
SIAM J. ScI. STAT. COMPUT.
Vol. 9, No. 1, January 1988

1988 Society for Industrial and Applied Mathematics

013

DINDE: TOWARDS MORE SOPHISTICATED SOFTWARE
ENVIRONMENTS FOR STATISTICS*

R. W. OLDFORD" AND S. C. PETERSt

Abstract. A prototype statistical system we call DINDE is described. DINDE is aimed at the professional
statistician and provides a statistical analysis environment that is more sophisticated than the current
generation of systems. In particular, it allows the analyst to keep careful track of the entire analysis as it
progresses. General design philosophy and some issues of implementation are described and an example
session is presented for illustration.

Key words, integrated programming environments, graphical interface, object oriented programming,
statistical computing system

AMS(MOS) subject classification. 62-04

1. Introduction. DINDE is a computer "system" for performing data analysis and
statistics. More precisely, DINDE is an enrichment of an extensive interactive program:
ming environment. The programming environment is Interlisp-D with LOOPS which
runs on the Xerox 1109 personal workstation (Teitelman and Masinter (1981), Stefik
et al. (1983) and Interlisp Reference Manual (1983)). DINDE provides the usual
analytic, graphical and data management tools, which are accessible from an interpreted
language. In addition, DINDE also organizes, tracks and occasionally guides the use
of these tools, all in a distinctive visual format. A personal workstation provides the
combination of high interaction, extensive graphics and powerful dedicated computing
required by the ambitious aims of DINDE. DINDE is composed ofmany sophisticated
interdependent procedures. We rely on the interactive programming environment to
help us build, manage and especially experiment with this complex system.

Why did we invent another statistical system? First of all, like McDonald and
Pedersen (1987), we think data analysts and practical statisticians do a special kind of
programming work--especially when they are developing new methods. This kind of
programming is referred to as "experimental," "exploratory" or "improvisational" in
the computer science community. Interactive programming environments are the most
appropriate and productive locales for doing experimental programming; this is borne
out by our experience and is forcefully argued by Sheil (1983). We built DINDE to
take advantage of the interactive programming environment available on the Xerox
1109. Our initial aim has been to facilitate our own research in data analysis and
statistics. As we proceed we hope to organize our efforts and make them available to
others.

Second, we have often been frustrated by working with existing interactive statis-
tical systems. Especially vexing are the multiplicity of languages required to control
them (these include command lines or an expression algebra, graphics subsystem
commands, macros, "user function" or interface language, implementation language,
preprocessors, etc.) and the paucity (often nonexistence) of language tools for the lot

* Received by the editors January 3, 1986; accepted for publication (in revised form) November 13,
1986. This research was supported by National Science Foundation grant IST-8420614, by the MIT Center
for Computational Research in Economics and Management Science, by the MIT Statistics Center, and by
an equipment grant from the Xerox Corporation.

f Present address, Department of Statistics and Actuarial Science, University of Waterloo, Waterloo,
Ontario N2L 3G1.

: Present address, Xerox AIS, Palo Alto, California 94304.

191

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

192 R.W. OLDFORD AND S. C. PETERS

(i.e.,interpreters and compilers, debuggers, inspectors, performance meters). By design-
ing DINDE as an enrichment of the Interlisp-LOOPS environment, all the facilities
and tools of Interlisp and LOOPS are available to the user. In particular, the same
language features, compilers, debugging aids, etc. used by the systems programmers
to construct Interlisp and LOOPS, and which we used to develop DINDE, are also
available to the DINDE user. We think that we gain important leverage by embedding
DINDE in this rich and painstakingly developed environment which allows us to focus
our efforts on statistical programming.

Third, we want to explore and develop statistical software which is more sophisti-
cated than programs currently available: we envision software which guides the choice
of technique, interpretation of results and management of the analysis. Further, we
are interested in studying the strategies used in practical statistical analysis and we
perceive that this investigation requires a novel kind of statistical system (see Oldford
and Peters (1986a)). DINDE is being constructed to meet what we anticipate might
be the needs of such study.

The system we describe here is about a year old. Many details remain to be settled;
others have been chosen by virtue of their expedience. DINDE is mostly a framework
awaiting more hard work. Even so, the ease of use and usefulness of this approach
are already becoming clear. In subsequent papers we plan to elaborate on the program-
ming environment offered through DINDE. This paper introduces the novel user
interface and some of the philosophy underlying the design of DINDE.

In building DINDE, we have been strongly influenced by the S data analysis and
graphics system (Becker and Chambers (1984)) and often borrow ideas from it. The
system design issues raised by David Donoho’s DART (Donoho (1983)) have also
had an impact on our work: we think many of Donoho’s concerns are met by the
programming environments now available on LISP machines. (DART stands for Data
Analysis Research Tool; we regretted that the acronym had already been claimed and
so had to settle for the self-referential "DINDE": DINDE Is Not DART Exactly.
"DINDE" also has the virtue of being self-deprecatory, "dinde" being French for
"turkey.") The plotting capabilities of DINDE rely on a collection of graphical
functions developed by Jan Pedersen of Stanford University and Xerox AI Systems,
who agreed to let us try out early versions of his work. (Pedersen’s graphics package
will also be incorporated in IDL, a system for data analysis developed at Xerox by
Kaplan et al. (1981)).

Recent software that shares some of the objectives of DINDE has been described
by Carr et al. (1984); its underlying philosophy has been detailed in Nicholson et al.
(1984). That software appears to be very closely related to a formalism of data analysis
proposed recently by Thisted (1985), but ditters in many aspects from DINDE.

This paper is organized as follows. Section 2 is a very brief introduction to the
characteristics of personal workstations, to the idea of an interactive programming
environment and to the "object oriented" approach to programming which pervades
DINDE. Readers already familiar with the advantages of these modern computing
technologies may skip this section. DINDE is then introduced in 3 with an example
emphasizing the interactive, evolutionary nature of data analysis. The key themes
underlying the implementation are developed in 4, while 5 relates DINDE to our
current views on the study of statistical strategy. Some concluding remarks are given
in the final section.

2. Prerequisites. Our work is largely motivated by the present availability and
promise of powerful, highly interactive, highly graphical, personal workstations.
McDonald and Pedersen (1985a) and (1985b) carefully consider workstation architec-

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

DINDE: MORE SOPHISTICATED SOFTWARE 193

ture and its impact on data analysis. Our aim is to fashion a system for data analysis
and statistics which takes advantage of the special nature of this new technology, some
aspects of which we describe next.

The initial implementation of DINDE took place on the Xerox 1109 workstation.
The 1109 incorporates a proprietary central processor developed by Xerox. The pro-
cessor runs microcode which is specially tailored for Interlisp, so many Lisp functions
(e.g., CONS, CAR, POLY (polynomial evaluation)) are actually machine language
instructions, leading to impressive Lisp performance. Lisp attempts to present the
illusion of an infinitely large, persistent memory space. To support this illusion, the
processor manages a virtual memory of 32 Mbytes (real memory of 3.7 Mbytes), and
assists the so-called garbage collection ofunreferenced objects with microcode routines.
A hardware floating point coprocessor is also installed on the 1109.

Central to the design of the workstation is its bit-mapped display and its "mouse"
pointing device. The display screen is organized as an array of about 1000 by 1000
individually addressable pixels. A high capacity communications channel connects the
display with a segment of processor memory, a 1000 by 1000 map of bits. Special
processor instructions manipulate the bit-map, and dedicated hardware refreshes the
display from the bit-map 38 times each second. This provides the foundation for the
window "system--a collection of overlapping screen regions capable of displaying
dynamic, detailed, highly resolved, independent images. A pointing device, called the
mouse, allows the user to focus attention and initiate action on particular portions of
the display. As the user rolls the mouse along the tabletop, a small arrow (the pointer)
moves in a corresponding fashion across the display screen. The mouse we use has
two buttons, allowing three different combinations of buttons to be pressed: left, right
and so-called"middle" (i.e., both buttons pressed). DINDE responds to the mouse in
different ways depending on its screen location and the buttons being pressed. (In
what follows, we occasionally refer to the action of pointing and then pressing the
left, right or middle buttons as "mousing.") DINDE makes extensive use of windows,
the mouse, pop-up menus, a variety of type fonts, shading, and point and line drawing
(but no color yet). These facilities are of recent vintage and, for the most part, available
together only in workstation configurations.

The workstation also has a keyboard, which we have come to regard as a clumsy
companion to the mouse. A local area network (Ethernet) connects workstations to
print, filing and mail services. Paging space and some file storage is maintained on a
hard disk located on the workstation.

The personal workstation hardware just described supports a distinctive software
system" the Interlisp-D integrated programming environment. (The following dis-
cussion is distilled from the Interlisp Reference manual (1983).) Interlisp is a program-
ming system consisting of a programming language (Lisp) and an environment that
supports the programmer by providing a variety of specialized programming tools.
Lisp offers a rich collection of predefined programs that can be used either as direct,
top-level commands or as subroutines in user programs(e.g., the text editor TEDIT
that we have used to create this document is also called on internally by the DINDE
system to add commentary to statistical objects). The environment supports program
development and execution by providing an integrated set of programming tools which
know a great deal about Lisp and can act as "assistants" to the programmer. These
tools include not only program editors, compilers and debuggers, but also tools which
assist the user by keeping track of changes to functions, variables and other data
objects, and which "understand" certain dependency relations among these com-
ponents. The programmer is thereby relieved of many mundane housekeeping and
version management chores.

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

194 R. W. OLDFORD AND S. C. PETERS

Our work with DINDE relies heavily on an extension of the Interlisp environment
called LOOPS. LOOPS incorporates four important programming paradigms oriented,
respectively, around procedures, objects, data access and rules. Procedure oriented
programming, the most familiar, is offered by traditional programming languages (C,
Pascal, etc.), and in LOOPS is provided by the underlying Lisp system. Object oriented
programming was pioneered by Smalltalk (Goldberg and Robson (1983)) and the MIT
Lisp Machine Flavors system (Weinreb and Moon (1981)). Object oriented program-
ming is organized around entities called objects which have aspects both of procedures
and of data. Computation in the object oriented scheme is accomplished by directing
an object to execute a procedure and return a value, the procedure may refer to local
state information unique to the object. (We elaborate on this description below.) In
data oriented programming, action is potentially triggered when data are accessed.
Sets of condition-action pairs (If-Then clauses) determine the behavior of programs
built in the rule oriented paradigm. DINDE uses procedure and object oriented
programming heavily at all levels, it uses data oriented programming internally and
does not use rule oriented programming. The multiplicity of programming paradigms
allows us to closely match each of the various structures comprising our system with
an appropriate expression as a program.

(The following discussion is distilled from Bobrow and Stefik (1983); see also
Goldberg and Robson (1983).) The object oriented paradigm of LOOPS is built on
the following concepts.

Classes. A class is a description of one or more similar objects. An instance is an
object described by a particular class. Every object is an instance of exactly one class.
(At the outset it may be helpful to regard a class as a template. From time to time,
instances of a class are created or instantiated. This entails filling in the template with
specific details about the new object being created.) DINDE gives definitions for many
classes related to data analysis and statistics; among these are the classes Vector,
SeatterPIot and BivariateRegression.

Variables. There are two kinds of variablesminstance variables and class variables.
Instance variables contain information specific to an instance. Class variables are used
to contain information shared by all instances of the class. A class variable is typically
used for information about a class taken as a whole. Both kinds of variables have
names, values and other properties. A class describes the structure of its instances by
specifying the names and default values of instance variables. So for example, the
class description for ScatterPlot directly defines two instance variables: X and Y
(which identify Vectors giving the coordinates of the points), and also defines a class
variable: References (which is a text string citing further general reading concerning
scatterplots).

Methods. A class specifies the behavior of its instances in terms of their response
to a special kind of procedure call (making such a call is usually called "sending a
message"). The class associates a selector (a name) with a method (the function that
responds to the selector). All instances of a class use the same selectors and methods.
Any difference in response by two instances of the same class is determined by
a difference in the values of their instance variables. The class ScatterPlot, for
example, defines the method PlotPoints. An instance of ScatterPlot responds to the
selector PlotPoints by drawing a scatterplot derived from its X and Y instance
variables.

Inheritance. Inheritance is an important tool for organizing information in objects.
It enables the easy creation of objects that are "almost like" other objects with a few
incremental changes. Inheritance avoids redundant specification of information and

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

DINDE: MORE SOPHISTICATED SOFTWARE 195

simplifies modification, since information that is common is defined in, and need be
changed in, only one place. An object may inherit some or all of its instance variable
description and methods from one or more classes. The definition of a class identifies
one or more parent classes from which variables and methods are inherited.

3. Using DINDE. DINDE is meant to be helpful to both the statistician doing
research in data analysis and the statistician engaged in an actual analysis. Here, we
discuss the latter situation: how a statistician is expected to use DINDE in a practical
setting. Although we concentrate mainly on the visual screen and mouse interface to
DINDE, it is important to remember that all the operations we describe can be
accomplished in a Lisp program by calling functions or sending messages. By this
mechanism the user can pursue analyses beyond those provided in the existing menu
arrangements.

The basic idea to keep in mind is that, with DINDE, an analysis consists of
creating, examining and performing operations on DINDE objects. A DINDE object
represents either an element or a stage in a typical analysis; each object encapsulates
some information generally considered to be relevant for that item or stage. (For
example, a data vector or a scatterplot would be an element, while consideration of
the regression of one variable on another, or the exploration of the structure of a
two-way table, would be a stage.) As such, these objects are meant to constitute building
blocks of the analysis.

Each DINDE object is created from a template called its class. Classes are
organized hierarchically, that is, a class may have one or more parent classes, each of
which is itself a class. DINDE gathers all these classes together and displays their
hierarchy as an inheritance network in a window called the toolbox. Moving left to
right in this display follows the inheritance from parent to child. (Section 4.1 displays
several branches of the inheritance network which can be seen in the toolbox.) DINDE
objects are instances of DINDE classes and may be created by selecting the class from
the toolbox (i.e., by pointing at a label on the network), clicking a mouse key, and
perhaps identifying components to be incorporated in the new object. Each class
represented in the toolbox can briefly describe its intended use and the user has access
to this toolbox at all times.

At the time a DINDE object is created, a visual symbol representing that object
is placed in another window called an analysis map. There it can be examined in detail
and directed to perform operations peculiar to its own kind. An object can be given
a unique name and can have user supplied commentary (editable text) attached to it.
DINDE objects often know how to spawn additional objects of like and unlike classes
(e.g., the LOG transformation of an Array object delivers a new Array; the
BivariateRegression object can produce specialized scatterplots)--our notion of soft-
ware guidance rests largely on this ability.

The analysis proceeds by creating more objects, examining them and linking them
together. At any time the current state of the analysis is visible in the analysis map as
a collection of statistically interesting objects some or all of which are linked together
in one or more networks.

Before examining the details of the toolbox and the analysis maps (4.1 and
4.2), it may be best to consider a small example of their use. Assume that the user
wants to fit a bivariate regression of Y on X. For brevity, also assume that the user
has created two FloatVectors (e.g., using the function C--as in the S language, C
concatenates small objects like numbers into a vector object) and has named them
BrainWts and BodyWts. The data we will use in this example represent the average

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

196 R.W. OLDFORD AND S. C. PETERS

brain and body weights, respectively in grams and kilograms, of 62 mammals (Weisberg
(1980, pp. 128-129)). These two objects appear as named FloatVectors of 62 elements
in an Analysis Map window as shown below. (This map and subsequent displays are
actual screen images--"bitmap" objects which have been copied directly into this
document.)

Analysis Map

BodyWts FloatYector (62) BrainVCts FloatVector (62)

All DINDE windows are sensitive to mouse operations. In general, mousing in
the title region of the window produces a menu whose entries offer operations relevant
to the entire collection of objects displayed, while mousing on a particular object in
the window produces menus allowing interaction with that object. There is a common
set of housekeeping functions for all windows, and each DINDE window can briefly
describe the way it may be used.

Data analysis using DINDE consists of building a network whose nodes are
DINDE objects (for more detailed discussion of these networks and their display, see
Oldford and Peters (1986b)). We begin the example analysis by moving the mouse to
the title region of the map above and pressing the middle mouse button. This produces
the following menu (arrows irdicate that a further menu may be obtained by sliding
the mouse to the right),

den the View

Add result of a form evaluation

from which we choose to widen the view of this DINDE window by selecting the item
"Add a new kind of Analysis node." DINDE prompts for the kind of node to be added
(i.e., asks its class), which the user then selects from the toolbox. Suppose that the user
selects the BivariateRegression class. Each instance of BivariateRegression incorporates
a Y vector and an X vector. As part of the initialization for the new BivariateRegression
object, the user is asked to identify a Y and an X. The user will typically respond by
mousing the appropriate vectors already visible in the map, here designating BrainWts
and BodyWts as Y and X, respectively.

At this point, the user is offered the opportunity to connect the newly created
BivariateRegression object to existing nodes in the map (including none). In this
example, we attach it to both existing vectors, resulting in the following map.

Here we might give the BivariateRegression a unique name and perhaps add some
notes to it, possibly explaining why we are considering a bivariate regression analysis
at all.

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

DINDE: MORE SOPHISTICATED SOFTWARE 197

Selecting the BivariateRegression with the middle mouse button depressed pro-
duces the following menu of items.

The leftmost stack of boxes provides access to two different collections of operations.
Class specific methods represent those that are defined specifically for the class of
BivariateRegression objects. Other methods are those which the BivariateRegression
class has inherited from the classes that are its parents. We expect the user to examine
Class specific methods first and thereby reveal the operations suited specially to the
local context. Section 4.1, on the toolbox, discusses inheritance issues further. Sliding
over the Class specific methods yields a menu where, given that we are interested in
performing a bivariate regression, the next steps typically taken in the analysis are
organized.

Selecting Suggestions from this menu will produce some general suggestions about
how the user might perform a regression analysis. In this case, the suggestion is to
visually inspect the data before doing anything else. More detailed suggestions, such
as how to inspect the data, what fitting methods might be used and so on, are found
by sliding the mouse over the Suggestions to get a more detailed menu. Note that these
suggestions are data-independent: they remain the same regardless of the values
attached to Y or X. (Data-dependent methods are possible as well, and are an open
research question. See 4.3 for further discussion.)

To inspect the data, the mouse is slid over Inspect the data to reveal the extended
menu,

ethod: Suggea:tions

IE 0 xPlotOfY
F’, ,-, ’.,. F’ ,-,tC)f’.x’

from which the ScatterPlot item is selected. The user is requested to use the mouse to
size a window region for the plot and the scatterplot below is produced.

LOTTING WINDOW

0

:5;,c: a erP lot

1000.0 2000.0 :3000.0 4,300.0 5,300.0 6000.,3 FOC,O.O

13 o,:tv’vV t.

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

198 R. W. OLDFORD AND S. C. PETERS

DINDE then attaches a ScatterPlot node to the BivariateRegression in the analysis map.

=n Analysis Ma

Bod.yWts FloatVector (62) BrainVCts FIotVector (62)

BivriateRegression

,I,I,’’’
8,::at t.ePP ot

Two things have happened. First, the usual scatterplot has been produced for the
user to view. Points that are selected may be deleted or labelled, axes may be scaled,
and so on. (Jan Pedersen’s code is used to display these plots.) Second, a SeatterPlot
object was created and its presence noted in the map. This SeatterPlot can be named,
can be documented and can respond to methods applicable to scatterplots. These
methods are accessed by depressing the middle mouse button over the SeatterPlot
object in the map or, alternatively, by depressing the same button in the title region
of the plotting window. They include adding to the plot either an arbitrary straight
line, the least-squares fitted line, a resistant line, or a running linear smooth.

At this point in the analysis, an experienced statistician would be uncomfortable
about fitting a straight line to the data as they are. Points might be deleted from the
plot to investigate those clumped in the left-hand corner, or various transformations
might be applied to the data. For brevity, we note that taking the natural logarithm
of Y and X works well on these data. Transforming to logs is accomplished by pointing
in turn at each of the FloatVeetors BrainWts and BodyWts, and pressing the middle
mouse button. This gives us access to the re-expressions possible for FloatVeetors
through the following menu system.

Constructo
’StructureDecription
N."-,H andling

LOGBinar’y C,pe ration
B in ar’.,,, C,:,mpari son
Summa.ryStatistic
P r,_-, b At:, iti e .," C., u anti e :;
F: e.n I..’:.i n9 .’So r-t.i n 9

LINARYM INUSI
TRUNC
SQRT
SIN
LOG10

LGAMMA
GAMMA
FLOOR
EXP
COS
CEILING
ATAN
ASIN
AC0S
AB.S

Selecting LOG, as indicated, spawns a new FloatVector from BrainWts, say, that has
as elements the natural logarithm of the elements of BrainWts. This vector is automati-
cally attached to BrainWts in the map.

We have done this for both BrainWts and BodyWts and have named the resulting
FloatVectors LnBrainWts and LnBodyWts, respectively. The scatterplot of these two
variables is the following.

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

DINDE: MORE SOPHISTICATED SOFTWARE 199

LOTTING WINDOW

_J

o.

c:
75

Sc:,atterpIot

++

+%

//

// ///

-5,0 -.o,5 0,0 _.5 5,0

LnBody V’,/t .’-_-,

10

Now, we might consider fitting a straight line.
As before, we add an analysis node to the map, again choosing a

BivariateRegression from the toolbox but now with Y and X identified as LnBrainWts
and LnBodyWts, respectively. The analysis to date is summarized in the map given
below.

Analysis Map

BodyWts FloatVector (62) BralnWts FloatVector (62)

.j..-.- --...._. =__=---=---------=--
LnBodyWts FloatVector (62) BivariateRegression LnBrainWts FloatVector (62)

/

ot.O Log.:

8cat.terP or. 8cat.terP ot
L,: l:-.

LnWtReg Bivari=teRegressien

Here, the ScatterPlot of the logged data and the new BivariateRegression have been
given names. For the most part, the actual arrangement of the nodes and links is
determined by the user. (It has been our experience that this arrangement is often a
matter of personal style. Hence, it has been left to the user’s discretion to produce a
meaningful network description of the analysis.)

Pressing the middle mouse button on this new BivariateRegression produces the
same extended menu as before. Having already looked at the relevant scatterplot, we
slide over to select a fitting method and choose least-squares.

hnspect the datal

l.ClO P. n0n.Fther methods -- - ":!

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

200 R.W. OLDFORD AND S. C. PETERS

This causes a BivariateLeastSquares object to be produced and attached in the map
to the BivariateRegression which spawned it.

n Analysis Map

BodyWts FloatVector (62) Brainfts FloatVector (62)

LnBodyWts FloatVector (62) BivariateRegeession LnBainWts FloatVector (62)

8catterP ot. 8catterP]ot

LnNtReg BivariateRegression

,//
BivariateLeastSquares

Pressing the middle mouse button on this object produces a collection of methods
which a BivariateLeastSquares can handle.

Selecting PrintEstimatesAndTStats causes the following table to be printed on the
screen.

Estimate Std Err Value

Intercept 2,18328 ,10682 20,q3935

Slope ,74328 ,83166 23,47690

Residual Standard Error ,77218

Multiple R-Square (centered) .90183

Alternatively, these numbers and other details of this BivariateLeastSquares can be
accessed by selecting it in the map with the left mouse button. This causes the following
menu to pop up.

Name this item
E,:lit notes

[,I r_ F:’ e ct

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

DINDE: MORE SOPHISTICATED SOFTWARE 201

From this menu we select the item Zoom. (By the way, this is the menu that we have
used throughout to name the various objects in the analysis.) This selection causes a
new kind of DINDE window, a "Microscopic View" of the selected object, to be
opened which displays the details of the object that has been zoomed-in on. For this
BivariateLeastSquares, the new window looks like

,/OegreesOfFreedorn: 60.0

//RSquared: .901827

// SlopeTStt: 23.769
///

.,,,.//., VarSIope: .001002139

,/,,’/"
,,,t,.y.......... InterceptTStat: 20.43935

!i.._.._.----
Varlntercept: ,0 140997

\...,,..,.....\ Intercept: 2.t632

which is again a network of sorts. All DINDE objects can be zoomed in on to reveal
their inner detail. An important point to note here is that each label in this network
again represents an object which can be examined, named, or commented on and
which responds to its own set of methods. For instance, we might now construct a
ScatterPlot in the analysis which used the Residuals for its Y coordinates and the
FittedValues for its X.

In the present case this is not necessary, since BivariateLeastSquares objects are
equipped to produce such important plots easily. By getting the extended menu for
this object we may produce a variety of residual plots.

Each of these produces its own kind of DINDE object having its own specialized
capabilities. For example, the interpretation of a QQplot is quite different from an
ordinary scatterplot and from these other residual plots. It therefore makes sense to
separate the different kinds of plots.

Let us suppose that the analyst has elected to see each of the available residual
plots and has explored them to his or her satisfaction. The analysis to date appears
as the following map.

Note that the logical flow of this analysis can be easily seen in this display. For
much larger analyses, the logic of the analysis will not always be so transparent.
Therefore, a number of tools are made available to the analyst which allow information
on the analysis to be added to its display.

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

202 R. W. OLDFORD AND S. C. PETERS

Analysis Map
BrainWts FloatVector (62)

BivariateRegression

Minimally, the analyst may add notes to any node (to describe what the relevant
features are at that node, why such and such a decision was taken, and so on).
Additionally, DINDE objects called Memos (objects which contain nothing but com-
mentary) can be usefully inserted as nodes at key decision points.

More direct methods exist which allow the analyst to alter the display so that it
best reflects the logic of his or her analysis. These include the ability to make and
break links between nodes (n.b., causal relationships between nodes cannot be
rearranged in DINDE; see Oldford and Peters (1986b) for further details). In this way
the network itself can be rearranged.

Perhaps the most important analysis management tool is the ability to compress
parts of the analysis into smaller subanalyses. This is achieved by selecting the title
bar of the analysis map with the middle button depressed and selecting the "Create
a View" item from the resulting menu (as below).

This done, the analyst is prompted to identify those nodes which are to appear in the
new analysis map. From the example, suppose that the analyst selects the two nodes
representing the initial false start of the analysis, namely the first BivariateRegression
and Scatterplot objects produced. The effect on the analysis can be seen below.

Analysis Map
BodyWts Float:Vector (62)

LnBodyWts (62)

Lo’i:’
,+.:4

LntReg BivariateRegression

BivariateLeatquares

BrainWts FloatVector (62)

LnBrainWts FloatVector (62)
,-" J

P,e’
*+

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

DINDE: MORE SOPHISTICATED SOFTWARE 203

A small icon representing a different analysis map has appeared in the network
at the location previously occupied by the BivariateRegression and Scatterplot objects.
This new node can be interacted with in the same fashion as any other node. Indeed,
the displayed node has already been named DeadEnd by the analyst. Zooming in on
this icon produces the following analysis map.

eadEnd

Bivria eRegression

ot
L.’-:

This analysis map is identical in functionality to the larger one and, should the analyst
choose to do so, the analysis may be continued in a more focused fashion from within
this map. This facility enables the analyst to control the level of detail displayed and
to break up the analysis into more manageable chunks. (Analysis maps are more fully
discussed in Oldford and Peters (1986b).)

The user now has the entire analysis organized and displayed as a network (in
fact a directed graph) having arbitrarily many levels of detail. The attached commentary,
the ability to interact with a single node, and the visual flow of the analysis map should
permit the analyst to reproduce the reasoning that was used, and the issues that were
involved, in building the analysis. This has important consequences. Besides easing
the production of a final report and allowing the user to profitably return to the analysis
at another time, the analysis map affords the professional analyst the opportunity to
visualize the overall structure of the analysis and hence more easily consider the
statistical strategies that were employed.

4. Underlying ideas. In this section we describe the key ideas which underlie
DINDE. The presentation has been divided into three subsections. In the first of these
we describe the contents of the toolbox--that collection of basic DINDE classes which
one may use to build an analysis. The way analyses are built and recorded in DINDE
is treated in 4.2. Section 4.3 discusses the manner in which we feel statistical expertise
can be reasonably placed within a system like DINDE. The discussion here focuses
on issues and philosophy of design; detailed documentation of the components appear
elsewhere.

4.1. The toolbox. The toolbox contains those classes of objects which can be
created and used in a statistical analysis. Since the analysis is represented as a collection
of networks whose nodes are these objects, it is critically important that the classes
represent meaningful chunks ofinformation. This is perhaps one ofthe most challenging
aspects of creating a sophisticated system like DINDE. It requires an identification
and grouping of the elements that are important in a statistical analysis, a statistical
taxonomy of sorts. To this end we suggest a coarse partition of such elements into six
basic element types: (i) Data, (ii) Graphics, (iii) Situations, (iv) Models, (v) Tables
and (vi) Designs.

To date only the first three of these exist in DINDE. Only these were necessary
to build a prototype bivariate regression analysis, but we anticipate that Models (such
as parametric probability models), Tables (such as many-way contingency tables) and
Designs (such as experimental and survey designs) will be required before long.

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

204 R. W. OLDFORD AND S. C. PETERS

Object oriented programming is pervasive in DINDE and nowhere is this more
evident to the user than in the toolbox. Here a network is displayed which shows both
the classes of objects available and their relationship to one another. It begins with
the most general class DINDEObject. The immediate children, or specializations, of
this class are shown to the right of DINDEObject and attached to it by a line segment
as below. (Far from serving as a simple place-holder, the class DINDEObject defines
or "mixes in" a wide variety of important behaviors, among which are the ability to
name and annotate objects, the basic linking operations and certain mouse responses.
The descendants of DINDEObject for the most part inherit these behaviors
"orthogonally," that is, without further specialization.)

The Data factor of our classification is represented here by the class Array. These
classes have further specializations which appear in the toolbox. We discuss each in turn.

The class Array has three different specializations corresponding to the three
modes for data values that we have adopted: floating point numbers, character strings
and Boolean values. These subclasses are BooleanArray (an array of data which take
on the values true, T, or false, NIL), FloatArray (an array containing floating point
numbers) and StringArray (containing arbitrary character strings). Array is also special-
ized into the three familiar array shapes: Matrix, Vector and Scalar. Each of these in
turn have specialized subclasses leading to the following network for the data.

The inheritance in this network runs left to right, from parent to child. It allows
us to collect together those methods and variables which classes share and to attach
them to a common ancestor. For instance, all FloatScalars, FloatVectors and Float-
Matrices should be able to take the logarithm of their elements. Hence, the method
LOG is defined for a FloatArray and is inherited down through the hierarchy by the
others. It is not defined for Array because it makes no sense to try to take the log of
either BooleanArrays or StringArrays. Similarly, BooleanMatrix, FloatMatrix and

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

DINDE: MORE SOPHISTICATED SOFTWARE 205

StringMatrix are also all children of Matrix. This lets us attach strictly matrix attributes
(like transpose) to the single class Matrix. (We now think that the Array hierarchy
presents too much detail at too primitive a level. In a separate paper we describe new,
higher-level data objects which address the special needs of statistics and data analysis
(Oldford and Peters (1986c).)

The network of classes below Graphic is the following.

/:: \ Histogram

"’"’"’"’"’"’"’"’"’"\ / ScatterPIot ResidualScatter 1.-- ResidualVsFit

/.:

At present, all DINDE graphics are based on simple one- and two-dimensional plots,
as represented by lDPlot and XYPlot, respectively. For illustration, consider XYPlot.
This graphic class has all the information necessary to produce a two-dimensional
scatterplot of points. Information like the X and Y coordinates of the points, how to
plot the points, how to label them and so on is collected here. IndexPlots are specialized
XYPlots that automatically provide X coordinates which are the numbers 1 to N,
indices for the components of Y. Similarly, QQPlots require both X and Y to be sorted.
ScatterPlots are just those XYPlots to be used in a statistical analysis and hence have
slightly more information attached to them, like how to add to the plot a least-squares
fitted line, or some simple smooths.

This brings up an interesting point which was not encountered with the purely
data constructs like FloatVectors. With Graphics, behaviors and information are now
attached to a given class which are of interest only in a particular statistical context.
Adding a smooth to a scatterplot is a statistical procedure useful for exploring the
apparent dependence of one variable on another--it is not a useful adjunct to all
possible XYPlots. The additional ability to smooth positive and negative Y’s separately
is a very useful device when the Y coordinates represent residuals; hence the further
specialization to ResidualScatter plots. Specializations are thus created to sort out the
pertinent statistical procedures and information. This results in having the tools most
accessible when they are most needed.

A straightforward extension of these ideas is to provide a grouping of statistical
concepts, information and tools, which could be perceived as representative of some
typical stage or decision point in an analysis. We have called such groupings Situations.
While these are presently few in number, examination ofthose now available in DINDE
should illustrate the idea. The figure below shows the Situations presently available in
DINDE as they would appear in the toolbox.

Situation ,..-7--- BivariateFlegression
;;.’"-’.’.’-’.’.’.’.’.’.’.’.’:"

\" BivariateFit BivariateLinearFit ., BivariateResistantFit

BivariateLeastSquares

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

206 R.W. OLDFORD AND S. C. PETERS

The BivariateRegressionSituation represents that point in the analysis where the analyst
has decided to perform a bivariate regression of Y on X, and as such it must contain
the minimal amount of information and set of tools required to make the next decision.
It identifies the variables Y and X, contains some suggestions as to how to proceed
and offers easy access to typical next steps (like plotting the points or fitting a straight
line). If, at the BivariateRegression step, one elected to do a least-squares linear fit of
Y to X, then a BivariateLeastSquares object would be produced. The BivariateLeast-
Squares Situation is a specialization of a BivariateLinearFit, which is itself a specializa-
tion of BivariateFit. All BivariateFits have pointers to the X and Y vectors on which
they are based and contain vectors of the fitted values and the residuals from the fit.
Further, they can take a number of relevant actions such as producing a variety of
residual plots. Additionally, BivariateLinearFits contain the parameter values which
define the fitted line. BivariateLeastSquares contain yet more information such as
variance estimates and t-statistics. This is distinguished from the BivariateResistantLine,
representing the fit obtained by fitting the "resistant line" (see e.g., Velleman and
Hoaglin (1981)), which has diagnostic information like the ratio of the half-slopes.

In Situations we see a need for much more work, both on those Situations we
have created thus far and on new ones. Situations require the factorization, cataloguing
and bundling of many statistical concepts, tools, techniques, etc., and the identification
of the relationships between them (i.e., how one usefully leads to another). As such,
the creation of each must be carefully undertaken. Their constituent parts must be
based on sound statistical theory and practice, and their appropriate interconnection
is often an open research question. We expect this to become ever more poignant as
statistical situations more complex than simple bivariate regression are considered.

The complete collection of tools are made available to the user through a DINDE
window which displays them in a network reflecting their familial relationships. This
window, which we have been calling the toolbox, appears in its current entirety below.
(For clarity, we have excluded the classes: BooleanArray, FloatArray and StringArray.)

IDE TooIIox

/. BooleanMatr|x

,,,iiMatrix :: FloatMatrix
/"" "StringMatrix

/, BooleanScalar

I:................./., i:..................!: ’",.
FloatScalar

StringScalar

BooleanVector

Vector ..--- FloatVector
StringVector..................... BoPIt
Histogram

DINOEObject --!!Graphic
$catterPIot Residualcatter ResidualVsFitl,l,, ’,,,,,,,,.,

"’!iXYPIoti IndexPIot Res|dualVslndex

’M "’-..!iQQPIi! qqEmpirical

"’.i:QQTheoretical :i-- OQGauss

Situation:: BivriateRegres$ion

BivriateFit BivriateLinearFit BivriateLeastSquares

BivariateResistantFit

The experienced statistical analyst should recognize all of the items in the toolbox,
and should be able to locate the desired item by moving left to right through the
network, from the general to the more specific, until the item is reached. In the event

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

DINDE: MORE SOPHISTICATED SOFTWARE 207

that it is not clear to the user what a particular class represents, or what it might be
used for, various amounts of information on the class are readily available. The
information is accessed simply by selecting the item with the left mouse button. This
causes the following menu to pop up; from it the appropriate selection is made.

P,e q ulre d",/;_rl;_bl e
Flefererlce:-3
Fil.-d,,Vh e re b
Iraterr ;:.1D e :_--; c r’i ptio r-,I

Short or long summaries of the class, a list of the components any instance of the
class will require (e.g. BivariateRegressions must have a Y and an X variable) and
references to the literature are all available ifthe user makes the corresponding selection.
FindWhere identifies the parent from which any variable or method owned by that
class was inherited, and InternalDescriltion gives a skeletal outline of the class in
question showing its variables, methods and parents (super classes). (A possible
extension to this menu would be a series of examples concerning the usage of instances
of the class.) This kind of information is available for all classes in DINDE and is
directly accessible from the toolbox.

4.2. Recording analyses. The toolbox represents a static component of DINDE
and remains unchanged from analysis to analysis. The dynamic component lies in the
construction and refinement of the analyses themselves. In this subsection we highlight
the features of DINDE which allow the analyst to do just that. More detailed discussion
can be found in Oldford and Peters (1986b).

A statistical analysis in DINDE consists of creating instances of one or more
classes to produce DINDE objects that may then be joined together. Analysis maps
are built in one of two ways. First, the user can select a class from the toolbox by
attaching the resulting instance of that class anywhere in the map. Alternatively, the
user could invoke a method from an existing node which might cause a new object to
be created and attached to the selected node. The map always reflects the steps taken
in the analysis so far and their logical interconnections. In addition, some partial time
ordering of the nodes is implicit in the construction of the map. (All links are in fact
directed links. Each node records the nodes to which it points "backward" and those
to which it points "forward." Though not displayed as such, the maps are directed
graphs.)

DINDE also lets the analyst make and break connections between nodes. In this
way, time ordering may no longer be preserved. Inserting a Memo between nodes is
a good example where time order might be sacrificed to yield a more understandable
analysis. The only requirement of a network link is that it be meaningful to the analyst.
Other links exist, possibly unknown to the user, which capture the legitimate causal
relationships between DINDE objects. These cannot be made or broken by the user
and are displayed in a different kind of DINDE window called a "Causal map" (see
Oldford and Peters (1986b)).

For complex analyses the analysis map may become rather unwieldy. However,
as analyses grow there will likely be segments or subsets of the map, submaps say,
which can be thought of as representing small analyses in their own right. As was the
case of the DeadEnd analysis of the example, it is helpful to encapsulate the smaller
analysis as a single node in the map depicting the larger analysis. As a node in the
larger analysis, it is able to respond to methods, can be named and can have commentary

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

208 R.W. OLDFORD AND S. C. PETERS

added to it just like any other node. Zooming on an AnalysisMap causes the correspond-
ing analysis map to be opened, showing the details of the network it contains (which
might in turn contain further AnalysisMaps, etc.). In this way, the analysis can contain
many layers of detail, each one of interest at various stages in the analysis (see Oldford
and Peters (1986a) for discussion). We anticipate that the number of layers will depend
upon the particular statistical problem being undertaken. Therefore, no limit is placed
on the number of layers allowed; it will depend upon the analyst to determine the
layering appropriate for the problem.

Zooming is thus the vehicle used to descend deeper into the analysis map. At its
bottommost level (the MicroscopicView) it displays the variable names and their values
(other DINDE objects) and permits the same kind of interaction with these variables
as would be allowed in an analysis map. This was demonstrated in 3 on a
BivariateLeastSquares object. Ascending back up through the analysis is no problem.
Any number of maps/levels are displayed on the screen at one time. Windows corre-
sponding to maps need only be shrunk or closed to remove them from display (shrinking
replaces the map with a small icon indicating that it is a map, and giving its name if
any). The subtleties of managing system resources when there are many windows on
the screen is beyond the scope of our discussion. However, we note that this issue has
been effectively addressed in the Boxer (Abelson and DiSessa (1986) and Notecards
(Xerox (1985)) systems.

4.3. Guidance. It is our intention that the user be given free rein in the construction
of the analysis. This is in keeping with having a professional statistician as the target
user. Nevertheless, DINDE is constructed so as to inconspicuously guide the analysis
where possible.

Two different approaches to this task can be taken. In one, the guidance is strictly
independent of the data at hand. A metaphor might be the sort of guidance given over
the telephone by an experienced statistician to a less experienced one. The advice-giving
statistician has no access at all to the data, not even to the subject-matter context from
which the data arose. The less experienced statistician only wants to know, for example,
how one should perform a regression analysis, what to look for, and so on. (Argument
for the credibility of this metaphor can be found in Oldford and Peters (1986a).)

In DINDE, we mimic this kind of guidance through the selection and design of
classes, in particular the Situation classes. Each class represents a stage or element in
the overall analysis. Hence, the choice of classes in DINDE represents our cataloguing
of the statistical procedures and concepts we regard to be relevant to different kinds
of analyses (BivariateRegression, BivariateLeastSquares, UnivariateTimeSeriesAnalysis,
etc.). The organization of the methods that a particular class of object responds to
indicates those steps that are generally taken next in the analysis. For example, a
BivariateLeastSquares object offers a selection of methods which each produce a useful
residual plot. In this way, what appears to be merely convenient for the experienced
analyst turns out to be guidance for the less experienced.

This data-independent channelling of the analysis is made more explicit by adding
Suggestions to each DINDEObject. In this way, some text may be given which organizes
the alternatives according to various characteristics of the data and analysis to date.
The onus is then on the user to determine how the characteristics of the current data
and analysis match those outlined in the Suggestions. Self-explanatory examples would
also be helpful in this regard.

The second approach is the data-dependent one, whereby suggestions made to
the user are based upon having the system investigate, and give some interpretation

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

DINDE: MORE SOPHISTICATED SOFTWARE 209

tO, the properties of the data in hand. Bivariate regression analysis in REX is an
important example of this approach (see Pregibon and Gale (1984)).

In DINDE, we plan to adopt this approach in an inconspicuous and quite local
manner. It is local in two senses. First, such data checking operations would be attached
to particular DINDE classes and would be available to the user as a method of that
node type in the analysis. Second, the method itself would have access to only two
sources of informationmeither that attached to the object, or that to be had by querying
the user. In particular, no information regarding the analysis map or history would be
used. In this way, no attempt is made to provide the user with a global analysismall
suggestions are local and therefore the analyst may justifiably choose to ignore them
in light of the rest of the analysis.

For instance, a BivariateRegression might have a method called CheckFunctional-
Form, which would try to determine whether different transformations of the X and
Y data might be better suited to a linear regression analysis, and provide evidence for
any comments made. (Hopefully, the logarithmic transformation would be suggested
in the example.) The user would then be free to follow the suggestions or not.

While both approaches have merit, we feel that data-independent channelling is
more easily implemented and provides much of the guidance that can be competently
given (for further discussion, see Oldford and Peters (1986a)). In any case, it seems
to be the natural precursor to the data-dependent form of guidance.

5. DINDE and statistical strategy. In Oldford and Peters (1986a), we argue that
complete software representations are not likely to be constructed for many of the
analysis strategies used by practicing statisticians. Statistical strategies that show the
most promise are those that both depend little upon correctly interpreting the subject-
matter context surrounding the problem, and are applicable to only a relatively small
number of problems.

Strategies that most easily fit this description are those we call low-level low-context
strategies; an example is the strategy employed to assess the number of near dependen-
cies in a regressor matrix. "Low-level" means that the strategy typically appears as a
low-level operation in some wider analysis. "Low-context" indicates that the strategy
relies little upon the subject-matter context for its correct application. Typically, these
strategies are applied in a narrow domain of well-defined problems, yet depend on
some judgment in their application.

Representations of these kinds of strategies appear in DINDE as methods of the
objects for which they are most relevant. If, for instance, a particular strategy to check
the correctness of the functional form in a bivariate regression is desired, then it would
appear on the BivariateRegression class as the method CheckFunctionalForm. The
method could invoke a procedure or create a more detailed object that contained the
necessary tools and information to go about applying the strategy.

Higher-level strategies are of more interest; consider, for example, the strategy
employed by an experienced statistician using multiple regression tools to describe the
relationships between two sets of variables. At this level, effective strategies typically
depend critically upon correct interpretation of the background context, making it
difficult to construct complete representations for them. Therefore, we propose that
the context-dependent elements of the strategy be removed; the telephone conversation
between the experienced and inexperienced statisticians provides a simple metaphor
for what might remain (see 4.3).

To achieve this, the strategy is first broken into its constituent parts (Pregibon
(1985) has outlined rules for doing this). These components could be connected together

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

210 R. W. OLDFORD AND S. C. PETERS

and provided to the user as a single overall strategy, as in REX for bivariate regression
(Pregibon and Gale (1984)), but we prefer that they be made directly available to the
user and that the connections only be pointed out as often being appropriate. The
decision to consider a component or make a connection is then left entirely to the
user: at this level of strategy the analyst is more competent at interpreting the relevance
of the various components than is a software representation.

In DINDE, these component pieces are represented as distinct classes. Intercon-
nections are indicated by the methods attached to the classmby their presence and by
their application. Data-independent Suggestions describe a strategy to choose the next
component; data-dependent analogues would be implementations of some of these
small strategies. The example in 3 shows some ofthe components and interconnections
of a strategy for bivariate regression analysis.

For high-level strategy, visually presenting the parts and connections makes these
aspects of the strategy apparent. The analyst sees the analysis develop, parts of it that
are according to the canned high-level strategy, and more important, parts of it that
are according to the analyst’s personal strategy. The analyst may then be tempted to
think more about the strategy he or she employs. (Various network operations,
AnalysisPaths, and user-added commentary aid the development of the latter.) Further,
by collapsing pieces of the network into SubMaps that can be named and that can
have user-added commentary the analyst can define the levels of abstraction appropriate
for the problem and strategy. These various levels of abstraction help the analyst to
both better manage the analysis and better illuminate the personal strategy being used.
The analysis, then, is seen to be an intertwining of two strategies, that of the analyst
and that of the developer.

6. Concluding remarks. At present DINDE exists as a vehicle for research into
statistical system design and questions of statistical strategy. As yet we have only
produced the statistical tools necessary to perform a bivariate regression. Incorporating
other and more complex statistical situations requires new and different research in
applied statistics and statistical computing. Our purposes here are to outline some of
the design considerations involved in pursuing such research and to encourage others
to join in the endeavour.

This paper has explored several techniques which place greater responsibility on
the computing environment for support of an evolving data analysis. From the outset,
managing the complexity of the analysis has been a primary concern for our design.
In summary we think there are three aspects. The first involves the selection and
application of statistical methodology; at present DINDE offers a limited choice of
techniques. Yet we believe our design will scale up gracefully as more, and more
complex, techniques are installed. Next, experimentation and improvisation with new
methods are simplified in the Loops environment. The user interface and all that lies
behind it are expressed in a single language and exploit a common set of programming
tools. Last, we offer a model (based on acyclic graphs) for the process of data analysis.
We think that the subsequent discipline (attaching nodes, zooming, shrinking, partition-
ing the graph into subanalyses, etc.) eases the analyst’s burden in organizing the analysis.

Finally, it is our intention to make DINDE code available to other researchers
in these areas: the code is easily extended using the tools available in LOOPS and the
Interlisp-D environment. We also watch with interest the development of CommonLisp
(Steele (1984)) for workstations. Some CommonLisp implementations allow incorpora-
tion of compiled Fortran algorithms, an obvious requirement for a DINDE production
system. Further, we believe that much of what has been done could be ported to other

D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

DINDE: MORE SOPHISTICATED SOFTWARE 211

object oriented environments (e.g., Smalltalk, or CommonLoops built on CommonLisp)
with minimal difficulty.

REFERENCES

H. ABELSON AND m. DISESSA (1986), Boxer: a reconstructible computational medium, Comm. ACM, 29,
pp. 859-868.

R. A. BECKER AND J. M. CHAMBERS (1984), S: An Interactive Environmentfor Data Analysis, Wadsworth
Press, Belmont, CA.

D. G. BorRow AND M. STEFIK (1983), The LOOPS Manual, Xerox PARC, Palo Alto, CA.
D. B. CARR, P. J. COWLEY, M. A. WHITING AND W. L. NICHOLSON (1984), Organizational tools for data

analysis environments, Proc. American Statistical Association: Statistical Computing Section,
Washington, D.C., pp. 214-218.

D. L. DONOHO (1983), DART: A tool for research in data analysis, Ph.D. thesis (unpublished), Dept. of
Statistics, Harvard University, Cambridge, MA.

A. GOLDBERG AND D. ROBSON (1983), Smalltalk-80: The language and its implementation, Addison-Wesley,
Reading, MA.

P. J. HUBER (1985), Environments for supporting statistical strategy, in Artificial Intelligence and Statistics,
W. A. Gale, ed., Addison-Wesley, Reading, MA, pp. 285-294.

INTERLISP (1983), Interlisp Reference Manual, Xerox PARC, Palo Alto, CA.
R. M. KAPLAN, B. A. SHELL AND E. R. SMITH (1981), The Interactive Data-analysis Language Reference

Manual, Xerox PARC, Palo Alto, CA.
J. MCDONALD AND J. PEDERSEN (1985a), Computing Environmentsfor Data Analysis I. Introduction, this

Journal, 6, pp. 1004-1012.
(1985b), Computing Environments for Data Analysis II. Hardware, this Journal, 6, pp. 1013-1021.
(1988), Computing Environments for Data Analysis III. Programming Environments, this Journal, to

appear.
W. L. NICHOLSON, D. B. CARR, P. J. COWLEY AND M. A. WHITING (1984), The role of environments in

managing data analysis, Proc. American Statistical Association, Statistical Computing Section,
Washington, D.C., pp. 80-84.

R. W. OLDFORD AND S. C. PETERS (1986a), Implementation and study of statistical strategy, in Artificial
Intelligence and Statistics, W. A. Gale, ed., Addison-Wesley, Reading, MA, pp. 335-353.

(1986b), Data analysis networks in DINDE, in Proc. American Statistical Association, Statistical
Computing Section (plus videotape), Washington, D.C., pp. 19-24.

(1986c), Object-oriented data representationsfor statistical data analysis, COMPSTAT-86, Rome, Italy,
Physica-Verlag, Heidelberg.

D. PREGIBON (1985), A DIY guide to statistical strategy, in Artificial Intelligence and Statistics, W. A. Gale,
ed., Addison-Wesley, Reading, MA, pp. 389-400.

D. PREGIBON AND W. P. GALE (1984), REX: an expert system for regression analysis, COMPSTAT-84,
Prague, Physica-Verlag, Vienna, pp. 242-248.

B. SHEIL (1983), Power tools for programmers, Datamation, February, pp. 131-143.
G. STEELE (1984), Common Lisp, Digital, Billerica, MA.
M. STEFIK, D. G. BOBROW, S. MITTAL AND L. CONWAY (1983), Knowledge programming in LOOPS:

report on an experimental course, The AI Magazine, 3, pp. 3-13.
W. TEITELMAN AND L. M. MASINTER (1981), The Interlispprogramming environment, IEEE Trans. Comput.,

14, pp. 25-34.
R. A. THISTED (1985), Representing statistical knowledge and search strategiesfor expert data analysis systems,

in Artificial Intelligence and Statistics, W. A. Gale, ed., Addison-Wesley, Reading, MA, pp. 267-284.
P. VELLEMAN AND D. HOAGLIN (1981), Applications, Basics and Computing ofExploratory Data Analysis,

Duxbury Press, Boston, MA.
D. WEINREa AND D. MOON (1981), Lisp Machine Manual (Fourth edition), MIT Artificial Intelligence

Laboratory, Cambridge, MA.
S. WEISaERG (1980), Applied Linear Regression, John Wiley, New York.
XEROX (1985), NoteCards Release 1.2i Reference Manual, Xerox Special Information Systems, Pasadena,

CA.D
ow

nl
oa

de
d

07
/3

1/
20

 to
 1

29
.9

7.
19

3.
44

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

