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OBJECT-ORIENTED SOFTWARE REPRESENTATIONS 
FOR STATISTICAL DATA* 

R. Wayne OLDFORD 
University of Waterloo, Waterloo, Ont. N2L 3G1, Canada 

This paper presents new software designs for statistical data. These are implemented using an 
object-oriented programming paradigm. The implementations are built in a layered fashion from 
independent representations for the individual, variate, and datum components of a statistical 
observation to representations for univariate samples and multivariate observations. These in turn 
are combined according to a software model for an entire data set. This model is quite general and 
is shown to easily accommodate rather complex data sets. Statistical data-descriptive methods also 
separate according to the data representations and are therefore incorporated in their definition. 
How these data representations could be used in a new kind of statistical analysis system is also 
discussed. In particular, there are some strong implications for interactive statistical graphics. 

1. Introduction 

In recent years, an important theme has emerged from a variety of subdisci- 
plines of computer science that deal with software engineering. These include 
such seemingly diverse areas as artificial intelligence, data base design, and 
programming languages [e.g., see Brodie et al. (1984)]. Simply put, the con- 
sensus is that there are strong reasons to recommend building self-contained 
software abstractions that closely match the natural components of the prob- 
lem under study. This is particularly important for large software systems that 
change over time. The point is convincingly made in Abelson and Sussman 
(1985). 

Statistical analysis systems are moderately large software systems. More- 
over, it is the nature of statistical data analysis to require extending the system 
to meet the demands of new problems. It has been argued that this implies 
that statistical data analysis should be carried out in a highly integrated 
programming environment [McDonald and Pedersen (1986)]. These are typi- 
cally found on single user workstations (e.g., lisp workstations) with large real, 
and much larger virtual, memories where many processes can coexist. This 
paper presents software representations for statistical data that are designed 
for such environments. The software described here has been implemented on 
a Xerox Interlisp-D workstation but could also have been implemented in any 
other environment supporting object-oriented programming. Elements of this 
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programming paradigm are discussed as needed in section 3, but see also 
Abelson and Sussman (1985) and Stefik and Bobrow (1985). 

The design of these representations begins with three fundamental, and 
generally agreed upon, components of statistical data: the variate being 
measured, the measurement itself, and the individual (or sampling unit) on 
which the measurement was taken. The components and their properties are 
described in section 2. In particular, there is a good deal of contextual 
information wrapped up in what is meant by a statistical observation. As this 
information can often be crucial to the statistical analysis, it should be 
recorded on the representation of a statistical observation whenever possible. 
Section 2 discusses how much of this information can be separated and 
assigned to each of the three components. Thus circumscribed, each compo- 
nent is given a separate and independent software representation in section 3. 
To this end, the object-oriented paradigm is used. 

More complex data like univariate samples, experimental factors, and 
multivariate observations are given software representations in section 4 that 
build on these basic components. These kind of data are traditionally repre- 
sented as either the columns or rows of some data matrix. However, such 
representations discard the contextual information available on the individual 
components. There is additional important contextual information that does 
not belong to the three basic components, but is naturally associated with the 
higher level compositions of samples and multivariate observations. And this 
information is not properly part of a vector’s representation. The same is true 
with many statistical methods. This does not deny the usefulness of vectors 
and matrices as mathematical constructs, only as accurate representations of 
statistical data. Section 4 presents new representations of these compound 
data types. The representations attempt to embody the statistical characteris- 
tics that are associated with what they model. 

By closely matching the representation to the abstract statistical datatype, 
the representation becomes a believable token for that statistical abstraction. 
For example, a single individual could appear in many samples. Consequently, 
a believable token for this individual would be single representation that was 
accessible from the software representations of all samples containing that 
individual. This has important implications for quickly accessing up to date 
information on that individual at different points in the analysis. Since many 
pieces of software share the representation of the individual, they will always 
have the most recent information available on that individual. Moreover, if the 
matching of representation to statistical abstraction is clever enough, this 
information will be exactly where we expect it. 

Just as many univariate samples, or multivariate observations, are combined 
to produce a data set, so too are their representations combined to give the 
software representation of a data set. This representation is discussed in 
section 5. Again, certain kinds of information and methods are associated with 
data sets and these will need to be incorporated into the representation as well. 
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It turns out that these representations are enough to represent quite complex 
data relationships in a natural way. Examples are given in section 6. 

How these data representations could be used in future, more integrated, 
data analysis systems is discussed in section 7. There are some obvious 
implications for statistical graphics. Finally, some closing remarks are given in 
the last section. 

2. statistical data 

The simplest statistical observation is the value of a variate recorded on 
some item or individual. As such, it contains a good deal more information 
than its value alone would indicate. 

For example, irrespective of the individual involved, 11.4 centimetres is a 
suspicious value for the height of a human. This is because the variate (human 
height), together with the units of measurement (centimetres), gives informa- 
tion that makes the value suspect relative to our prior understanding of the 
context. Similarly, if ‘11.4’ is instead the gross national product of a nation 
measured in billions of U.S. dollars, then the nation’s identity contains 
relevant information. For many nations, 11.4 billion U.S. dollars is an unlikely 
value for the gross national product. Apart from the actual measurement, both 
the individual on which the measurement is taken and the variate measured 
provide extra information which can be critical to the statistical analysis. 

Indeed it is this kind of contextual information that distinguishes a statisti- 
cal observation from its familiar mathematical abstraction xij. For the 
mathematics, it is enough that the indices distinguish the individuals, i, and 
the variates, j, but for the statistical analysis, the real world context in which 
the measurement was taken is crucial. In the transition from the statistical 
observation to its mathematical representation, such information is discarded. 

This contextual information is not regained in the transition from xii to its 
software representation as, say, a doubly indexed floating point number. Nor 
should it be, if the floating point number is to represent a real-valued number. 
Instead, a statistical observation would be better served by a different software 
representation, one that incorporates more of its contextual information. 

To a remarkable degree, much of the contextual information on a single 
observation can be cleanly separated into the three sources already mentioned: 
the individual, the variate, and the measured value. For example, consider a 
national study where economic variates are recorded for each of many years. 
Here each year is an ‘individual’ on which many different economic variates 
have been measured. 

While these measurements will contain most of the information of economic 
interest for a given individual, there is almost always other information 
available which is not expressed as the value of a variate. Either the informa- 
tion is not easily expressed as a measurable variate or it is deemed a priori to 
be of marginal interest to the study. For our example, such information might 
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be a unique event which occurred in a given year - a war began or ended, a 
government changed, an international cartel formed, a strike occurred, and so 
on. 

The value of this information is often realized when an examination of the 
data uncovers a pattern or discrepancy that cannot be accounted for by the 
measured variates. The extra, non-measured, information is then consulted to 
explain the pattern or discrepancy. On the basis of such information, some 
adjustment will likely be made in the subsequent analysis. Perhaps a model 
will be adjusted, or a new variate introduced (with a value for each individual). 

Similarly, each variate has information that is common to the individuals on 
which it has been measured but which is not to be found in the measurement 
itself. For example, suppose that the variate is the gross national product. 
Then a description of what is meant by ‘gross national product’, how it is to 
be interpreted, what its relationship is to other variates (a linear combination 
of some, a possible surrogate for others), and the like, would be important 
variate information that is independent of any measurement or individual. 

Conversely, there is information on the measurement itself that is indepen- 
dent of both the individual and the variate. The value actually recorded, its 
number of significant digits (if quantitative), whether it is censored (if so, from 
the left or the right?) are all of this nature. 

Since much of the information in a single statistical observation can be 
separated according to these three sources, it is useful to have a software 
representation for each. Then, should information be required on a given 
variate, it can be made accessible from the representation for that variate with 
minimal, if any, interaction with the representation of any individual or 
measured value - or anything else. This is especially attractive when different 
parts of a statistical system access the same piece of information. The software 
model for a statistical observation is then simply some composition of the 
three component models. 

3. Modelling the components 

An object-oriented programming approach is used to model each of the 
three components of a statistical observation. This approach is based on 
software constructs called objects. 

In brief, each object is a combination of both procedures (called ‘methods’) 
and data (stored as the values of ‘instance variables’). A class is a structure 
defined to represent the attributes that are common to many objects. Indeed, 
every object is defined to be an element or ‘instance’ of one or more classes. In 
this way each class gives a template of generic attributes for objects to match. 
These classes can be organized into an inheritance hierarchy whereby one class 
‘inherits’ all of the procedures and variables of another class simply by naming 
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the second class as one of its parents. Every class can have multiple parents 
and multiple children. This turns out to be an extremely effective way to 
organize the ensuing software - not least because the abstractions the software 
represents are often naturally organized in this way. The following discussion 
applies this approach to build object-oriented representations for statistical 
data. [Stefik and Bobrow (1985) give a more general treatment of object-ori- 
ented programming. Oldford and Peters (1988) describe the object-oriented 
system used here in more detail.] 

Using this programming paradigm, the three components of a statistical 
observation have been modelled as follows. The general concept of each 
component is represented as a different object class. In particular, the individ- 
ual or item component of an observation is represented by an object class 
called Individual. Similarly, object classes called Variate and Datum represent 
the variate and measurement components, respectively. 

The distinction between a class and an instance of a class is now more easily 
described. Each class is the template for the generic attributes of the compo- 
nent it models. The Individual class, then, represents the individual component 
of a conceptual observation. But an instance of this class represents the 
individual component of realized observation (e.g., the year 1974, the country 
France, or the person John Doe). Similarly, an instance of the class Variate 
would be used to represent the variate known as ‘gross national product’ while 
the class itself would represent what is meant in general by the term variate. 
The same can be said for any class and its instances. 

The features of a class called ‘Instance Variables’, or ‘IVs’ for short, are 
used to represent attributes that are common to all members of the class but 
whose value may differ from member to member. For example, the class 
Individual has the IVs ‘Label’ and ‘Notes’. These IVs give slots where 
individual-specific information that is not expressed as a measure on a variate 
can be stored. Thus, each instance of Individual will have its own name or 
label as the value of the ‘Label’ IV, and some a priori description and/or 
supplemental information learned during the course of the study, stored as the 
value of its ‘Notes’ IV. 

Procedures, called ‘methods’, are attached to a class to give its instances 
relevant procedural behavior. For Individual, methods are defined which 
permit interaction with the values of its IVs (e.g., an ‘EditNotes’ method). 

Like Individual, Variate has ‘Label’ and ‘Notes’ as IVs, and methods, like 
‘EditNotes’, that interact with the IV values for a given instance. These 
common features are recognized in the software representation by gathering 
them together to define a new class called Identifier. Both Individual and 
Variate have all the IVs and methods of Identifier, hence each is a special kind 
of Identifier. 

This specialization is expressed in object-oriented programming by declaring 
Identifier to be a super, or parent, class of both Individual and Variate. Fig, 1 
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Fig. 1. Inheritance from Identifier. 

shows the inheritance pattern of all classes specialized from Identifier (parent 
to child = left to right). 

Individual and Variate inherit all of the properties (IVs and methods) that 
have been defined for Identifier. This means that the IVs ‘Label’ and ‘Notes’ 
need only be specified for Identifier - by inheritance they are also IVs of 
Individual and Variate. 

Variate, however, has IVs like the natural ‘Range’ of the measurements 
taken on that variate, which distinguish it from Identifier. Moreover, there are 
distinct kinds of variates that are naturally expressed as specializations of 
Variate. 

The first specialization of Variate is into three distinct kinds of variates 
found in practice, namely ContinuousVariate, DiscreteVariate, and Cate- 
goricalVariate. Measured values on either of the first two must be numbers, 
reals for the first and integers for the second. On the third the values must be 
categories. A CategoricalVariate differs from the others in that the value of its 
‘Range’ IV is a list of possible measurement values [e.g., (Favour, Indifferent, 
Oppose) or (1,2,3,4)]. 

CategoricalVariate is further specialized into NominalVariate and Ordinal- 
Variate, depending on whether the order of the ‘Range’ list is informative. 
BinaryVariate is given special status because of its frequent and important 
occurrences in practice. 

Finally, a Datum is meant to contain all the information related to the 
measurement but none on the variate or individual being measured. The 
separation is not always clear. Certain attributes like the ‘DataValue’ (a 
number or a string), the ‘Censoring’ (NIL, Left, or Right), and the ‘Sig- 
nificantDigits’ (NIL or a positive integer) belong to the value recorded as the 
measurement and hence are IVs of Datum. For others it is not as clear where 
the attribute belongs. Units of measurement, for example, are part of the 
recorded measurement, but they are typically the same for all measurements 
taken on a variate (cf. ‘SignificantDigits’). Hence, in the current representation 
‘UnitsOfMeasurement’ and ‘Range’ are attached to ContinuousVariate and 
DiscreteVariate, rather than to Datum. 

A simple statistical observation will be some union of an Individual, a 
Variate, and a Datum, where all of the available information is recorded on 
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each one as appropriate. Note that the same information can be shared by 
many observations. The same instance of Individual can be part of many 
different observations and hence make the same individual-specific informa- 
tion available to each observation. For example, suppose that, while examining 
the measurements on one variate, something is learned about a given individ- 
ual and recorded as ‘Notes’ on the corresponding instance of Individual. This 
information will then be available when examining a measurement on any 
other variate for the same individual. Alternatively, a single instance of a 
ContinuousVariate, will contain information about that particular variate that 
will be available to all observations that are measurements of it. This is an 
important consequence of modelling the components separately. 

4. Putting the pieces together 

In this section, software representations are presented for univariate sam- 
ples, or batches, and multivariate observations. These are more complex 
statistical data abstractions that are typically represented as either a column or 
a row of a ‘data matrix’. However, if the representations are intended to be 
believable tokens for the statistical abstractions, this simplistic representation 
will not do. For example, unmeasured contextual information recorded on a 
given individual in the sample is not available from the matrix. A believable 
software representation of a univariate sample must have immediate access to 
the information available on the measured variate and on every individual in 
the sample. A representation which first passes the statistical abstraction 
through the mathematical filter of a vector loses this information. Software 
representations of matrices and vectors are constructed to be believable 
representations of mathematical, not statistical, abstractions. A univariate 
sample would be better represented more directly - as some composition of 
the basic elements of a statistical observation as described in section 3. The 
representations of this section follow this approach. 

First, features that are common to both multivariate observations and 
univariate samples can be extracted by noticing that in either case, the 
statistical data are examined in a conditional fashion. A multivariate observa- 
tion holds a given individual fixed to consider the measurement of each of a 
number of variates. Alternatively, a univariate sample holds the variate fixed 
to consider the measurement on each of a number of individuals. An object 
class called a DataRecord is defined to represent the common features of the 
statistical abstractions of a multivariate observation and a univariates sample. 
DataRecord is based on the conditional nature of these statistical data 
abstractions. In either case, a single kind of Identifier is held fixed (Individual 
or Variate) and a collection of Identifier-Datum pairs (Variate-Datum or 
Individual-Datum) examined. 

A DataRecord pairs an instance of one of the two Identifier types (an 
Individual or a kind of Variate) with a collection of paired instances of an 
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Fig. 2. A DataRecord 

Identifier of the other type (a Variate or an Individual) and a Datum. A 
schematic description is given in fig. 2. 

As fig. 2 indicates a DataRecord has two distinct parts. There is the 
Identifier (either an Individual or a Variate) which is fIxed and is called the 
‘key’ of the DataRecord. And there is the collection of Identifier-Datum pairs 
that is called its ‘value’. In fig. 2 there are n such pairs. The kind of Identifier 
in each of these pairs is of course different from the Identifier that is the 
DataRecord’s key. Further, each Identifier in the collection is unique. 

Many actions are naturally associated with a DataRecord. For example, we 
expect to be able to identify the key Identifier and to access and put 
information on it. This is simply accomplished by a method on the DataRe- 
cord class which permits access to the key and hence to its methods. Similarly, 
methods are attached to DataRecord to interact with its ‘value’. 

In particular, many methods are expected to be attached to DataRecord 
because it is a keyed-collection of pairs. Those described in Goldberg and 
Robson (1983) for a keyed-collection have been implemented in Interlisp-D 
for the class DataRecord. These include interactions such as adding and 
removing pairs, accessing one element of a pair by specifying its partner, 
iterating over the collection to apply a function to each pair, and many others. 

Other interactions are appropriate because a DataRecord represents an 
indexed collection of statistical data. Methods like ‘SelectCensored’ (which 
returns another instance of DataRecord containing all data pairs whose 
Datum’s ‘Censoring’ is non-NIL) are therefore included in the definition of 
DataRecord. 

These methods treat a DataRecord only as a convenient means for inter- 
acting with each Identifier-Datmn pair of its collection. None, so far, treats a 
DataRecord as the unit. But this is contrary to the abstraction a DataRecord 
represents - a multivariate observation or univariate sample. For example, 
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Fig. 3. Specializing DataRecord. 

prior theoretical information may indicate that a particular batch of numbers 
should appear as a sample from a specified distributional family. This infor- 
mation quite properly belongs to the DataRecord representing the batch rather 
than to, say, the Variate which is its key. The IV ‘Notes’ and the method 
‘EditNotes’ are therefore attached to DataRecord to allow information on the 
DataRecord as a unit to be recorded. 

Note, however, that many methods which one might naturally associate with 
certain DataRecords are not appropriate for all DataRecords. For example, 
when an instance of DataRecord is used to represent a batch of numbers for a 
single variate, we expect to be able to display that data as a boxplot. But for 
another instance that represents a single multivariate observation, a boxplot 
makes little sense. The two represent substantively different kinds of DataRe- 
cords. 

To make the representations truer to the statistical abstractions they model, 
the DataRecord class is specialized as shown in fig. 3. The two principal types 
of DataRecord are the Case and the VariateRecord. These correspond directly 
to the two substantively different statistical abstractions of a multivariate 
observation and a univariate sample respectively. A Case is a DataRecord 
whose key is always an Individual and whose value is always a collection of 
Variate-Datum pairs. Likewise, a VariateRecord is a DataRecord whose key 
must be a Variate and whose value must be a collection of Individual-Datum 
pairs. 

Similar considerations lead to a subdivision of VariateRecord into Batch 
and Factor, according to the kind of Variate taken as the key. A Batch must 
have either a ContinuousVariate or a DiscreteVariate as its key, whereas a 
Factor must have a CategoricalVariate. 

This division of VariateRecord is a natural one to which many statistical 
methods adhere. Methods which produce numerical summaries like the mean, 
the standard deviation, empirical quantiles, and so on, are applicable to a 
batch of numbers. Hence they are part of the definition of Batch. The same is 
true for re-expressions, such as the natural logarithm, which are applied to all 
Individual-Datum pairs of a Batch to produce a new Batch having the same 
Individuals but different Datums. 

By contrast, re-expressions make no sense for a Factor. Numerical summaries 
are restricted to such quantities as the mode, the counts for every category, 
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and, if the CategoricalVariate is an OrdinalVariate, perhaps some quantiles as 
well. Consequently, these methods are associated with the class Factor. 

Statistical graphics also separate according to the inheritance structure from 
DataRecord. A Batch has methods which will display it as a boxplot or as a 
histogram. But a Factor will be displayed as a barplot. Quite different displays 
make sense for a Case - from a circle in a scatterplot, to a glyph, to a cartoon 
face. 

Each kind of DataRecord - Case, Batch, and Factor - represents a unique 
statistical data abstraction and the associated methods separate accordingly. 
Each DataRecord is defined as a unit with which certain kinds of information 
and interactions belong. However, when detailed information is required for 
the components of a DataRecord - Individuals, Variates, and Datum - the 
components are accessed or interacted with directly. 

Moreover, some instances of these components will be shared by many 
different DataRecords. Information stored on an Individual after examining 
some Case is accessible from any Batch which contains a measurement for that 
Individual. The design of DataRecord as a composition of more primitive 
objects makes this possible. The same principle is applied in the next section 
to create a representation of a data set as the composition of instances of 
DataRecords. 

5. DataSets 

A typical statistical problem begins with many batches, factors and cases 
that can share variates, individuals and data values. Collectively, they con- 
stitute the base data set. Similarly, their software representations as Batches, 
Factors, and Cases can be gathered together within an instance of an object 
class called DataSet. DataSet is designed to represent the higher level statisti- 
cal abstraction of a data set. An instance of DataSet would, for example, be 
one of the basic inputs to a regression analysis (along with a fitting procedure 
and a model representation involving Variates and parameter representations). 

Like DataRecord, DataSet is a collection of data. A DataSet collects 
together many instances of Case, indexing each one within the DataSet by the 
Individual that is its key. Fig. 4 illustrates the organization. Just as a DataRe- 
cord is a collection of Identifier-Datum pairs, a DataSet is a collection of 
Individual-Case pairs. Indeed, this commonality means that the implementa- 
tions of DataRecord and DataSet are very similar in structure. [Oldford and 
Peters (1986) describe the implementation in more detail.] Note also that 
unlike using a rectangular array to represent the data, there is no need to 
record missing values explicitly as NAs - they are simply indicated by their 
absence. 
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Fig. 4. A DataSet. 

A DataSet can access each of its Cases (their IVs and methods), and, 
through them, information on the Individuals, Variates, and Datums they 
contain. Like DataRecord, there will also be information that more properly 
belongs to a given DataSet than to any of its components (e.g., the source of 
the data, how the data was gathered, a description of the goals of the study, 
etc.). Hence IVs like ‘Label’ and ‘Notes’, and their associated methods, are 
also defined for DataSet. 

Again, as with DataRecords, the functions that one expects to perform on 
any collection of keyed-objects are available as methods for a DataSet. These 
include iteration over the entire collection to select certain elements, or to test 
each element for a given feature, or to apply some user-specified function to 
every element (the elements referred to here can be either the Individuals or the 
Cases). The complete methods of Goldberg and Robson (1983) are installed. 

However, Cases are not always the most natural unit with which to work. 
Often data are not gathered, or considered, Case by Case, but rather Vari- 
ateRecord by VariateRecord. For example, economic data are often gathered 
series by series from different data sources. In practice, then, data sets are 
viewed symmetrically as either a collection of Cases or as a collection of 
VariateRecords, depending on which seems most helpful for understanding the 
problem at hand. A DataSet is therefore defined to enjoy the same property. 

The contents of whole VariateRecords may be added to, or removed from, a 
DataSet as easily as are Cases. Similarly, iteration, testing, and so on, can be 
done over Variates as easily as over Individuals. Furthermore, wherever possi- 
ble, the same method is used to interact with a DataSet either as a collection 
of Cases or as a collection of VariateRecords. For example, the method 
‘AtPut’ allows information ‘At’ a specified location in the DataSet to be 
accessed. It returns a VariateRecord if the argument supplied is a Variate, a 
Case if the argument is an Individual, and a Datum if both a Variate and an 
Individual are supplied together. 

This symmetry is not, however, completely enforced in the present imple- 
mentation of DataSet. It is not possible, for example, to identify whether a 
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DataSet contains a particular instance of a Batch. This is because a DataSet 
does not contain instances of any kind of VariateRecord. It is implemented 
only as a collection of Cases. Therefore, the most that can be determined is 
whether the DataSet contains the same data as does the Batch. 

It could easily be otherwise, but this would require a double referencing 
scheme in which Cases and VariateRecords are used simultaneously in the 
definition of a DataSet. Cases and VariateRecords would need to be automati- 
cally updated whenever the contents of one or the other changes. This could 
be done by employing active constraints between the Cases, VariateRecords, 
and DataSet [e.g., see Borning (1981) or McDonald (1986)]. The next imple- 
mentation will probably have this double referencing scheme. 

Aside from the usual methods for any new kind of collection, there are also 
statistical methods that are associated with an entire DataSet. All pairwise 
plots of the data for selected Variates, a plot of the Chernoff faces for selected 
Individuals and Variates, boxplots of the data for selected Variates, various 
measures of multivariate location and dispersion, are all natural candidates for 
methods of DataSet. The key common feature is that each method produces 
only descriptive information on the data. 

Other methods, like one to perform a multivariate regression of selected 
variates on other selected variates, are not attached to DataSet. This is because 
its appropriate application depends on information that is extraneous to the 
recorded data. This includes information such as the purpose for fitting such a 
model, the structural relationship between the variates, and the probability 
model, if any, that can be assumed to have generated the data. Lagged 
variates, for example, do not appear in the representation of the data. Lags are 
not part of the data representation but rather part of the representation of a 
model relating one or more variates. A model specifying this relationship, 
together with the DataSet for which the model is believed to hold, are the 
basic inputs for estimation. DataSets, like other representations of statistical 
data, are meant to model only the data. 

It is debatable whether statistical methods should be attached to these 
representations at all. If so, then where the boundary of the data lies is not 
always easily determined. For example, should density estimates be attached 
to a Batch? The guiding principle here, is that, only if its purpose is purely 
descriptive should the method be attached to the data. For a Batch, it is 
enough that a ‘reasonable’ density estimate be available. One that is optimal, 
in some sense, is not really of interest - indeed, a good interactive histogram 
will probably suffice. If, however, the purpose is to construct a reliable density 
estimate for some theoretical probability distribution that generated the data, 
then the problem is genuinely one of estimation (or modelling) and is more 
properly addressed by statistical procedures which use the Batch as input. 
Those statistical methods which are directly attached to the data representa- 
tions should not require information that is extraneous to the recorded data. 



R. W. Oldford, Sofhvare representations for statistical data 239 

6. Modelling more complex data relationships 

So far, the data information considered has separated quite neatly into the 
three components: individual, variate, and datum. From these, increasingly 
abstract datatypes have been built up, layer by layer, from the three base 
components to DataRecords (VariateRecords, Batches, Factors, and Cases) and 
from DataRecords to DataSets. In this section, two examples of more complex 
data relationships are considered to see how they would be represented using 
these datatypes. Some extensions to the datatypes are also suggested. 

The simplest example that does not obviously fit the data representations 
proposed in previous sections is time-ordered data. To give a concrete exam- 
ple, consider how the US gross national product recorded for the years 1947 to 
1974 would be represented. 

To start, each year is represented as an instance of Individual on which an 
instance of ContinuousVariate called ‘US gross national product’ has been 
measured. For each Individual, the measurement is stored in a corresponding 
instance of Datum. However, if these data were now collected together as an 
instance of Batch, then the ordering of the Individuals would be lost! Batches 
do not record order. 

To avoid any loss of information, another instance of Variate (Continuous- 
Variate or DiscreteVariate would do) is introduced to represent the time. Then 
a new instance of Datum is introduced for each Individual and its value would 
be the year (1947,1948,. . ., 1974) that corresponds to that Individual. The 
series would now be represented as an instance of DataSet, where each Case in 
the DataSet is composed of the Datums associated with two variates: the gross 
national product and the time. 

Note that since the year is recorded as the value of a Variate, the instances 
of Individual have been reduced to symbolic place holders. Hence, any 
potentially important events in a given year would be recorded on the Datum 
that corresponds to that year and not on the Individual. 

An alternative way to represent a time series - one that is especially 
appealing if one works a great deal with time series - is to introduce new 
classes to represent time-ordered data. Simply specialize VariateRecord to a 
new class of VariateRecord called TimeSeries, say, whose Individuals are 
ordered within the TimeSeries. Similarly, DataSet could be specialized to 
MultipleTimeSeries. The effect would be the same as representing the time 
series as a DataSet with a time Variate, but with an important difference: since 
a new class is defined, new methods specific to that class (e.g., ‘Pro- 
duceAPeriodogram’) can be attached to it. 

Unfortunately, in either representation, each Individual no longer represents 
the unit sample - even though the time is usually regarded as just that. A third 
approach would be to incorporate more information into the definition of the 
class Individual (or specialize Individual) to give its instances the ability to 
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order themselves as necessary. Then if the year is regarded as the sampling 
unit on which the Variate is measured, the instances of Individual representing 
each year would have some method to establish order. This could easily be 
accomplished by adding two new IVs, say ‘CompareFunction’ and ‘Compari- 
sonvalue’, to the Individual class. If two instances have the identical value of 
‘CompareFunction’, then it could be applied to the values of their ‘Compari- 
sonvalue to arrive at an ordering. For ‘gross national product’ time series, the 
comparison function would simply be ‘greater-than-or-equal-to’, and the com- 
parison values would be the numbers 1947,. . . ,1974. 

The appeal of this approach is that it does not confuse the sampling units 
(the individual times) with a hypothetical variate. Rather it is based on 
time-ordering being a property of the sampling units (the times) and hence a 
part of the definition of Individual. Moreover, it does not preclude using either 
of the previous representations for time series. 

A quite different example is given by the situation where there are repeated 
measurements on the same individual and many individuals under study. 
Again to be concrete, suppose that the amount of carbon dioxide dissolved in 
a sample of blood is the variate measured. Then suppose that this measure- 
ment is taken from each of many independent samples from the same person 
and that there are many such persons in the study. How should the data be 
recorded? 

One approach is the following. First, represent each blood sample by an 
instance of Individual and the Variate ‘amount of CO, dissolved’ by an 
instance of ContinuousVariate. Then, use an instance of Datum to record the 
measurement of this ContinuousVariate for each blood sample. Similarly, 
represent each person in the study by an instance of Individual. 

To group the blood samples by the donor, an instance of NominalVariate is 
used. The instance of Datum associated with this NominalVariate would then 
have, as its value, that instance of Individual that represents the donor. 
Moreover, all measurements on the same person could share the same instance 
of Datum for the NominalVariate (since it has the same value). The representa- 
tion for the whole data set is now given by a DataSet, where each Case has as 
its key an Individual corresponding to a blood sample. The collection for each 
Case contains the Datums on the ContinuousVariate and NominalVariate for 
that blood sample. 

The appeal of this approach is that each sampling unit (both persons and 
blood samples) is represented quite naturally as an instance of Individual. 
However, the use of a NominalVariate to nest one sampling unit (the blood 
sample) within the other (the donor) seems artificial and forced. 

A preferable representation of the data that does not use a NominalVariate 
in this way is the following. As before, represent the blood samples and donors 
as separate instances of Individual. Also, retain the ContinuousVariate to 
represent the ‘amount of CO, dissolved’ and all the Datums used to record the 
measured values. Again the data will be represented by a DataSet of Cases. 
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But this time, a Case is constructed for those instances of Individual that 
correspond to a donor, not a blood sample. 

Each Case contains only one Variate-Datum pair. The Variate is the Con- 
tinuousvariate just mentioned, but the Datum is quite different. This Datum 
has an instance of Batch as its value. The Batch corresponds to the collection 
of blood samples, and the amount of dissolved CO, measured for each, that 
were taken from the donor represented by the Individual for the Case. That is, 
the Batch has as its key the ContinuousVariate and as its value the collection 
of Individual-Datum pairs that are appropriate. 

This representation has the same appealing attributes as does the previous 
one. But unlike the previous one, no artificial variate was introduced. More 
importantly, the Individuals in this representation are nested within the Data- 
Set in a manner that is completely analogous to the nesting of the sampling 
units they represent. It would seem, therefore, to be the preferable representa- 
tion of the two. 

Both representations for the repeated measures data can be constructed 
using the framework that has been implemented. While the second style is 
preferred (on the grounds that it more closely follows the way the data are 
usually recorded), nothing in the implementation prevents one from using 
either. Moreover, both styles of representation generalize in a straightforward 
manner to model more complex data relationships reasonably. 

However, in either style of representation, no information is attached to an 
Individual that directly related it to any other Individual. That is, no informa- 
tion is directly accessible to an Individual that could show how it is related to 
any other. Neither Individuals nor Variates have a link to any other object. The 
relationships between them are available only at a level that encapsulates more 
than one of them (e.g., DataRecord). Consequently, in the above representa- 
tions, this information is only available from the instance of Case that 
connects them. 

To recognize explicitly that sampling units can be related to one another 
requires a richer definition of Individual than that considered here. How such 
structures are best defined is an open problem. If solved, though, it could 
mean quick access to relevant sampling unit information from any Individual 
in the study. Similarly, rich structures for Variate could allow the variate 
relationships to be tracked in the analysis (e.g., one is a linear combination of 
others, or is a transformation of another, and so on). 

For more complex data scenarios, DataSets could be redefined to more 
closely match the DataRecord pattern by including a ‘key’ for each DataSet 
(compare figs. 2 and 4) and then allowing a collection of DataSets as its 
contents. The value of the key would be an Individual. An example, where this 
could make sense is the situation that arises when many variates are measured 
on many persons over time. There would be a single Variate for each variate 
measured, a single Individual for each person, and a single Individual for each 
time (the Individuals that correspond to time would have the order information 
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attached to them). Such a data set could be represented in two equivalent 
forms with extended DataSets. The first would have a DataSet for the 
collection of measurements on each person measured at a given time. A key 
that is the Individual representing that time would be attached to this DataSet 
and the collection of DataSets would be gathered together in a larger extended 
DataSet keyed by the time. The alternative representation would simply switch 
the roles of the Individuals representing the times and those representing the 
persons. 

7. Some implications for data analysis systems 

An important feature of these data representations is that they share 
information. When all the instances reside in the virtual memory of the 
machine (at least for the duration of the analysis) the updating of information 
on any one of them is immediate. Moreover, the new information becomes 
immediately available to all software (including other instances) that point to 
the updated instance. 

As an example, suppose that in the course of the analysis of some US 
annual economic data, it is observed that some significant change in prices 
happened in 1974. Upon reflection, it occurs to the investigator that this is 
probably attributable to the fixing of world oil prices by OPEC in that year. 
This significant event is therefore recorded on the ‘Notes’ IV of the Individual 
that represents the year of 1974. 

Later, another economic analysis is underway. A different country is being 
studied, or different variates on the same country, or perhaps only the in- 
vestigator has changed. In any case, suppose that the same years are involved. 
Since the Individuals of the previous study represent these years, the same 
Individuals should be used for this study. Then, if the data associated with 
1974 stand out in the second study too, the information about OPEC previ- 
ously stored on that Individual will be available to the investigator for 
consideration. It may now be accessed through a different instance of DataSet, 
but it will be precisely the same Individual as before and hence the same 
information. 

This has a subtle, but important, effect on one’s expectations of the 
statistical analysis system. For example, we no longer expect to retrieve 
information on an Individual that represents a person from two different 
Batches simply because we know it is possible to move information from one 
Batch to another. Rather, we expect to be able to retrieve that information 
because we are referring to a single person! The Individual becomes more 
closely identified with the person it represents. Each component part, at every 
level (from Datum to DataRecord to DataSet), is designed to model a unit that 
is natural in statistical data analysis. Having the same software representation 
appear in those data structures where the corresponding natural unit of 
information could be expected to appear, strongly reinforces the identification 
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of the unit with its software representation. The expectation, then, is that, 
wherever the statistical unit appears naturally in the course of the analysis, its 
unique software representation should be available. 

Consider, for example, how this expectation makes new demands on the 
organization of interactive statistical graphics. It was noted earlier that many 
statistical graphics separate along the same lines as the representations for 
statistical data. Boxplots and histograms are appropriate for Batches, barplots 
for Factors, glyphs and Chernoff faces for Cases, and pairwise scatterplots and 
side by side boxplots for DataSets. And so, methods to produce many of these 
plots are part of the definition of each representation. It is no accident that the 
graphics neatly match the data units; they were originally developed with 
those units in mind. When we look at a boxplot, we are looking at the display 
of a batch of numbers. The expectation, then, is that from that display we 
should be able to access all information on that batch. To do this, the software 
that represents the boxplot display should have access to the Batch from which 
it was built. 

The kind of direct connection that is expected becomes obvious when a 
simple scatterplot of N observations on two variates is considered. The data 
are represented as an instance of DataSet that has N Cases, say Case-l,Case- 
2,. . . , Case-N. In general, Case-i has as its key an instance of Individual, say 
Individual-i, and as its value a collection of at least two Variate-Datum pairs. 
Let these two Variates be denoted Variate-,4 and Variate-B. Then there will 
also be at least two Batches associated with this DataSet, Batch-A and 
Batch-B, representing the N Datums for Variate-A and Variate-B, respectively. 

The whole scatterplot is a display of this DataSet. From this display we 
expect to be able to access all the available information on the DataSet. In a 
highly interactive environment with a high-resolution display and a pointing 
device like a mouse, this information might be accessed by simply pointing at 
the scatterplot with the mouse, pressing a button, and selecting menu items to 
choose the pieces of information desired. 

However, interest in a scatterplot often lies in the individual observations. 
The ith point is essentially a view on Case-i. Hence, direct interaction with 
that point in the display is a natural way to obtain information on either 
Case-i or Individual-i (possibly positioning the mouse over the displayed point 
and clicking a button to produce a menu giving access to Case-i and Individ- 
ual-i). Conversely, since information is also gained on Case-i by examining the 
scatterplot, interacting with the displayed point would be a natural way to 
store information directly onto Case-z’ or Individual-i. 

Moreover, if each point really is a view of a Case, and there are many 
possible ways to view a Case, then why not choose the most appropriate 
display interactively. For example, choose different symbols (cross, circle, 
triangle) for each Case on the basis of the value of a NominalVariate taken in 
the Case. Or display each Case as a glyph to represent the values on the 
remaining Variates in the Case. 
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Other elements of a scatterplot also correspond to views of data structures. 
Axes are views of the marginal batches - interacting with them should lead to 
interacting with Batch-A and Variate-,4 or with Batch-B and Variate-B. Again, 
other views of these Batches, like boxplots, range-lines and histograms, should 
be exchangeable in the scatterplot. 

A scatterplot, then, is just an arrangement of selected views of the internal 
data structures of a DataSet. As such, it is natural to expect to manipulate the 
data structure and change how it is displayed by interacting directly with the 
display. Moreover, we would expect all the views to be current. That is, if 
changes are made to an underlying data structure (e.g., change in data values, 
addition of new variates and values), then every view of that data structure is 
expected to update its display to reflect the change. This includes the situation 
where one data structure is simultaneously displayed in different plots (e.g., all 
pairwise scatterplots for a DataSet, each Case is displayed many times). 
Changes to the underlying data structures should be immediately reflected in 
all plots that display it. Effectively, then, each view is a link from the plot to 
the data structure it displays. 

Moreover, if each of these views is also given an object-oriented representa- 
tion (CaseView, BatchView, etc.), then they too could be shared by two or 
more different scatterplots. Suppose, for example, that CaseView- is the view 
of Case-l and that it is displayed as a cross in two different scatterplots. 
Changing its display to a circle in one plot should cause it to change in the 
other plot as well. In this way, the plots themselves are linked by sharing the 
same CaseView- [see also Becker and Cleveland (1987)]. 

In a system called Antelope, McDonald (1986) shows that simple 
leader-follower constraints are enough to achieve this kind of linking between 
scatterplots. Basically, one object called the follower updates its values 
whenever another object called the leader changes its values. In the above 
situation, two levels of constraints need to be applied. For the first, the leaders 
are taken to be Cases and the followers CaseViews. This ensures that whenever 
the basic data in a Case changes, its CaseView is updated. The second level 
then constrains the objects representing the scatterplots to follow the 
CaseViews. Then when CaseView- changes, the two scatterplots update their 
displays. 

While all statistical graphics display views of data structures, some often 
display other things as well. Items like a running-linear-smooth of the data, or 
a fitted curve are sometimes added to simple scatterplots. Everything in the 
display, though, is a display, or view, of something. The displayed curve might 
be a view of the result from fitting a parametric model to the displayed data by 
least squares. The smooth might be a view of the results from a local 
least-squares fitting of a straight line. If there is a corresponding software 
representation for items being viewed, then there is reason to interact with 
them as well. 
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This illustrates an important point hinted at earlier. Many statistical struc- 
tures which are not data structures, can be usefully represented in an object- 
oriented fashion. For example, representations of statistical models as data 
structures have recently been considered by Bates and Chambers (1988). In the 
present framework, if the mathematical specification of a model describes the 
relationship between different variates, then its software representation should 
relate specific instances of Variate classes. Since the mathematical specification 
has nothing to do with the observed data, then its representation can exist 
independently and be fitted to many different DataSets. 

In the DINDE system, many different kinds of statistical structures are 
given object oriented representations [Oldford and Peters (1987)]. These 
include familiar graphics like Scatterplots, QQPlots, ResidualPlots, Histo- 
grams, and Boxplots, and less familiar analysis artifacts like LinearFits and 
LeastSquaresFits. As was the case with the data structure, the key to these 
representations is to isolate a conceptual statistical structure (e.g., a regression 
model specification or the raw information gained by fitting a model to data 
with least-squares) and to represent it as an object class (e.g., LinearRegres- 
sionMode1 or LeastSquaresFit). If the representation is good, instances of it 
will be used in the analysis as believable tokens for that statistical information. 

As with DataSets, these richer statistical objects, if properly defined, will be 
able to share a great deal of information with one another (and with DataSets). 
A representation for a mathematical model, say Model, would need access to 
the Variate instances for which it describes a relationship. A LeastSquaresFit 
would need access to the Model used to get the fit and to the DataSet on 
which the fit was based. If the same mathematical relationship is fitted using 
different data, then a different DataSet is used and a different LeastSquaresFit 
results. But the same instance of Model would be shared by both fits, and 
hence the Model specified instances of Variates must be present in both 
DataSets. 

If the selected concepts are natural, well-defined units in statistical data an- 
alysis, and they are believably represented by the software, then there will be 
increased pressure on integrating the statistical software. As before, the 
expectation will be that wherever the statistical unit appears naturally, so too 
should its unique representation. 

8. Concluding remarks 

The data structures that have been represented here are quite general. They 
focus on attributes of statistical data that are common to most statistical 
problems. While more specific data structures, like experimental runs or time 
series, can be modelled using these representations, they are often regarded as 
containing information beyond the usual notion of multivariate observations 
or batches. The given data classes have been designed to be generic enough 
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that specializations of them could be used to give a suitable representation of 
more specific data types (e.g., TimeSeries as a specialization of VariateRecord). 

Other data structures like repeated measures data, while representable 
within the present framework, suggest that the basic components themselves 
might be improved upon. Some statistical data information is on the organiza- 
tion of the sampling units, independent of any variates or measurements. 
Some units are nested within another, or perhaps crossed with others. This 
organization might be bested modelled separately, perhaps by extending the 
definition of Individual to admit relationships between different instances of 
Individual. 

A statistical data structure that is represented as a unique instance of some 
class can become strongly identified with that instance. But it requires that 
that instance be shared by different programs. For example, the same instance 
of an Individual will be found within different instances of Batches, Cases, and 
others. Once this identification occurs it is readily extended to interactive 
statistical graphics as well. 

Finally, with important elements of statistical data and graphics modelled 
well, other units of statistical analysis that are based on them could be 
considered. Units like models, fitted relationships, and specialized plots, which 
are used frequently in statistical data analysis, have enough properties that are 
invariant from one analysis to the next, that their software representation is 
conceivable. Again integration with the existing representations for data and 
graphics would be expected. 
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