new innovation.

The amount of abstraction in these systems vari Notable in this work
is the TROLL (Time Reactive On Line Laboratory) for its use of distinct
data structures for time series and for systems of equations complete with
parameters, random variables, and distinction between exogenous and en-
dogenous variates. Early on TROLL (e.g. see Eisener and Hill, 1975 and
references therein). Guthrie (1975) describes the s The nature of much of
this work is the direct exploitation of the new technology. Of interest here,
are developments which

Here I will only highlight some of those developments that fit In the 1975
proceedings of the Computer Science and Statistics Interface symposium, I
count fully n systems.

Statisticians are typically evaluators and wishers of software. Guthrie’s
warning ... Looking over the interface proceedings of the 1970s one sees that
statisticians become the system developers. Interest in language semantics
increases, examples. Worth noting here are TROLL for its time series and
modelling data structures. S for Chamber’s hierarchical data structures.

Graphics follows suit coming into its own in dynamic graphics in the
1980s. Though 3d-point cloud rotation is older. PRIM-9 PRIMH PRIM79

4E.g. see Marks (1975) and comments in Guthrie (1975) who organized the Workshop
entitled ‘Interactive statistical computing and computer networks’.
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Dataviewer XGOBI
spawns a whole suite of such systems Developments in statistical com-

puting paralleled those in computing more generally, albeit sometimes lag-
ging by a few years. Focusing on those developments related to the broad
view of symbolic computing the mid 1970s there is The best sources on de-
velopments in statistical computing, especially prior to the 1990s are the
proceedings of the annual symposia on the Interface of Computer Science
and Statistics There has been much research on symbolic computation in
statistical science that is not non-numerical mathematical computation, a
few examples of which are given to indicate the breadth of the subject. The
third part draws largely from the work of myself and others to illustrate
the broad spectrum of symbolic computation in statistics. This breadth is
essentially a result of statistics not being a branch of mathematics but a
scientific discipline in itself, one which makes heavy use of mathematics at
times but whose problems, objectives, and standards can be quite different.
So too exploring non-numerical mathematical computation for statistical
uses is important, but restricting symbolic computation in statistics to this
would make little sense.

4 Conclusions

Steele (1987) is suggesting a computer algebra system become a convenient
interactive computational environment which supports the mathematician’s
problem solving activity (as described for example by Polya 194?), an ex-
ploratory mathematical environment. it seems is much like that of the ex-
ploratory programming environments of Section As was the case with the
exploratory programming environments of Section 2.?.?, except that the
activity takes place with the support of an interactive computational envi-
ronment.

Draw on Steele 1987, refer to Quednau average performance.
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