
Journal of Econometrics 38 (1988) 227-246. North-Holland

OBJECT-ORIENTED SOFTWARE REPRESENTATIONS
FOR STATISTICAL DATA*

R. Wayne OLDFORD
University of Waterloo, Waterloo, Ont. N2L 3G1, Canada

This paper presents new software designs for statistical data. These are implemented using an
object-oriented programming paradigm. The implementations are built in a layered fashion from
independent representations for the individual, variate, and datum components of a statistical
observation to representations for univariate samples and multivariate observations. These in turn
are combined according to a software model for an entire data set. This model is quite general and
is shown to easily accommodate rather complex data sets. Statistical data-descriptive methods also
separate according to the data representations and are therefore incorporated in their definition.
How these data representations could be used in a new kind of statistical analysis system is also
discussed. In particular, there are some strong implications for interactive statistical graphics.

1. Introduction

In recent years, an important theme has emerged from a variety of subdisci-
plines of computer science that deal with software engineering. These include
such seemingly diverse areas as artificial intelligence, data base design, and
programming languages [e.g., see Brodie et al. (1984)]. Simply put, the con-
sensus is that there are strong reasons to recommend building self-contained
software abstractions that closely match the natural components of the prob-
lem under study. This is particularly important for large software systems that
change over time. The point is convincingly made in Abelson and Sussman
(1985).

Statistical analysis systems are moderately large software systems. More-
over, it is the nature of statistical data analysis to require extending the system
to meet the demands of new problems. It has been argued that this implies
that statistical data analysis should be carried out in a highly integrated
programming environment [McDonald and Pedersen (1986)]. These are typi-
cally found on single user workstations (e.g., lisp workstations) with large real,
and much larger virtual, memories where many processes can coexist. This
paper presents software representations for statistical data that are designed
for such environments. The software described here has been implemented on
a Xerox Interlisp-D workstation but could also have been implemented in any
other environment supporting object-oriented programming. Elements of this

*Research supported by the Natural Sciences and Engineering Research Council of Canada and
by the U.S. National Science Foundation grant no. IST-8420614.

0304-4076/88/$3.50 0 1988, Elsevier Science Publishers B.V. (North-Holland)

228 R. W. Oldforri, Software representations for statistical data

programming paradigm are discussed as needed in section 3, but see also
Abelson and Sussman (1985) and Stefik and Bobrow (1985).

The design of these representations begins with three fundamental, and
generally agreed upon, components of statistical data: the variate being
measured, the measurement itself, and the individual (or sampling unit) on
which the measurement was taken. The components and their properties are
described in section 2. In particular, there is a good deal of contextual
information wrapped up in what is meant by a statistical observation. As this
information can often be crucial to the statistical analysis, it should be
recorded on the representation of a statistical observation whenever possible.
Section 2 discusses how much of this information can be separated and
assigned to each of the three components. Thus circumscribed, each compo-
nent is given a separate and independent software representation in section 3.
To this end, the object-oriented paradigm is used.

More complex data like univariate samples, experimental factors, and
multivariate observations are given software representations in section 4 that
build on these basic components. These kind of data are traditionally repre-
sented as either the columns or rows of some data matrix. However, such
representations discard the contextual information available on the individual
components. There is additional important contextual information that does
not belong to the three basic components, but is naturally associated with the
higher level compositions of samples and multivariate observations. And this
information is not properly part of a vector’s representation. The same is true
with many statistical methods. This does not deny the usefulness of vectors
and matrices as mathematical constructs, only as accurate representations of
statistical data. Section 4 presents new representations of these compound
data types. The representations attempt to embody the statistical characteris-
tics that are associated with what they model.

By closely matching the representation to the abstract statistical datatype,
the representation becomes a believable token for that statistical abstraction.
For example, a single individual could appear in many samples. Consequently,
a believable token for this individual would be single representation that was
accessible from the software representations of all samples containing that
individual. This has important implications for quickly accessing up to date
information on that individual at different points in the analysis. Since many
pieces of software share the representation of the individual, they will always
have the most recent information available on that individual. Moreover, if the
matching of representation to statistical abstraction is clever enough, this
information will be exactly where we expect it.

Just as many univariate samples, or multivariate observations, are combined
to produce a data set, so too are their representations combined to give the
software representation of a data set. This representation is discussed in
section 5. Again, certain kinds of information and methods are associated with
data sets and these will need to be incorporated into the representation as well.

R. W. Oldford, Software representations for statistical data 229

It turns out that these representations are enough to represent quite complex
data relationships in a natural way. Examples are given in section 6.

How these data representations could be used in future, more integrated,
data analysis systems is discussed in section 7. There are some obvious
implications for statistical graphics. Finally, some closing remarks are given in
the last section.

2. statistical data

The simplest statistical observation is the value of a variate recorded on
some item or individual. As such, it contains a good deal more information
than its value alone would indicate.

For example, irrespective of the individual involved, 11.4 centimetres is a
suspicious value for the height of a human. This is because the variate (human
height), together with the units of measurement (centimetres), gives informa-
tion that makes the value suspect relative to our prior understanding of the
context. Similarly, if ‘11.4’ is instead the gross national product of a nation
measured in billions of U.S. dollars, then the nation’s identity contains
relevant information. For many nations, 11.4 billion U.S. dollars is an unlikely
value for the gross national product. Apart from the actual measurement, both
the individual on which the measurement is taken and the variate measured
provide extra information which can be critical to the statistical analysis.

Indeed it is this kind of contextual information that distinguishes a statisti-
cal observation from its familiar mathematical abstraction xij. For the
mathematics, it is enough that the indices distinguish the individuals, i, and
the variates, j, but for the statistical analysis, the real world context in which
the measurement was taken is crucial. In the transition from the statistical
observation to its mathematical representation, such information is discarded.

This contextual information is not regained in the transition from xii to its
software representation as, say, a doubly indexed floating point number. Nor
should it be, if the floating point number is to represent a real-valued number.
Instead, a statistical observation would be better served by a different software
representation, one that incorporates more of its contextual information.

To a remarkable degree, much of the contextual information on a single
observation can be cleanly separated into the three sources already mentioned:
the individual, the variate, and the measured value. For example, consider a
national study where economic variates are recorded for each of many years.
Here each year is an ‘individual’ on which many different economic variates
have been measured.

While these measurements will contain most of the information of economic
interest for a given individual, there is almost always other information
available which is not expressed as the value of a variate. Either the informa-
tion is not easily expressed as a measurable variate or it is deemed a priori to
be of marginal interest to the study. For our example, such information might

230 R. W. Oldford, Software representations for statistical data

be a unique event which occurred in a given year - a war began or ended, a
government changed, an international cartel formed, a strike occurred, and so
on.

The value of this information is often realized when an examination of the
data uncovers a pattern or discrepancy that cannot be accounted for by the
measured variates. The extra, non-measured, information is then consulted to
explain the pattern or discrepancy. On the basis of such information, some
adjustment will likely be made in the subsequent analysis. Perhaps a model
will be adjusted, or a new variate introduced (with a value for each individual).

Similarly, each variate has information that is common to the individuals on
which it has been measured but which is not to be found in the measurement
itself. For example, suppose that the variate is the gross national product.
Then a description of what is meant by ‘gross national product’, how it is to
be interpreted, what its relationship is to other variates (a linear combination
of some, a possible surrogate for others), and the like, would be important
variate information that is independent of any measurement or individual.

Conversely, there is information on the measurement itself that is indepen-
dent of both the individual and the variate. The value actually recorded, its
number of significant digits (if quantitative), whether it is censored (if so, from
the left or the right?) are all of this nature.

Since much of the information in a single statistical observation can be
separated according to these three sources, it is useful to have a software
representation for each. Then, should information be required on a given
variate, it can be made accessible from the representation for that variate with
minimal, if any, interaction with the representation of any individual or
measured value - or anything else. This is especially attractive when different
parts of a statistical system access the same piece of information. The software
model for a statistical observation is then simply some composition of the
three component models.

3. Modelling the components

An object-oriented programming approach is used to model each of the
three components of a statistical observation. This approach is based on
software constructs called objects.

In brief, each object is a combination of both procedures (called ‘methods’)
and data (stored as the values of ‘instance variables’). A class is a structure
defined to represent the attributes that are common to many objects. Indeed,
every object is defined to be an element or ‘instance’ of one or more classes. In
this way each class gives a template of generic attributes for objects to match.
These classes can be organized into an inheritance hierarchy whereby one class
‘inherits’ all of the procedures and variables of another class simply by naming

R. W. Oldford, Software representations for statistical data 231

the second class as one of its parents. Every class can have multiple parents
and multiple children. This turns out to be an extremely effective way to
organize the ensuing software - not least because the abstractions the software
represents are often naturally organized in this way. The following discussion
applies this approach to build object-oriented representations for statistical
data. [Stefik and Bobrow (1985) give a more general treatment of object-ori-
ented programming. Oldford and Peters (1988) describe the object-oriented
system used here in more detail.]

Using this programming paradigm, the three components of a statistical
observation have been modelled as follows. The general concept of each
component is represented as a different object class. In particular, the individ-
ual or item component of an observation is represented by an object class
called Individual. Similarly, object classes called Variate and Datum represent
the variate and measurement components, respectively.

The distinction between a class and an instance of a class is now more easily
described. Each class is the template for the generic attributes of the compo-
nent it models. The Individual class, then, represents the individual component
of a conceptual observation. But an instance of this class represents the
individual component of realized observation (e.g., the year 1974, the country
France, or the person John Doe). Similarly, an instance of the class Variate
would be used to represent the variate known as ‘gross national product’ while
the class itself would represent what is meant in general by the term variate.
The same can be said for any class and its instances.

The features of a class called ‘Instance Variables’, or ‘IVs’ for short, are
used to represent attributes that are common to all members of the class but
whose value may differ from member to member. For example, the class
Individual has the IVs ‘Label’ and ‘Notes’. These IVs give slots where
individual-specific information that is not expressed as a measure on a variate
can be stored. Thus, each instance of Individual will have its own name or
label as the value of the ‘Label’ IV, and some a priori description and/or
supplemental information learned during the course of the study, stored as the
value of its ‘Notes’ IV.

Procedures, called ‘methods’, are attached to a class to give its instances
relevant procedural behavior. For Individual, methods are defined which
permit interaction with the values of its IVs (e.g., an ‘EditNotes’ method).

Like Individual, Variate has ‘Label’ and ‘Notes’ as IVs, and methods, like
‘EditNotes’, that interact with the IV values for a given instance. These
common features are recognized in the software representation by gathering
them together to define a new class called Identifier. Both Individual and
Variate have all the IVs and methods of Identifier, hence each is a special kind
of Identifier.

This specialization is expressed in object-oriented programming by declaring
Identifier to be a super, or parent, class of both Individual and Variate. Fig, 1

232 R. W. Oldford, Software representations for statistical data

Identifier

Individual

t

ContinuoulVariate

variate DiroreteVarhte NominalVariate

catepicalVuiate

t

OrdinalValiate

Eamqvariate

Fig. 1. Inheritance from Identifier.

shows the inheritance pattern of all classes specialized from Identifier (parent
to child = left to right).

Individual and Variate inherit all of the properties (IVs and methods) that
have been defined for Identifier. This means that the IVs ‘Label’ and ‘Notes’
need only be specified for Identifier - by inheritance they are also IVs of
Individual and Variate.

Variate, however, has IVs like the natural ‘Range’ of the measurements
taken on that variate, which distinguish it from Identifier. Moreover, there are
distinct kinds of variates that are naturally expressed as specializations of
Variate.

The first specialization of Variate is into three distinct kinds of variates
found in practice, namely ContinuousVariate, DiscreteVariate, and Cate-
goricalVariate. Measured values on either of the first two must be numbers,
reals for the first and integers for the second. On the third the values must be
categories. A CategoricalVariate differs from the others in that the value of its
‘Range’ IV is a list of possible measurement values [e.g., (Favour, Indifferent,
Oppose) or (1,2,3,4)].

CategoricalVariate is further specialized into NominalVariate and Ordinal-
Variate, depending on whether the order of the ‘Range’ list is informative.
BinaryVariate is given special status because of its frequent and important
occurrences in practice.

Finally, a Datum is meant to contain all the information related to the
measurement but none on the variate or individual being measured. The
separation is not always clear. Certain attributes like the ‘DataValue’ (a
number or a string), the ‘Censoring’ (NIL, Left, or Right), and the ‘Sig-
nificantDigits’ (NIL or a positive integer) belong to the value recorded as the
measurement and hence are IVs of Datum. For others it is not as clear where
the attribute belongs. Units of measurement, for example, are part of the
recorded measurement, but they are typically the same for all measurements
taken on a variate (cf. ‘SignificantDigits’). Hence, in the current representation
‘UnitsOfMeasurement’ and ‘Range’ are attached to ContinuousVariate and
DiscreteVariate, rather than to Datum.

A simple statistical observation will be some union of an Individual, a
Variate, and a Datum, where all of the available information is recorded on

R. W. Oldford, Software representations for statistical data 233

each one as appropriate. Note that the same information can be shared by
many observations. The same instance of Individual can be part of many
different observations and hence make the same individual-specific informa-
tion available to each observation. For example, suppose that, while examining
the measurements on one variate, something is learned about a given individ-
ual and recorded as ‘Notes’ on the corresponding instance of Individual. This
information will then be available when examining a measurement on any
other variate for the same individual. Alternatively, a single instance of a
ContinuousVariate, will contain information about that particular variate that
will be available to all observations that are measurements of it. This is an
important consequence of modelling the components separately.

4. Putting the pieces together

In this section, software representations are presented for univariate sam-
ples, or batches, and multivariate observations. These are more complex
statistical data abstractions that are typically represented as either a column or
a row of a ‘data matrix’. However, if the representations are intended to be
believable tokens for the statistical abstractions, this simplistic representation
will not do. For example, unmeasured contextual information recorded on a
given individual in the sample is not available from the matrix. A believable
software representation of a univariate sample must have immediate access to
the information available on the measured variate and on every individual in
the sample. A representation which first passes the statistical abstraction
through the mathematical filter of a vector loses this information. Software
representations of matrices and vectors are constructed to be believable
representations of mathematical, not statistical, abstractions. A univariate
sample would be better represented more directly - as some composition of
the basic elements of a statistical observation as described in section 3. The
representations of this section follow this approach.

First, features that are common to both multivariate observations and
univariate samples can be extracted by noticing that in either case, the
statistical data are examined in a conditional fashion. A multivariate observa-
tion holds a given individual fixed to consider the measurement of each of a
number of variates. Alternatively, a univariate sample holds the variate fixed
to consider the measurement on each of a number of individuals. An object
class called a DataRecord is defined to represent the common features of the
statistical abstractions of a multivariate observation and a univariates sample.
DataRecord is based on the conditional nature of these statistical data
abstractions. In either case, a single kind of Identifier is held fixed (Individual
or Variate) and a collection of Identifier-Datum pairs (Variate-Datum or
Individual-Datum) examined.

A DataRecord pairs an instance of one of the two Identifier types (an
Individual or a kind of Variate) with a collection of paired instances of an

234 R. W. Oldford, Software representations for statistical data

DataReomd

‘iLzLqF,’

Identifier n : Datum n

Fig. 2. A DataRecord

Identifier of the other type (a Variate or an Individual) and a Datum. A
schematic description is given in fig. 2.

As fig. 2 indicates a DataRecord has two distinct parts. There is the
Identifier (either an Individual or a Variate) which is fIxed and is called the
‘key’ of the DataRecord. And there is the collection of Identifier-Datum pairs
that is called its ‘value’. In fig. 2 there are n such pairs. The kind of Identifier
in each of these pairs is of course different from the Identifier that is the
DataRecord’s key. Further, each Identifier in the collection is unique.

Many actions are naturally associated with a DataRecord. For example, we
expect to be able to identify the key Identifier and to access and put
information on it. This is simply accomplished by a method on the DataRe-
cord class which permits access to the key and hence to its methods. Similarly,
methods are attached to DataRecord to interact with its ‘value’.

In particular, many methods are expected to be attached to DataRecord
because it is a keyed-collection of pairs. Those described in Goldberg and
Robson (1983) for a keyed-collection have been implemented in Interlisp-D
for the class DataRecord. These include interactions such as adding and
removing pairs, accessing one element of a pair by specifying its partner,
iterating over the collection to apply a function to each pair, and many others.

Other interactions are appropriate because a DataRecord represents an
indexed collection of statistical data. Methods like ‘SelectCensored’ (which
returns another instance of DataRecord containing all data pairs whose
Datum’s ‘Censoring’ is non-NIL) are therefore included in the definition of
DataRecord.

These methods treat a DataRecord only as a convenient means for inter-
acting with each Identifier-Datmn pair of its collection. None, so far, treats a
DataRecord as the unit. But this is contrary to the abstraction a DataRecord
represents - a multivariate observation or univariate sample. For example,

R. W. Oldford, Sofhvare representations for statisiical data 235

Cab?

DataRecord
Batch

VariateRecmd

Fig. 3. Specializing DataRecord.

prior theoretical information may indicate that a particular batch of numbers
should appear as a sample from a specified distributional family. This infor-
mation quite properly belongs to the DataRecord representing the batch rather
than to, say, the Variate which is its key. The IV ‘Notes’ and the method
‘EditNotes’ are therefore attached to DataRecord to allow information on the
DataRecord as a unit to be recorded.

Note, however, that many methods which one might naturally associate with
certain DataRecords are not appropriate for all DataRecords. For example,
when an instance of DataRecord is used to represent a batch of numbers for a
single variate, we expect to be able to display that data as a boxplot. But for
another instance that represents a single multivariate observation, a boxplot
makes little sense. The two represent substantively different kinds of DataRe-
cords.

To make the representations truer to the statistical abstractions they model,
the DataRecord class is specialized as shown in fig. 3. The two principal types
of DataRecord are the Case and the VariateRecord. These correspond directly
to the two substantively different statistical abstractions of a multivariate
observation and a univariate sample respectively. A Case is a DataRecord
whose key is always an Individual and whose value is always a collection of
Variate-Datum pairs. Likewise, a VariateRecord is a DataRecord whose key
must be a Variate and whose value must be a collection of Individual-Datum
pairs.

Similar considerations lead to a subdivision of VariateRecord into Batch
and Factor, according to the kind of Variate taken as the key. A Batch must
have either a ContinuousVariate or a DiscreteVariate as its key, whereas a
Factor must have a CategoricalVariate.

This division of VariateRecord is a natural one to which many statistical
methods adhere. Methods which produce numerical summaries like the mean,
the standard deviation, empirical quantiles, and so on, are applicable to a
batch of numbers. Hence they are part of the definition of Batch. The same is
true for re-expressions, such as the natural logarithm, which are applied to all
Individual-Datum pairs of a Batch to produce a new Batch having the same
Individuals but different Datums.

By contrast, re-expressions make no sense for a Factor. Numerical summaries
are restricted to such quantities as the mode, the counts for every category,

236 R. W. Oldford, Software representations for statistical data

and, if the CategoricalVariate is an OrdinalVariate, perhaps some quantiles as
well. Consequently, these methods are associated with the class Factor.

Statistical graphics also separate according to the inheritance structure from
DataRecord. A Batch has methods which will display it as a boxplot or as a
histogram. But a Factor will be displayed as a barplot. Quite different displays
make sense for a Case - from a circle in a scatterplot, to a glyph, to a cartoon
face.

Each kind of DataRecord - Case, Batch, and Factor - represents a unique
statistical data abstraction and the associated methods separate accordingly.
Each DataRecord is defined as a unit with which certain kinds of information
and interactions belong. However, when detailed information is required for
the components of a DataRecord - Individuals, Variates, and Datum - the
components are accessed or interacted with directly.

Moreover, some instances of these components will be shared by many
different DataRecords. Information stored on an Individual after examining
some Case is accessible from any Batch which contains a measurement for that
Individual. The design of DataRecord as a composition of more primitive
objects makes this possible. The same principle is applied in the next section
to create a representation of a data set as the composition of instances of
DataRecords.

5. DataSets

A typical statistical problem begins with many batches, factors and cases
that can share variates, individuals and data values. Collectively, they con-
stitute the base data set. Similarly, their software representations as Batches,
Factors, and Cases can be gathered together within an instance of an object
class called DataSet. DataSet is designed to represent the higher level statisti-
cal abstraction of a data set. An instance of DataSet would, for example, be
one of the basic inputs to a regression analysis (along with a fitting procedure
and a model representation involving Variates and parameter representations).

Like DataRecord, DataSet is a collection of data. A DataSet collects
together many instances of Case, indexing each one within the DataSet by the
Individual that is its key. Fig. 4 illustrates the organization. Just as a DataRe-
cord is a collection of Identifier-Datum pairs, a DataSet is a collection of
Individual-Case pairs. Indeed, this commonality means that the implementa-
tions of DataRecord and DataSet are very similar in structure. [Oldford and
Peters (1986) describe the implementation in more detail.] Note also that
unlike using a rectangular array to represent the data, there is no need to
record missing values explicitly as NAs - they are simply indicated by their
absence.

R. W. Oldford, Software representations for statistical data 231

I D&&et
I

Fig. 4. A DataSet.

A DataSet can access each of its Cases (their IVs and methods), and,
through them, information on the Individuals, Variates, and Datums they
contain. Like DataRecord, there will also be information that more properly
belongs to a given DataSet than to any of its components (e.g., the source of
the data, how the data was gathered, a description of the goals of the study,
etc.). Hence IVs like ‘Label’ and ‘Notes’, and their associated methods, are
also defined for DataSet.

Again, as with DataRecords, the functions that one expects to perform on
any collection of keyed-objects are available as methods for a DataSet. These
include iteration over the entire collection to select certain elements, or to test
each element for a given feature, or to apply some user-specified function to
every element (the elements referred to here can be either the Individuals or the
Cases). The complete methods of Goldberg and Robson (1983) are installed.

However, Cases are not always the most natural unit with which to work.
Often data are not gathered, or considered, Case by Case, but rather Vari-
ateRecord by VariateRecord. For example, economic data are often gathered
series by series from different data sources. In practice, then, data sets are
viewed symmetrically as either a collection of Cases or as a collection of
VariateRecords, depending on which seems most helpful for understanding the
problem at hand. A DataSet is therefore defined to enjoy the same property.

The contents of whole VariateRecords may be added to, or removed from, a
DataSet as easily as are Cases. Similarly, iteration, testing, and so on, can be
done over Variates as easily as over Individuals. Furthermore, wherever possi-
ble, the same method is used to interact with a DataSet either as a collection
of Cases or as a collection of VariateRecords. For example, the method
‘AtPut’ allows information ‘At’ a specified location in the DataSet to be
accessed. It returns a VariateRecord if the argument supplied is a Variate, a
Case if the argument is an Individual, and a Datum if both a Variate and an
Individual are supplied together.

This symmetry is not, however, completely enforced in the present imple-
mentation of DataSet. It is not possible, for example, to identify whether a

238 R. W. Oldford, So&are representations for statistical data

DataSet contains a particular instance of a Batch. This is because a DataSet
does not contain instances of any kind of VariateRecord. It is implemented
only as a collection of Cases. Therefore, the most that can be determined is
whether the DataSet contains the same data as does the Batch.

It could easily be otherwise, but this would require a double referencing
scheme in which Cases and VariateRecords are used simultaneously in the
definition of a DataSet. Cases and VariateRecords would need to be automati-
cally updated whenever the contents of one or the other changes. This could
be done by employing active constraints between the Cases, VariateRecords,
and DataSet [e.g., see Borning (1981) or McDonald (1986)]. The next imple-
mentation will probably have this double referencing scheme.

Aside from the usual methods for any new kind of collection, there are also
statistical methods that are associated with an entire DataSet. All pairwise
plots of the data for selected Variates, a plot of the Chernoff faces for selected
Individuals and Variates, boxplots of the data for selected Variates, various
measures of multivariate location and dispersion, are all natural candidates for
methods of DataSet. The key common feature is that each method produces
only descriptive information on the data.

Other methods, like one to perform a multivariate regression of selected
variates on other selected variates, are not attached to DataSet. This is because
its appropriate application depends on information that is extraneous to the
recorded data. This includes information such as the purpose for fitting such a
model, the structural relationship between the variates, and the probability
model, if any, that can be assumed to have generated the data. Lagged
variates, for example, do not appear in the representation of the data. Lags are
not part of the data representation but rather part of the representation of a
model relating one or more variates. A model specifying this relationship,
together with the DataSet for which the model is believed to hold, are the
basic inputs for estimation. DataSets, like other representations of statistical
data, are meant to model only the data.

It is debatable whether statistical methods should be attached to these
representations at all. If so, then where the boundary of the data lies is not
always easily determined. For example, should density estimates be attached
to a Batch? The guiding principle here, is that, only if its purpose is purely
descriptive should the method be attached to the data. For a Batch, it is
enough that a ‘reasonable’ density estimate be available. One that is optimal,
in some sense, is not really of interest - indeed, a good interactive histogram
will probably suffice. If, however, the purpose is to construct a reliable density
estimate for some theoretical probability distribution that generated the data,
then the problem is genuinely one of estimation (or modelling) and is more
properly addressed by statistical procedures which use the Batch as input.
Those statistical methods which are directly attached to the data representa-
tions should not require information that is extraneous to the recorded data.

R. W. Oldford, Sofhvare representations for statistical data 239

6. Modelling more complex data relationships

So far, the data information considered has separated quite neatly into the
three components: individual, variate, and datum. From these, increasingly
abstract datatypes have been built up, layer by layer, from the three base
components to DataRecords (VariateRecords, Batches, Factors, and Cases) and
from DataRecords to DataSets. In this section, two examples of more complex
data relationships are considered to see how they would be represented using
these datatypes. Some extensions to the datatypes are also suggested.

The simplest example that does not obviously fit the data representations
proposed in previous sections is time-ordered data. To give a concrete exam-
ple, consider how the US gross national product recorded for the years 1947 to
1974 would be represented.

To start, each year is represented as an instance of Individual on which an
instance of ContinuousVariate called ‘US gross national product’ has been
measured. For each Individual, the measurement is stored in a corresponding
instance of Datum. However, if these data were now collected together as an
instance of Batch, then the ordering of the Individuals would be lost! Batches
do not record order.

To avoid any loss of information, another instance of Variate (Continuous-
Variate or DiscreteVariate would do) is introduced to represent the time. Then
a new instance of Datum is introduced for each Individual and its value would
be the year (1947,1948,. . ., 1974) that corresponds to that Individual. The
series would now be represented as an instance of DataSet, where each Case in
the DataSet is composed of the Datums associated with two variates: the gross
national product and the time.

Note that since the year is recorded as the value of a Variate, the instances
of Individual have been reduced to symbolic place holders. Hence, any
potentially important events in a given year would be recorded on the Datum
that corresponds to that year and not on the Individual.

An alternative way to represent a time series - one that is especially
appealing if one works a great deal with time series - is to introduce new
classes to represent time-ordered data. Simply specialize VariateRecord to a
new class of VariateRecord called TimeSeries, say, whose Individuals are
ordered within the TimeSeries. Similarly, DataSet could be specialized to
MultipleTimeSeries. The effect would be the same as representing the time
series as a DataSet with a time Variate, but with an important difference: since
a new class is defined, new methods specific to that class (e.g., ‘Pro-
duceAPeriodogram’) can be attached to it.

Unfortunately, in either representation, each Individual no longer represents
the unit sample - even though the time is usually regarded as just that. A third
approach would be to incorporate more information into the definition of the
class Individual (or specialize Individual) to give its instances the ability to

240 R. W. Oldford Software representations for statistical data

order themselves as necessary. Then if the year is regarded as the sampling
unit on which the Variate is measured, the instances of Individual representing
each year would have some method to establish order. This could easily be
accomplished by adding two new IVs, say ‘CompareFunction’ and ‘Compari-
sonvalue’, to the Individual class. If two instances have the identical value of
‘CompareFunction’, then it could be applied to the values of their ‘Compari-
sonvalue to arrive at an ordering. For ‘gross national product’ time series, the
comparison function would simply be ‘greater-than-or-equal-to’, and the com-
parison values would be the numbers 1947,. . . ,1974.

The appeal of this approach is that it does not confuse the sampling units
(the individual times) with a hypothetical variate. Rather it is based on
time-ordering being a property of the sampling units (the times) and hence a
part of the definition of Individual. Moreover, it does not preclude using either
of the previous representations for time series.

A quite different example is given by the situation where there are repeated
measurements on the same individual and many individuals under study.
Again to be concrete, suppose that the amount of carbon dioxide dissolved in
a sample of blood is the variate measured. Then suppose that this measure-
ment is taken from each of many independent samples from the same person
and that there are many such persons in the study. How should the data be
recorded?

One approach is the following. First, represent each blood sample by an
instance of Individual and the Variate ‘amount of CO, dissolved’ by an
instance of ContinuousVariate. Then, use an instance of Datum to record the
measurement of this ContinuousVariate for each blood sample. Similarly,
represent each person in the study by an instance of Individual.

To group the blood samples by the donor, an instance of NominalVariate is
used. The instance of Datum associated with this NominalVariate would then
have, as its value, that instance of Individual that represents the donor.
Moreover, all measurements on the same person could share the same instance
of Datum for the NominalVariate (since it has the same value). The representa-
tion for the whole data set is now given by a DataSet, where each Case has as
its key an Individual corresponding to a blood sample. The collection for each
Case contains the Datums on the ContinuousVariate and NominalVariate for
that blood sample.

The appeal of this approach is that each sampling unit (both persons and
blood samples) is represented quite naturally as an instance of Individual.
However, the use of a NominalVariate to nest one sampling unit (the blood
sample) within the other (the donor) seems artificial and forced.

A preferable representation of the data that does not use a NominalVariate
in this way is the following. As before, represent the blood samples and donors
as separate instances of Individual. Also, retain the ContinuousVariate to
represent the ‘amount of CO, dissolved’ and all the Datums used to record the
measured values. Again the data will be represented by a DataSet of Cases.

R. W. Oldford, Software representations for statistical data 241

But this time, a Case is constructed for those instances of Individual that
correspond to a donor, not a blood sample.

Each Case contains only one Variate-Datum pair. The Variate is the Con-
tinuousvariate just mentioned, but the Datum is quite different. This Datum
has an instance of Batch as its value. The Batch corresponds to the collection
of blood samples, and the amount of dissolved CO, measured for each, that
were taken from the donor represented by the Individual for the Case. That is,
the Batch has as its key the ContinuousVariate and as its value the collection
of Individual-Datum pairs that are appropriate.

This representation has the same appealing attributes as does the previous
one. But unlike the previous one, no artificial variate was introduced. More
importantly, the Individuals in this representation are nested within the Data-
Set in a manner that is completely analogous to the nesting of the sampling
units they represent. It would seem, therefore, to be the preferable representa-
tion of the two.

Both representations for the repeated measures data can be constructed
using the framework that has been implemented. While the second style is
preferred (on the grounds that it more closely follows the way the data are
usually recorded), nothing in the implementation prevents one from using
either. Moreover, both styles of representation generalize in a straightforward
manner to model more complex data relationships reasonably.

However, in either style of representation, no information is attached to an
Individual that directly related it to any other Individual. That is, no informa-
tion is directly accessible to an Individual that could show how it is related to
any other. Neither Individuals nor Variates have a link to any other object. The
relationships between them are available only at a level that encapsulates more
than one of them (e.g., DataRecord). Consequently, in the above representa-
tions, this information is only available from the instance of Case that
connects them.

To recognize explicitly that sampling units can be related to one another
requires a richer definition of Individual than that considered here. How such
structures are best defined is an open problem. If solved, though, it could
mean quick access to relevant sampling unit information from any Individual
in the study. Similarly, rich structures for Variate could allow the variate
relationships to be tracked in the analysis (e.g., one is a linear combination of
others, or is a transformation of another, and so on).

For more complex data scenarios, DataSets could be redefined to more
closely match the DataRecord pattern by including a ‘key’ for each DataSet
(compare figs. 2 and 4) and then allowing a collection of DataSets as its
contents. The value of the key would be an Individual. An example, where this
could make sense is the situation that arises when many variates are measured
on many persons over time. There would be a single Variate for each variate
measured, a single Individual for each person, and a single Individual for each
time (the Individuals that correspond to time would have the order information

LECOD-K

242 R. W. Oldford, Software representations for statlsticd dutu

attached to them). Such a data set could be represented in two equivalent
forms with extended DataSets. The first would have a DataSet for the
collection of measurements on each person measured at a given time. A key
that is the Individual representing that time would be attached to this DataSet
and the collection of DataSets would be gathered together in a larger extended
DataSet keyed by the time. The alternative representation would simply switch
the roles of the Individuals representing the times and those representing the
persons.

7. Some implications for data analysis systems

An important feature of these data representations is that they share
information. When all the instances reside in the virtual memory of the
machine (at least for the duration of the analysis) the updating of information
on any one of them is immediate. Moreover, the new information becomes
immediately available to all software (including other instances) that point to
the updated instance.

As an example, suppose that in the course of the analysis of some US
annual economic data, it is observed that some significant change in prices
happened in 1974. Upon reflection, it occurs to the investigator that this is
probably attributable to the fixing of world oil prices by OPEC in that year.
This significant event is therefore recorded on the ‘Notes’ IV of the Individual
that represents the year of 1974.

Later, another economic analysis is underway. A different country is being
studied, or different variates on the same country, or perhaps only the in-
vestigator has changed. In any case, suppose that the same years are involved.
Since the Individuals of the previous study represent these years, the same
Individuals should be used for this study. Then, if the data associated with
1974 stand out in the second study too, the information about OPEC previ-
ously stored on that Individual will be available to the investigator for
consideration. It may now be accessed through a different instance of DataSet,
but it will be precisely the same Individual as before and hence the same
information.

This has a subtle, but important, effect on one’s expectations of the
statistical analysis system. For example, we no longer expect to retrieve
information on an Individual that represents a person from two different
Batches simply because we know it is possible to move information from one
Batch to another. Rather, we expect to be able to retrieve that information
because we are referring to a single person! The Individual becomes more
closely identified with the person it represents. Each component part, at every
level (from Datum to DataRecord to DataSet), is designed to model a unit that
is natural in statistical data analysis. Having the same software representation
appear in those data structures where the corresponding natural unit of
information could be expected to appear, strongly reinforces the identification

R. W. Oldford, Software representatrons for stutistrcul data 243

of the unit with its software representation. The expectation, then, is that,
wherever the statistical unit appears naturally in the course of the analysis, its
unique software representation should be available.

Consider, for example, how this expectation makes new demands on the
organization of interactive statistical graphics. It was noted earlier that many
statistical graphics separate along the same lines as the representations for
statistical data. Boxplots and histograms are appropriate for Batches, barplots
for Factors, glyphs and Chernoff faces for Cases, and pairwise scatterplots and
side by side boxplots for DataSets. And so, methods to produce many of these
plots are part of the definition of each representation. It is no accident that the
graphics neatly match the data units; they were originally developed with
those units in mind. When we look at a boxplot, we are looking at the display
of a batch of numbers. The expectation, then, is that from that display we
should be able to access all information on that batch. To do this, the software
that represents the boxplot display should have access to the Batch from which
it was built.

The kind of direct connection that is expected becomes obvious when a
simple scatterplot of N observations on two variates is considered. The data
are represented as an instance of DataSet that has N Cases, say Case-l,Case-
2,. . . , Case-N. In general, Case-i has as its key an instance of Individual, say
Individual-i, and as its value a collection of at least two Variate-Datum pairs.
Let these two Variates be denoted Variate-,4 and Variate-B. Then there will
also be at least two Batches associated with this DataSet, Batch-A and
Batch-B, representing the N Datums for Variate-A and Variate-B, respectively.

The whole scatterplot is a display of this DataSet. From this display we
expect to be able to access all the available information on the DataSet. In a
highly interactive environment with a high-resolution display and a pointing
device like a mouse, this information might be accessed by simply pointing at
the scatterplot with the mouse, pressing a button, and selecting menu items to
choose the pieces of information desired.

However, interest in a scatterplot often lies in the individual observations.
The ith point is essentially a view on Case-i. Hence, direct interaction with
that point in the display is a natural way to obtain information on either
Case-i or Individual-i (possibly positioning the mouse over the displayed point
and clicking a button to produce a menu giving access to Case-i and Individ-
ual-i). Conversely, since information is also gained on Case-i by examining the
scatterplot, interacting with the displayed point would be a natural way to
store information directly onto Case-z’ or Individual-i.

Moreover, if each point really is a view of a Case, and there are many
possible ways to view a Case, then why not choose the most appropriate
display interactively. For example, choose different symbols (cross, circle,
triangle) for each Case on the basis of the value of a NominalVariate taken in
the Case. Or display each Case as a glyph to represent the values on the
remaining Variates in the Case.

244 R. W. Oldford, Software representations for statistical data

Other elements of a scatterplot also correspond to views of data structures.
Axes are views of the marginal batches - interacting with them should lead to
interacting with Batch-A and Variate-,4 or with Batch-B and Variate-B. Again,
other views of these Batches, like boxplots, range-lines and histograms, should
be exchangeable in the scatterplot.

A scatterplot, then, is just an arrangement of selected views of the internal
data structures of a DataSet. As such, it is natural to expect to manipulate the
data structure and change how it is displayed by interacting directly with the
display. Moreover, we would expect all the views to be current. That is, if
changes are made to an underlying data structure (e.g., change in data values,
addition of new variates and values), then every view of that data structure is
expected to update its display to reflect the change. This includes the situation
where one data structure is simultaneously displayed in different plots (e.g., all
pairwise scatterplots for a DataSet, each Case is displayed many times).
Changes to the underlying data structures should be immediately reflected in
all plots that display it. Effectively, then, each view is a link from the plot to
the data structure it displays.

Moreover, if each of these views is also given an object-oriented representa-
tion (CaseView, BatchView, etc.), then they too could be shared by two or
more different scatterplots. Suppose, for example, that CaseView- is the view
of Case-l and that it is displayed as a cross in two different scatterplots.
Changing its display to a circle in one plot should cause it to change in the
other plot as well. In this way, the plots themselves are linked by sharing the
same CaseView- [see also Becker and Cleveland (1987)].

In a system called Antelope, McDonald (1986) shows that simple
leader-follower constraints are enough to achieve this kind of linking between
scatterplots. Basically, one object called the follower updates its values
whenever another object called the leader changes its values. In the above
situation, two levels of constraints need to be applied. For the first, the leaders
are taken to be Cases and the followers CaseViews. This ensures that whenever
the basic data in a Case changes, its CaseView is updated. The second level
then constrains the objects representing the scatterplots to follow the
CaseViews. Then when CaseView- changes, the two scatterplots update their
displays.

While all statistical graphics display views of data structures, some often
display other things as well. Items like a running-linear-smooth of the data, or
a fitted curve are sometimes added to simple scatterplots. Everything in the
display, though, is a display, or view, of something. The displayed curve might
be a view of the result from fitting a parametric model to the displayed data by
least squares. The smooth might be a view of the results from a local
least-squares fitting of a straight line. If there is a corresponding software
representation for items being viewed, then there is reason to interact with
them as well.

R. W. Oldford, Sofrwnre representations for stutisticul data 245

This illustrates an important point hinted at earlier. Many statistical struc-
tures which are not data structures, can be usefully represented in an object-
oriented fashion. For example, representations of statistical models as data
structures have recently been considered by Bates and Chambers (1988). In the
present framework, if the mathematical specification of a model describes the
relationship between different variates, then its software representation should
relate specific instances of Variate classes. Since the mathematical specification
has nothing to do with the observed data, then its representation can exist
independently and be fitted to many different DataSets.

In the DINDE system, many different kinds of statistical structures are
given object oriented representations [Oldford and Peters (1987)]. These
include familiar graphics like Scatterplots, QQPlots, ResidualPlots, Histo-
grams, and Boxplots, and less familiar analysis artifacts like LinearFits and
LeastSquaresFits. As was the case with the data structure, the key to these
representations is to isolate a conceptual statistical structure (e.g., a regression
model specification or the raw information gained by fitting a model to data
with least-squares) and to represent it as an object class (e.g., LinearRegres-
sionMode1 or LeastSquaresFit). If the representation is good, instances of it
will be used in the analysis as believable tokens for that statistical information.

As with DataSets, these richer statistical objects, if properly defined, will be
able to share a great deal of information with one another (and with DataSets).
A representation for a mathematical model, say Model, would need access to
the Variate instances for which it describes a relationship. A LeastSquaresFit
would need access to the Model used to get the fit and to the DataSet on
which the fit was based. If the same mathematical relationship is fitted using
different data, then a different DataSet is used and a different LeastSquaresFit
results. But the same instance of Model would be shared by both fits, and
hence the Model specified instances of Variates must be present in both
DataSets.

If the selected concepts are natural, well-defined units in statistical data an-
alysis, and they are believably represented by the software, then there will be
increased pressure on integrating the statistical software. As before, the
expectation will be that wherever the statistical unit appears naturally, so too
should its unique representation.

8. Concluding remarks

The data structures that have been represented here are quite general. They
focus on attributes of statistical data that are common to most statistical
problems. While more specific data structures, like experimental runs or time
series, can be modelled using these representations, they are often regarded as
containing information beyond the usual notion of multivariate observations
or batches. The given data classes have been designed to be generic enough

246 R. W. Oldford, Software representations for statistical duta

that specializations of them could be used to give a suitable representation of
more specific data types (e.g., TimeSeries as a specialization of VariateRecord).

Other data structures like repeated measures data, while representable
within the present framework, suggest that the basic components themselves
might be improved upon. Some statistical data information is on the organiza-
tion of the sampling units, independent of any variates or measurements.
Some units are nested within another, or perhaps crossed with others. This
organization might be bested modelled separately, perhaps by extending the
definition of Individual to admit relationships between different instances of
Individual.

A statistical data structure that is represented as a unique instance of some
class can become strongly identified with that instance. But it requires that
that instance be shared by different programs. For example, the same instance
of an Individual will be found within different instances of Batches, Cases, and
others. Once this identification occurs it is readily extended to interactive
statistical graphics as well.

Finally, with important elements of statistical data and graphics modelled
well, other units of statistical analysis that are based on them could be
considered. Units like models, fitted relationships, and specialized plots, which
are used frequently in statistical data analysis, have enough properties that are
invariant from one analysis to the next, that their software representation is
conceivable. Again integration with the existing representations for data and
graphics would be expected.

References
Abelson, H. and G.J. Sussman, 1985, Structure and interpretation of computer programs (MIT

Press, Cambridge, MA).
Bates, D. and J.M. Chambers, 1987, Statistical models as data structures, Statistical research

report no. 42 (AT&T Bell Laboratories, Murray Hill, NJ).
Becker, R.A. and W.S. Cleveland, 1987, Brushing scatterplots, Technometrics 29, 127-142.
Boming, A.H. 1981, The programming language aspects of ThingLab, a constraint-oriented

simulation laboratory, ACM Transactions on Programming Languages and Systems 3, 353-387.
Brodie, M.L., J. Mylopulos and J.W. Schmidt, eds., 1984, On conceptual modelling: Perspectives

from artificial intelligence, data bases, and programming languages (Springer-Verlag, New
York).

Goldberg, A. and D. Robson, 1983, SMALLTALK-80: The language and its implementation
(Addison-Wesley, Reading, MA).

McDonald, J. A., 1986, Antelope: Data analysis with object-oriented programming and con-
straints, Proceedings of the ASA: Statistical computing section (American Statistical Associa-
tion, Washington, DC).

McDonald, J.A. and J. Pedersen, 1986, Computing environments for data analysis, Part 3:
Programming environments, Technical report no. 82 (University of Washington, Department
of Statistics, Seattle, WA).

Oldford, R.W. and SC. Peters, 1986, Object-oriented data representations for statistical data
analysis, Compstat 1986, 301-306.

Oldford, R.W. and SC. Peters, 1988, DINDE: Towards more sophisticated software environ-
ments for statistics, SIAM Journal for Scientific and Statistical Computing 9, 191-211.

Stefik, M. and D.G. Bobrow, 1985, Object-oriented programming: Themes and variations, The AI
Magazine 5. 40-62.

