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ABSTRACT 

The n-dimensional geometry of collinearity and data  tha t  are influen- 

tial in least-squares linear regression is explored. A generalization of vec- 

tor space dimensionality is introduced t o  provide an intuitive description 

of these problems. I t  is also noted that  this new measure of dimensional- 

i ty plays the  role of the usual dimension in a James-Stein like result. 

Some common regression diagnostics are critically examined in this 

geometric framework. 
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1. Introduction 

Consider the  linear model 

where b r R m ,  X = (XI, . . . ,Xm) and y, e ,  XI, . . . , X m ~ R m  . The 

geometry of this model is well-known. The vector y is t o  be fitted by 

some vector, Xb,  lying in the subspace generated by the  vectors 

X,, . . . ,Xm. The vector e lies in a complementary subspace of Rn 

and gives the  error of the fit Xb. 

Standard statistical methods like least-squares regression, the analysis 

of variance and the analysis of covariance, are easily understood using 

this n-dimensional geometry. The purpose of the  present paper is t o  

incorporate newer techniques, like regression diagnostics, into this n- 

dimensional framework so that  these techniques might also enjoy a more 

intuitive understanding in light of their geometry. 

For this purpose, the primary strength of the usual geometry, namely 

its reliance on the theory of vector spaces, becomes a major weakness. In 

practice, individual vectors are observed, not entire vector spaces. Con- 

sidering only vector spaces ignores information specific t o  the  individual 

vectors tha t  generated them. This is unfortunate since diagnostic issues 

typically depend upon precisely that  kind of information: either indivi- 

dual observation vectors or individual variate vectors. 
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As an example, consider determining the  rank of a given matrix X. 

Geometrically, the rank is a function only of the column space of X, 

namely its dimension. However, if X consists of data  subject t o  error, 

or  if the  rank is t o  be determined numerically, then each element of X 

is known only up to  i t s  measurement accuracy (which a t  best is no worse 

than the  precision of the machine used to  compute the rank). If only the  

vector space generated by the columns of X is considered, then this 

information is missed and the resulting rank may be an overestimate. 

Consequently, classic vector space description of linear modelling does not 

easily accommodate a practical problem like collinearity: the  problem 

disappears with an appropriate reparameterization (i.e. for a non-singular 

matrix A, X and 6 in (1.1) may be replaced by X A  and ~ - ' b ,  

respectively, without changing the  subspace containing the fitted vector). 

The geometric descriptions which follow supplement the classic n- 

dimensional theory by focussing on the particular vectors which define 

the  matrix (e.g. the  vectors XI, . . . ,X, rather than their span). A 

class of simple functions of these vectors, which are known t o  have many 

properties usually associated with the  dimension (except tha t  positive 

fractional values are also obtainable), is introduced in section 2. These 

functions (d,-effective dimensions) and their constituent parts are used 

throughout the remaining sections to  give an intuitive geometric descrip- 

tion of regression diagnostics. 
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Section 3 records a minimax result by Thisted and Morris [1980] 

where the  dl-effective dimension plays a role completely analogous to  

tha t  played by the vector space dimension in James-Stein estimation. 

The effective dimension from this theorem has been suggested as a useful 

collinearity diagnostic by Thisted [1982]. This suggestion is considered 

and criticized in section 4. There the effective dimension is used to  

describe the  difference between the minimaxity result and the diagnosis 

of collinearity. Section 5 considers the n-dimensional geometry of 

influential da ta  in least-squares regression and section 6 critically exam- 

ines two common diagnostic statistics: Cook's distance and the 

Andrews-Pregibon statistic. Finally, some concluding remarks are made 

in section 7. 

2. Effective Dimension 

Suppose we have two matrices S and P say, whose column vectors 

are related as follows. Each column vector of S equals a constant in the 

interval [0,1] times some column vector in P, and no vector in P 

appears more than once in S (e.g., if P = (P1,P2) then S = (.5P1), 

S = (.5Pl,.8P2) and S = P are all allowed, but S = (.5P,,.8P1) is 

not). For  two such matrices, the da-effectiue dimension of S, with 

respect t o  P, is defined t o  be 
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where X i ( . )  denotes the ith largest singular value of its matrix argu- 

ment and a x .  This class of functions can be shown t o  share many pro- 

perties with the  usual dimension. Indeed, the  class can be extended t o  

include the  usual dimension by allowing a = 0. Formal mathematical 

theory exists which motivates and describes properties of the d,-effective 

dimension (see Oldford 11983, 19851 for details). Here we note only two 

major differences between the  da-effective dimension and the  dimension 

of the  entire column space of S.  

First, if we regard the  set of column vectors in S as providing unc- 

ertain information about the intended column space, then some directions 

of the column space will be better established than others by these vec- 

tors. The contribution t o  the  effective dimension is discounted more for 

poorly established directions than for others. Thus, the  ratio 

q i  E Xi(S)/XI(P), which we call the ith dimension index of S ,  with 

respect t o  P, represents the  amount the ith principal direction of S 

actually has t o  contribute, relative t o  P, t o  the dimensionality of the  

column space of S. Each da-effective dimension simply raises these con- 

tributions t o  a fixed power a and computes their sum. 

Compare these dimension indices to  the statistics commonly used to  

numerically determine the rank of S. The condition number 

XI(S)/Xmjn(S), for example (Wilkinson [1965]), is simply the  inverse of 

qmin of S (with respect to  itself). S is declared rank-deficient if qmIn 

is too small. Similarly, Chambers [I9771 has suggested the  numerical 
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rank of S be taken t o  be the  number of dimension indices greater than 

some cutoff. The d,-effective dimension instead sums each dimension- 

index raised t o  a .  

The second major difference is tha t  the d,-effective dimension has 

two arguments, S and P ,  so tha t  the d,-effective dimension of S is 

measured with respect to  P. This second argument simply provides a 

context for scaling the relative importance of each principal direction. 

Clearly for each P, many Ss  are possible and vice versa. In this frame- 

work, the  usual dimension measures the rank of S with respect t o  S. 

The next section gives an example where the  dl-effective dimension 

plays the role of the dimension in a James-Stein like result. 

3. A Minimax Result 

Given the  model (1.1), assume that  the errors, e i ,  are independent 

and identically distributed as ~ ( 0 , 4 )  with known 2X so tha t  b is 

now a distributional parameter t o  be estimated. An alternative t o  the 

least squares estimator, bLS, is the adaptive Ridge-A estimator (Thisted 

[1982]) given by (when shrinking bLS to  0) 

bA = ( x T x  + k 2 ~ , ) - 1 ~ T y  (3.1) 

where k2 = AC?/(~&V D , v ~ ~ ~ ~ ) .  Here A X ,  D, equals some d i a g e  

nal matrix of weights, and V is the matrix having the eigenvectors of 

xTx as columns. Further, suppose tha t  the expected loss of an  estima- 

tor  S of b can be given by E [ ( s - ~ ) ~ L ( s - ~ ) ]  for some positive semi- 
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definite matrix of L. Thisted [I9821 has shown tha t  the do-effective 

dimension plays much the  same role in this setting as does the  dimension 

in the  well-known James-Stein result. Letting 

the following result is proved by Thisted and Morris [I9801 and may be 

found in Thisted (19821. 

Proposition 1: For  suitable choices of A a ,  Ridge-A estimators given 

by (3.1), are minimax with respect t o  the  above loss function, if and only 

if d,(S;S)>2. 

Note tha t  whereas the James-Stein result required a dimension larger 

than 2, the  above result requires a d1>2. For this reason, Thisted 119821 

has called d,(S;S) the effective dimension. Since d, shares many 

geometric properties with the  usual dimension for values of a other than 

a = 1, the  term dl-effective dimension is preferred here. 

4. Collinearity 

In a collinearity analysist it helps to  distinguish between these pro- 

cedures used t o  detect the presence of collinearity and those used to  

ascertain i ts  effect on the problem of interest. 

For  detection, consider the matrix X = (XI, . . . ,X,), where each 

XieRn. Given that  the Xi ' s  are in a structurally interpretable form 

- 
t Recently, formal definitions have beeb proposed by Gunst 119841, and by 

Belsley and Oldford [1986]. 
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(see Belsley [1984] and Belsley and Oldford [I9861 for discussion), col- 

linearity is judged t o  be present if a t  least one of the  dimension indices, 

q i ,  of dl(X;X) is sma l l t t  and inestimability occurs if one or more are 

zero. Thus, collinearity is present if a t  least one orthogonal direction is 

not well determined. Further, the qi's, whose inverses are called "condi- 

tion" indices by Belsley, Kuh, and Welsch [1980], are used to  assess the 

extent of the  collinearity. The greater the number of poorly determined 

orthogonal directions of X, the more extensive is the collinearity. 

Consider now the effect on the ridge-A estimator. Thisted [1980, 

19821 has suggested that  the dl-effective dimension of Proposition 1 be 

used t o  assess the  effect of collinearity on the minimax property of the 

ridge-A estimators. As wiI1 be demonstrated, the statistic itself is not a t  

all related t o  the  presence or absence of collinearity. However, since 

ridge-A estimators are often suggested in place of the least-squares esti- 

mator when collinearity is present, it is of interest in this case to  see 

when, and why, minimaxity is obtained. 

In particular, let S1 and S2 denote the  matrix of (3.2) with 

D, = I, when L = I and when L = X ~ X ,  respectively. It can be 

shown tha t  

t t  Based on experimental evidence, Belsley, Kuk, and Welsch [I9801 suggest 
that those qi  'S less than 0.033 be regarded as small. 



and 

d,(S,;S,) = Xl(s,)-'C h (S2)  

= A, ( x ) ~ c  A, (x)-,. (4.2) 

Thisted [1980, 19821 has called dl(S1;S1) and dl(S2;S2) the multicol- 

linearity index (mci) and the predictive multicollinearity index (pmci), 

respectively. From Proposition 1, each quantity is related t o  the 

minimaxity of a particular (D, = I )  ridge-A estimator, first when the 

expected loss is t ha t  of the mean-square-error of the estimator (L = I) 

and second when the expected loss is tha t  of the mean-square-error of the 

predicted response a t  the observed X (L = x T x ) .  Values of mci or 

pmci less than two indicate that  the corresponding minimax property is 

lost. 

Tha t  mci and pmci bear no relationship t o  the presence or absence of 

collinearity, as assessed by the dimension indices v i  of dl(X;X), is 

easily demonstrated by an example. Let X be of full mathematical rank 

m = 4 and denote by A the row-vector of ordered singular values of 

X, written as A = (X1(X), . . . ,X4(X)). Now consider the following 

three possibilities for A, 

(i) A1 = (1,1,1,~) 

(ii) A, = ( I , ~ , E , E )  
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(iii) A3 = (~ ,E ,E ,E)  

where O<c<l. Corresponding t o  each case are the values of dl(SI;S1) 

and d1(S2;S2), 

(i) (1+3c4) and (1+3c2) 

(ii) (2+2c4) and (2+2c2) 

(iii) (3+c4) and (3+c2). 

Suppose first tha t  E = 1 b .  In all cases, the condition number of the 

x-matrix which results is five and collinearity is not likely t o  be judged 

present. However, the  values of dl(S;S1) are (i) 1.0048, (ii) 2.0032, and 

(iii) 3.0018 giving minimaxity of the ridge-A estimator in the last two 

cases but not in the first. Now suppose that  E = yielding 100,000 

as the  condition number of X. Most likely, collinearity will be judged to  

be present. But the minimaxity or not of the ridge-A estimator remains 

the same in each case as when E = 1 b .  Indeed, when there are three 

out of four mutually orthogonal linear combinations of the parameters 

which are very nearly inestimable, as in case (iii), the minimax property 

of the estimator is assured, whereas in the case (i) of least extensive col- 

linearity the  minimaxity is lost. 

Although mci and pmci and their dimension indices are of little use 

for the  general diagnosis of collinearity, they do provide interesting 

geometric information about the minimaxity of the  ridge-A estimator. 

The ridge-A estimator (3.1) can be thought of as an  estimator which 

shrinks the  least squares estimates toward zero. Those parameter esti- 
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mates shrunk most are those which have the greatest variance. Letting 

r = vTb with 6 and V as in (3.1), then the components 7i of r 
have variances equal to  2 h i 2 ( x ) .  In the above examples, these 

correspond t o  the following row-vectors of variances, 

(i) ( 2 ,  2, 2, 2/e2)  

(ii) (2, 2, 2/c2,  2/c2) 

(iii) (2, c?/c2, a / c2 ,  $/E~). 

For  small EX,  the variance c? is negligible when compared t o  2/c2.  

In (i) this means that  there is essentially only one least squares estimate, 

y4, with non-negligible variance, or equivalently, there is effectively only 

one random quantity to shrink. Not until c2 (or c4) is greater than 

1/3 does dl(S2;S2) (or dl(S1;SI)) produce a value larger than two. In 

terms of variance, then, as long as Var(y4)>9 Var(ri) for i # 4, the 

7, for i # 4 act as fixed quantities compared t o  y4. This interpreta- 

tion makes sense of the  fact t ha t  in case (i) large values of c, which 

might properly be ignored by a collinearity detection diagnosis, cannot be 

tolerated by the minimaxity property. Similar remarks and interpreta- 

tions apply t o  cases (ii) and (iii). 

The example shows that  the minimaxity of the ridge-A estimator and 

collinearity of the explanatory variates are really two quite different prob- 

lems. And hence it casts serious doubt on any recommendation based on 

minimax grounds for the ridge-A estimator as a panacea for collinearity. 
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In light of the above example and given its geometric interpretation, 

it is tempting t o  interpret the dl-effective dimension as the effective 

number of explanatory variables in the  regression model (1.1) for col- 

linearity purposes, and as the effective number of least-squares parameter 

estimates which might reasonably be regarded as random quantities to  

determine the minimaxity of the ridge-A estimator. This agrees well with 

our intuition on these issues and hence has pedagogic value. 

In the  next section this kind of informal interpretation presents itself 

again. 

5. Influential Observations in Least-squares Linear Regression 

Suppose the model (1.1) is fitted by least-squares and tha t  6 and e* 

are the  fitted and residual vectors, respectively. If lc observations are 

suspect, they can be eliminated from the least-squares fit by expanding 

the  model to  include k new parameters, one for each observation. The 

expanded model will be 

where S is k X l  and X* = (0, I ~ ) ~  is an n X k  matrix of zeros and 

ones. Without loss of generality, we have taken the last k observations 

as the  suspect ones. Many peculiarities of the data  and fit can be incor- 

porated in this manner (e.g. Andrews[l971]). 

Let  $* and e** denote the  vectors of fitted values and residuals, 

respectively, from fitting (5.1) by least-squares. The influence the  Ic 
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observations have on the  original fit can be measured by the  difference in 

A * fits S* - = 2 - e = h e ,  say. 

Now consider the geometry of these two fits. Let P = ( P I ,  . - . ,Pn) 

be the orthogonal projection matrix of the error space associated with the  

least-squares fit of the original model (1.1) so tha t  2 = Py.  Denote the 

error space for (1 .1)  by <P> = span(P1, . . . ,Pn), the  column space of 

P. 

The k parameters introduced in (5.1) affect the  size of the  error 

space. All vectors in the span of the orthogonal projection of X* onto 

the  error space <P> of (1.1) are excluded from the error space of (5.1). 

If we let < S >  denote the column space of PX* then the error space of 

(5.1) is simply the orthogonal complement, < S > L  say, of < S >  in 

<P>. 

Now if Pcs> and Pcs,i denote the orthogonal projection matrices 

for < S >  and < S > L  respectively, then, P = P<s, + P < s > ~  and we 

have 

Thus, t he  difference in least-squares fits for the models (5.1) and (1.1) is 

just the  projection of the  original residual vector e* onto <S>. In par- 

ticular, the  closer <S> is t o  i the greater is this difference. Summariz- 

iT 
ing the difference by the  angle 6 E [O,-] between < S >  and 2 is 

2 
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equivalent to  the well known extra-sum-of-squares principle t o  test the 

model of (1.1) versus tha t  of (5.1). 

Applying these results, which are true for general x*, t o  the particu- 

lar case X* = ( o , I ~ ) ~  has led t o  focus on the angle 6 (e.g. see Andrews 

[I9711 and Dempster and GaskeGreen [1981]). Indeed, the test based on 

the  extra-sum-of-squares principle has been advocated by Gentleman 

(19801 and Draper and John [1981] as a test for outliers. 

However, closer examination of (5.2) and the particular vectors 

Pn-k+l, - - ,Pn given to  generate < S >  will show that  6 alone misses 

much of the  information on the influence of the k observations. Equation 

(5.2) may be rewritten as 

where U is the n X k  matrix from the singular value decomposition of 

S ( u ~ u = I ~ ) .  The change in fit is thus expressible as the product of two 

interpretable factors. The first factor U, together with the  singular 

values of S ,  describes the structure of S while the second factor, uTe^, 

describes the orientation of S to  I?. These two components, t he  structure 

of S and its orientation t o  i', provide simple starting places t o  generate 

summaries of the  information in Ae. 

The structure of S is the source of "leverage"t or potential influ- 

ence tha t  the  group of k observations may have on the determination of 

'This differs slightly from that  of Hoaglin and Welsch [1978] where the leverage 
of a single observation is described in terms of the potential influence it has on its 
own fit. 
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t he  least-squares fit of the remaining n-k observations. T o  see this, 

first note tha t  the  structure of S may be summarized by its principal 

direction vectors (the column vectors of U ) and its dimension indices 

v l ,  - ,qk of S with respect t o  P (since X* = ( o , I ~ ) ~ ,  vl ,  . . ,qk are 

well-defined). Further, since &(P) = 1, q l ,  - . ,qk are simply the  

singular values of S .  Now, letting T = diag(ql, - - . , qk )  and partitioning 

U as U T  = (u~ ,u ,T)  where U2 has k rows, it is easily shown tha t  

Together (5.3) and (5.4) indicate tha t  the fit will be perturbed only a t  the 

k suspect observations if, and only if, q l  = - . . = qk = 1 (regardless 

of e  ̂ ). If some of these dimension indices are small, then the  fit of the 

other observations may be perturbed. The extent of the  perturbation will 

also depend upon e ^ .  Therefore examination of just U and the dimen- 

sion indices can determine only the  potential influence of the  group, 

hence the  word "leverage"+ Note tha t ,  as was the case with collinearity, 

t o  determine the  presence of high leverage it is best t o  examine the entire 

set of dimension indices rather than any single uni-dimensional summary 

like dl(S;P).  

f ~ e n  k = 1, q: = (JP,~I'-= 1-h, where h ,  is the n t h  diagonal ele- 
ment of the ''hat matrix" H = I-P. Thus for the one-atra-time case this no- 
tion of leverage corresponds directly to  the self-influence one given by Hoaglin 
and Welsch [1978]. 



25 32 OLDFORD 

The second factor of (5.3), describing the orientation of S t o  e^, is the 

source of measures of group outlyingness based on 0, the  acute angle 

<S> makes with ê  (N.B. I DTê  I I = I le^ 1 ~COS 6' ). However, more 

detailed information on this orientation can be found in uTt. In particu- 

lar, if B i  denotes the acute angle between the ith principal direction of S 

and 2 ,  we have uTê  = 11; ~ ~ ( C O S  e l ,  . - ,COS 6'k)T. Thus, from (5.3) and 

(5.4) it can be seen that  the angles 6'1, . . , B k  also contain important 

information about the change in fit. 

For example, suppose that  q k <  1 and all other qi's equal 1. By 

(5.4), only the last column of U1 is non-zero and the fit of the  first 

n-k observations will be perturbed, if, and only if, ê  is not orthogonal 

to  the  kth column vector of U. The amount of the perturbation will 

increase as O k  decreases, regardless of the value taken by 6'. The value 

of 19 is only a lower bound for B k .  

I t  is possible, therefore, tha t  a group of k observations can be both 

an outlying group (small 6') and a high leverage group (small q k )  but 

still have little or no impact on the fit of the  remaining n-k points. 

Such a situation will occur when ê  is orthogonal to  all principal directions 

of S whose corresponding dimension indices, qi ,  are much less than 1. 

More detailed information on the orientation of S t o  6 ,  involving the  k 

angles el, . . . , ek ,  say, between 6 and the principal directions of S ,  is 

needed t o  determine the actual influence the k observations have on the 

remaining ones. 
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Separate examination of the structure of S in P and the  orienta- 

tion of S , t o  e* ,  therefore suggests tha t  the n-dimensional information 

contained in Ae might be reasonably summarized by the  two k- 

dimensional statistics (ql, . . . ,qk) and (01, . . . ,Ok). These statistics 

correspond roughly to the "leverage" and "outlyingness" components of 

the influence of a group of k observations, respectively. Together, they 

can give some indication of the actual influence. However, if many 

groups of k observations are t o  be examined and k is large enough, 

then practicality will require still lower dimensional summaries. 

As with collinearity, it is tempting here t o  interpret the  dl-effective 

dimension as a measure of the effective number of observations determin- 

ing the fit. When k observations are overly influential the error vector 

i will lie close t o  a small k dimensional space <S>. By considering S ,  

the evidence given by the dimension indices may indicate tha t  few of the 

orthogonal directions of S are well-determined and so even the  dimen- 

sionality of k is suspect. Further, having i lie close t o  a principal direc- 

tion of S associated with a small dimension index causes the influence of 

these points t o  be greater still. Influential points are associated with hav- 

ing e* in close proximity to  a subspace, <S>, whose matrix of generating 

vectors has small effective dimension. 

Considering weighted least-squares reinforces this interpretation. In 

(3.1), b would be estimated by (X~D,X)- 'X~D,~  where D, is a diag- 

onal matrix of weights in [O,I]. The effect of downweighting the  influen- 
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tial observations can be seen by taking P and ê  t o  be 

I - D ~ / ~ x ( x ~ D , x ) - ~ x ~ D ~ / ~  and D ~ / ~ P ~ .  Downweighting k observa- 

tions will have the following effects on the  corresponding S and 6. The 

vectors of S will be elongated and spread apart, and the angle between 6 

and S will be increased, thus increasing dI(S;P) as the weights 

decrease. These effects are most dramatic when S contains all k 

influential points. The geometric effect of influential points in least- 

squares and of downweighting these points coincides with the intuition 

that  a few influential points may effectively determine the fit, and that  

downweighting these points will increase the effective number of observa- 

tions contributing to  the fit. 

6. Two popular k-at-a-time diagnostics 

A number of uni-dimensional statistics have been suggested in the 

literature. Two of them, Cook's [I9771 statistic and the Andrews- 

Pregibon [1978] statistic are now described geometrically. These have 

also been discussed by Dempster and Gasko-Green [1981], and by Draper 

and John [1981]. As will be shown, each captures the structure of S (lev- 

erage) and its orientation t o  ê  (outlyingness) in different ways. 

Let Q be the extra sum of squares, h e T a e ,  due to  fitting the 

model (5.1). The angle, 8 ,  between e* and the span of the  vectors 

Pn-k+l, . . . ,Pn may be measured by 
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or equivalently 

One-at-a-time statistics combine this outlier information with the  lever- 

age information, l l~ ,11~,  in simple ways (see Dempster and GaskeGreen 

[1981]). 

For k-at-a-time diagnostics, the Andrews-Pregibon (AP) and Cook 

(C) statistics may be expressed, up t o  a multiplicative constant, as fol- 

lows. 

and 

where P2 = (PZ1, P ~ ~ ) ~  is the n X k  matrix given by the  last k 

columns of the projection matrix P of Section 5 .  Small values of AP 

and large C identify "influential" groups. 

Since a uni-dimensional statistic is used in either case, care must be 

taken when combining the two sources of information. For example, hav- 

ing the "outlier" part, 8 ,  enter each statistic multiplicatively through 

sin28 and cos28 has certain drawbacks. In particular, if the  fit includ- 

ing the ith observation is exactly the  same as tha t  excluding i t ,  then 
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cos28 = 0 and AP may be small if 1 1 ~ ~ 1 1 ~  = (1-h,) is small. Draper 

and John [1981] recommended C over AP for this reason alone. How- 

ever, if cos28 = l ,  then removal of the ith observation gives a perfect 

f i t  t o  the remaining observations and C does not detect this. This has 

been pointed out by Dempster and Gaskc-Green [1981]. Using the 

cotangent in place of the  cosine, or the tangent in place of the sine, 

removes these difficulties, but  may, in the above uni-dimensional statis- 

tics, emphasize the "outlier" part of each statistic too much. 

While the AP statistic factors simply into an  "outlier" part, sin28, 

representing the orientation of < S >  to  2, and a "leverage" part, IIrl;, 

summarizing the structure of S ,  this is not the case for the C statistic. 

Its second factor in (6.1) is not a simple "leverage" component. Rather, 

the  second factor summarizes both the structure of S and the orienta- 

tion of S to  i. This may be seen by reexpressing this factor (+I)  as 

cos Bi  2 
1 

where 0 ;  is the angle between i and the ith principal direction of S. 

Clearly, both the structure of S and its orientation to  i are captured by 

(6.2). Indeed (6.1) can now be rewritten as 
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The closter e* lies t o  a principal direction of S which has a small dimen- 

sion index the larger is C .  This is a fundamental difference between C 

and AP. The Andrews-Pregibon statistic uses the  orientation of <S> 

t o  e* whereas the Cook statistic uses the orientation of S t o  e* with that  of 

<S> t o  e* appearing more as a correction factor in (6.3). For this rea- 

son, we recommend the  Cook statistic over the Andrews-Pregibon one. 

Of course, two or more dimensional summaries are preferred over 

either statistic. Oldford [I9831 compares a number of two-dimensional 

statistics, derived from the above statistics, on the Gessell adaptive score 

data-set found in Mickey, Dunn, and Clark (19671. There, plots of 

~ / c o s ~ R  versus lcot0 1 are seen t o  work well. 

7. Summary and Concluding Remarks 

The n-dimensional geometry often used t o  describe linear models 

(e.g. Seber [1965], Guttman [1983]) can be extended to  accommodate 

modern regression diagnostics. This has been done by concentrating on 

certain sets of vectors rather than on the entire vector space they gen- 

erate. The geometry of other diagnostics not considered here, like vari- 

ance inflation factors and variance decomposition proportions (e.g. Bels- 

ley, Kuh, and Welsch [1980]), could be just as easily explored. 

As in the  usual linear model theory, the n-dimensional geometry 

here sheds light on  important problems in regression analysis. One 

immediately sees tha t  the singular values of the corresponding matrix (by 
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way of the  dimension indices v i )  and its principal directions in Rn play 

important roles in both collinearity and influential da ta  diagnostics. More 

specifically, the geometry has led to  an understanding of Thisted's [1980, 

19821 indices mci and pmci and their inappropriateness as collinearity 

diagnostics. On the other hand, it has reinforced Belsley, Kuh, and 

Welsch's [1980] condition indices ( v i l ) .  Similarly, the Cook [I9771 

statistic, C, seems preferable t o  the Andrews and Pregibon [I9781 statis- 

tic, AP - mainly on the grounds that  the former pays attention t o  the 

orientation of individual principal directions of the  S matrix t o  e  ̂ while 

the lat ter  does not. 

Further,  having adopted the effective dimension throughout this 

geometric examination, some commonality in the various diagnostics 

emerged. The dl-effective dimension and its components were observed 

t o  consistently mimic the  behaviour one would intuitively expect of the 

"effective number" of observations (or parameters) in the situations con- 

sidered. While other measures have been suggested t o  coincide with this 

intuitive behaviour, none have been applicable in more than one setting 

(e.g., Huber [1981, p. 1601, Mosteller and Tukey [1977, p. 3481, Thisted 

[1982]), nor have they had the advantage of a clear geometric and 

mathematical interpretation. This common and intuitive theme has 

much pedagogic value and invites its application in areas other than 

least-squares linear regression. 
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