
Computational thinking for statisticians:
Training by implementing statistical strategy

R.W. Oldford
Department of Statistics & Actuarial Science

University of Waterloo

Abstract

Students of statistics should be challenged to discover the
possibilities computational technology has to offer empirical
investigation. This paper describes recent experience with a
course in statistical computing that tries to do just that.

Features of the course and the computing environment
which would allow it to be replicated elsewhere are described.
In particular, group projects which have the students design
and develop software that implements a largish statistical
strategy seem promising. Such a project forces the students
to synthesize their statistical knowledge into a workable strat-
egy. In so doing, they are exposed to a wide variety of top-
ics, computational and statistical, at various levels of detail.
Actually producing a software system challenges the compu-
tational creativity of the student, whatever their level of com-
putational expertise.

The course experience, the base software environment, the
statistical strategy developed by the students, and their soft-
ware implementation are described.

1 The Problem

The computer provides a medium to be continually explored.
Computer Science recognizes this and consequently occa-
sionally wanders into areas of statistical interest (e.g. un-
certain reasoning in expert systems, neural nets, data min-
ing). Statistics follows, critically assesses, and sometimes
improves the methodology. While assessment and improve-
ment are important, it would seem that responsible leadership
in empirical methods would benefit from expertise in both
statistics and computer science. The need to train computer
science students in statistical thinking is obvious to statisti-
cians but somehow the need to train statistics students to think
like computer scientists (possibly the more promising path) is
rarely entertained.

Consider the training received in a good undergraduate
statistics programme. By the end of it, students have some
appreciation of the role of the computer in statistical analysis
— it provides routine calculation, occasionally some more in-

tensive calculation (e.g. model search, smoothing), static and
interactive graphics. Statistical systems are seen to be com-
puter workbenches which offer a variety of statistical tools.
Quite rightly, much time is spent in statistics courses on un-
derstanding when and how to use some of these tools. We
train statisticians to be users of the technology.

One might argue, then, that a reasonable objective would
be to make our students more savvy consumers. This some-
times leads to survey or comparative courses on statistical
packages — information of transient value. The danger of
this objective is the notion that we are consumers. We need to
teach students to be more savvy producers of computational
resources.

To do this, statistics students must be actively encour-
aged and rewarded to explore the possibilities of the com-
puter in empirical studies. Statistical contexts should be
used to teach basic computational building blocks (e.g. se-
lected algorithms, data structures, graphics, interface, pro-
gramming principles, : : :). But above all, computational cre-
ativity should be actively promoted. In short, training in sta-
tistical thinking should be supplemented by training in com-
putational thinking.

A natural place to challenge a student’s computational cre-
ativity is in the first course on statistical computing. The re-
mainder of the paper discusses one such course which I have
given with some success at Waterloo over the past few years.

2 The Plan

As with any educational offering, we need to consider four
essential interdependent components of course design: the
goals, the content, the audience, and the actual delivery. In
this course the goals and delivery transport to different audi-
ences while the details of the content may need adaptation for
particular audiences.

The primary goal is for the student to experience compu-
tational thinking within the context of statistics. They should
come away with a sense of excitement and some confidence
about what they can achieve with a computer. A secondary
goal is the exploration of the interplay between Computer



Science and Statistics — the topics and rigour will depend
upon the audience.

The course is delivered in a single 12 week semester,the
first 2/3 of which are formal lectures with topics covered
fairly quickly. In that time, assignments can be given to en-
courage students to engage in the course early. The remaining
four weeks (or 12 hours of regularly scheduled classes) are
given over to the students to work on a large group project. It
is important that the project be run entirely by the students; in
the final 1/3 of the course the instructor’s role becomes that
of critic, cheerleader, and information resource.

Like everyone else, students will become actively engaged
if given real responsibility and creative opportunity. Respon-
sibility is encouraged in many ways — the use of a group
project being particularly effective. At the end of term, each
student hands in an independent report describing the over-
all project, the contributions of the individual members, and
a more detailed description of their own contribution. Each
student is assessed on their written report, their software,
and their contribution to the discussion and direction of the
project. Giving a clear expectation of activity is also impor-
tant. I make it clear that I expect students to have worked
together or independently between meetings in order to have
material for presentation and discussion at the next meeting.
I also declare a rarely invoked rule that I leave the meeting
if no activity occurs for five consecutive minutes. Creativity
can be encouraged by the instructor by recognizing and en-
couraging students interests. A willingness of the instructor
to give impromptu lectures and pointers to resource material
(or persons) is particularly helpful in this regard.

Groups of size five to seven seem about right. Our class
sizes are small in statistical computing, typically about 7 to
12 students and at most 20. For larger class sizes the number
of lectures could be reduced to cover the intersection of topics
needed by all groups; other topics would be researched by the
students as needed.

As regards our audience, the students are typically senior
year undergraduates and have had several terms of work expe-
rience. Minimally they will have had 3 courses (a course be-
ing 12 weeks of lectures) in calculus, 3 in algebra, 2 in Com-
puter Science, 1 in probability, 1 in statistics generally, and
1 course in applied linear regression. Before graduating they
will have had at least 9 further courses in the mathematical
and computational sciences. Typically students in this course
will have previously taken other statistics courses and/or are
taking other statistics courses at the same time. They will
have used some statistical package, typically S.

Because it is the only advanced (third year) statistics
course guaranteed to have been taken by everyone, the sta-
tistical content of the present course builds around applied
linear regression. The formal lectures therefore concentrate
on computational issues related to regression. These include

such traditional statistical computing topics as roundoff error
analysis, solving linear systems of equations, and discussion
of various matrix decompositions. This discussion allows one
to focus on the various calculations needed for least-squares
regression and diagnostics (influential and collinearity). The
statistical theory is review with the possible exception of the
depth of treatment given to diagnostics. For the most part,
the computational detail is new to them. The design, use,
and critical assessment of statistical graphics is also explored
in lectures. The remainder of the lectures are spent on pro-
gramming principles and practice – data and procedural ab-
straction, object-oriented programming, as well as details of
the programming language being used. Finally, some point-
ers on software implementation of statistical analysis strat-
egy is given where objects represent steps in an analysis (e.g.
Oldford and Peters, 1988). In the most recent offering the
impromptu lectures given were on generating random vari-
ates, spline-based scatterplot smoothing, and nonparametric
regression methods such as additive models and projection
pursuit; these topics vary from offering to offering.

The students were assigned the task of organizing and de-
veloping an interactive display oriented system for carrying
out a linear regression analysis. Throughout they were con-
tinually encouraged to think about what could be done, to
move beyond what they had seen in commercial systems, to
imagine what some idealized system should look like. And
then to produce one.

2.1 Base software environment

A considerable base of software was available to the students
by using the Quail system (Oldford et al) which includes:

� the Common Lisp programming language including its
powerful object system allowing multiple class inheri-
tance and generic functions which can type on any num-
ber of arguments.

� a base programming environment supplied by the
Macintosh Common Lisp vendor (Digitool, 1997) which
is quite modern — providing lisp file editors, incremen-
tal compilation, program steppers, process backtrace,
structure inspectors, and some program analysis tools
(who calls, etc.).
Similar features are available for the PC from Franz Lisp
for their Allegro Common Lisp (1997).

� Quail’s multidimensional arrays including
— array mapping operators along any dimensions
— sorting, permuting, ranking along any dimensions
— usual matrix operators including solution of linear
systems
— matrix decomposition objects (e.g. QR, LU, SVD,
: : :)



� Quail’s statistical functionality including
Summary statistics — mean, median, percentiles, stan-
dard deviation, : : :
Data objects — array objects containing some meta-data
information.
Model objects — Extended Wilkinson-Rogers specifica-
tion of generalized additive models (e.g. see Chambers
and Hastie, 1992). Only the Gaussian linear model class
is needed for the course. See Anglin and Oldford (1993)
for further detail.
Fit objects — contains pointers to the model, the data,
and results of fitting one to the other.
Probability objects — classes representing a standard
suite of univariate discrete and continuous distributions
with each providing a variety of probability calculations
and pseudo-random variate generation.

� Quail’s graphic objects. The model for these was first
introduced in Hurley and Oldford (1991) and can be seen
in an early demonstration in the video Hurley and Old-
ford (1988).
Views and viewed-objects — A graphic in Quail is a data
structure called a view which can be displayed simulta-
neously in any number of viewports. The metaphor is
that each graphic is a “view” of some other object, its
viewed-object. Hence every view data structure retains a
pointer to the viewed object.
Compound views — views which contain subviews.
Compound views position their subviews in a display.
The compound view and every subview may have its
own viewed-object; subviews can themselves be com-
pound views.
Stock statistical graphics — dotplots, boxplots, his-
tograms, stem and leaf, 2 & 3D scatterplots, 2 & 3D
function plots, scatterplot matrices, brushing, linking,
: : :
Controls — needle-sliders, bar-sliders, push-buttons, ed-
itable text-input, dialogs, pop-up menus. These could
operate on anything.
View layouts — compound views which layout subviews
in row, column, or grid fashion, or more generally at ar-
bitrary positions specified by the user.
Interactive display — every view responds to three
mouse buttons (left, middle, right) alone or in combi-
nation with two modifier keys (shift and ctrl). Unmodi-
fied mouse buttons typically produce menus which refer
to the physical display of the selected view; ctrl-mouse
buttons refer to the viewed-object of the selected view.

� Two strategic functionshaving methods for any object
(Signposts object : : :) — returns a list of “signposts”
particular to the given object; each signpost is a kind
of control button view which if displayed and mouse se-

lected would lead to some other relevant display peculiar
to that signpost from that object.
(Display object : : :) — returns a view, which if drawn
would produce a reasonable display of the given object.
Display always accepts a boolean argument :signposts?
which if true will return a view augmented by signposts.

Ctrl-middle-mouse on any view pops a menu offering
the user the opportunity to call display on the viewed-
object, with or without signposts. This means from a
display, any viewed-object could be interacted with di-
rectly.

Other object oriented systems allowing user defined classes
and generic functions could also be used. The critical base
language features are the ability for the user to define classes
having inheritance, generic functions, and to specialize sys-
tem defined methods. Programmatic construction, display,
and manipulation of statistical graphics is also essential.

3 Project development

The formal lecture part of the course included laboratory ses-
sions where the students explored the programming environ-
ment first hand. Examples of code fragments were provided
to illustrate some points in the lectures. Nevertheless, virtu-
ally no progress was made on the project until the formal lec-
tures ended. Once I sat and listened, saying little more than
“So, what are you going to do?” the project began in earnest.

3.1 Group dynamics

The students knew each other only casually (in spite of the
small class size) and so were initially reluctant to toss ideas
out in front of the group. Moreover, there was a natural ten-
dency for each person to address their remarks to the instruc-
tor. Rather than answer, I would turn the question over to
someone else for comment. As the students became more re-
sponsible for the material, they became more self-reliant. At
the beginning of each class I would ask “What have you done
since I last saw you?” thus encouraging the students to meet
regularly outside the class. I saw my role as that of a con-
structive and critical resource for their self-directed research.
By the end, the group was cohesive, self-reliant, and without
exception willing to pursue self-learning aggressively.

3.2 Workload pattern

Initially there was a great deal of joint work as the project be-
gan to be fleshed out. The enormity of the project meant that
it would need to be broken into pieces digestible by individu-
als or pairs of students. This also affected the project design
— it had to be modular. Each piece required independent



study. During this phase students would report what they had
learned in their separate readings. Sometimes detail would be
discussed only with me, or with me and those one or two oth-
ers whose own piece of the project would be affected. Some
things, like program design, could interest or affect everyone
and so saw broader discussion. Putting it all together required
further communication between students whose pieces inter-
faced one another’s. Project write-up was each individual’s
responsibility.

3.3 Content development

At the start, students seemed to view regression analysis as
a rather flat structure having little texture. Essentially, their
recollection seemed to consist of an unordered collection of
possible methods — model search, residual plots, anova, : : :
— each student giving prominence to one or two of these and
largely ignoring the rest. It was as if one or two pieces of
their previous course had stuck with them regardless of its
importance or merit (e.g. one student would describe how
we needed forward selection, and then a little later “stepwise
regression”). No strategic sense was present at all.

At the end of the first session, I suggested they come to the
next session prepared to identify a sequence of steps which
might be taken in a regression analysis. The result was a flow
chart describing a process for regression analysis. It was rel-
atively linear and prescriptive.

“What if” questions soon showed the linear structure to be
too constraining. The overly prescriptive nature became ap-
parent when the designers imagined themselves as the users
— the putative user for whom the design had been created
turned out to be non-existent. The structure was continually
repaired after each assault and quickly became quite compli-
cated containing, for example, feedback loops and many steps
which could jump to a great many others. Abstractions fell
away, crowded out by detail. Any sense of strategy seemed
lost.

Having explored both ends of the spectrum, it seemed wise
to set aside some general task areas, determine when they
might be undertaken in an analysis, and ask what informa-
tion should be available at that step in order to carry out the
tasks. Isolating task areas and following the data led to the
final strategic representation of a regression analysis shown
as the directed graph of Figure 1. Each node is a step, and
each arc indicates potential movement from one step to an-
other. (The arc from the “model search” node carries a ques-
tion mark and leads nowhere because limited progress was
achieved in this area.) The strategy is loose in the sense that
there can be a number of activities undertaken at each node
that do not involve movement to new nodes and that it is per-
fectly possible, given the appropriate data structure, to enter
the strategy beginning at any node.

Figure 1: Students’ strategy for regression analysis.



3.4 Implementing the strategy

The nominal entry point for regression analysis is the top-
most node, the Regression Hub. Entry means that a dataset
has been identified and that the intention to pursue a regres-
sion analysis on it declared. This produces the interactive
window seen in Figure 2. It displays some information on

Figure 2: Regression Hub

the data (variate names, case names, dataset name) and some
buttons at the bottom. Each of the first three buttons lead to
one of the next nodes in the strategy — here to the Linear
Modelling Hub, to Summary Stats, or to Regression plots re-
spectively. The plotting buttons prompt the user to choose
among a wide variety of plots available for any dataset. Each
column refers to one- two- and multiple-variate plots; the sec-
ond row (which would on a screen read “Plot by”) produces a
table of plot whose cells are arranged according to the values
of one or two other variates.

The construction of the regression-hub illustrates the mod-
ularity of the code. Two major pieces of the display are avail-
able directly from the underlying dataset. Calling the generic
function display on the dataset without :signposts? returns
a compound-view displaying the dataset information shown
in Figure 2. A separate call to the generic function sign-
posts on the dataset produces the collection of plot buttons
— this is why no separate display is produced corresponding
to the stratefic node Plots of Data in Figure 1. With the data
display and the data signposts in hand, the designer of the
regression-hub need only construct the three buttons leading
to new nodes and lay out all of these in an appropriate display
as in Figure 2. The viewed-object of the resulting layout is a
regression-hub object and conversely the display of Figure 2

is the result of calling display on a regression-hub object —
the collection of buttons are its signposts.

Upon entry, each node in the strategy network produces
a new window containing an interactive compound view that
displays relevant information. For most nodes, the compound
view offers the user the possibility of changing the display
to show other relevant features of the underlying informa-
tion. Figure 3 shows the display associated with the Regres-

Figure 3: A “regression plot” showing a cubic added to the
plot. Selecting the curve (with “CTRL” pressed as well) pops
up a menu that allows the user to display the underlying fit-
object with signposts.

sion plots node. This would appear if, as shown in Figure 2,
the “Regression Plot” button was selected from a regression-
hub display. Various polynomial fits can be added to the dis-
play (through the buttons) and the variates displayed can be
changed (through pop-up menus available by direct mouse
interaction with the plot itself).

Note again the loose and coarse nature of the strategy. The
node that displays a fit and which leads to diagnostics and
inference can be reached from a signost in the Linear Mod-
elling Hub. But it can also be reached through any view that
has a fit-object as its viewed-object. For example selecting the
curve in Figure ??, the user can choose to have the underlying
fitted cubic displayed as if it had been reached through a Lin-
ear Modelling Hub. Viewed objects, the strategic functions
display and signposts are critically important to designiong
and creating a flexible strategy.

Some node displays, like the Regression Hub, contain but-
tons which lead directly to the next nodes in the strategy —
hence the names hub for the display, and signposts for but-
tons of this type. Nodes which have no signposts are said



to be terminal in the strategy. Terminal nodes may be ex-
tremely interactive as, for example, in the case of the Regres-
sion plots node; they just do not provide signposts that lead
to new nodes. Any number of nodes may be displayed in
separate windows at the same time.

The structure of each node breaks into three distinct de-
scriptive pieces: initial information displayed, activities avail-
able, and signposts. Aside from the Regression Hub and the
Regression Plots node already discussed, the characteristics
of the remaining nodes from Figure 1, as implemented by the
students, are described in the appendix.

4 Summary of experience

The experience, though worrying at times, has been over-
whelmingly positive. Through their course evaluations and
conversations afterwards, the students tell me that they ap-
preciated working on a complex interdependent project. The
team and active learning approach was universally praised.
They were delighted to have an instructor cover topics as they
chose. Each learned much from their independent studies.
The principal negative comment was that they had not started
the project soon enough.

Most interesting was the common remark that they came to
better understand statistical topics that they covered in other
courses. This latter is due, I believe, to the fact that they were
responsible for developing a statistical strategy. It forced
them to review and synthesize previous material and to ex-
plore the boundaries of the strategy. This naturally led to wide
ranging statistical discussion. Moreover, there was a dawning
recognition that although details differ from area to area that
perhaps the following structure was common to many areas
of statistical analysis:

� Analysis session

� Graphical and numerical summaries

� Model specification and editing

� Model Search

� Diagnostics

– Influence

– Identifiability

– Model checking

� Inference

Covering two or more areas could lead to interesting discus-
sion as to how one might capitalize on this (or some other)
common structure.

The group project was essential in having the students ex-
perience computational thinking. They designed, developed,
and debugged software structures that dealt with routine sta-
tistical calculations (e.g. diagnostics, hypothesis tests), rela-
tively complex statistical algorithms (e.g. leaps and bounds
model search, lowess smoothing), new interactive statistical
graphics (e.g. regression plots, plots of hii=(1 � hii) versus
ti), interface design (e.g. every node in the strategy), object-
oriented design of the classes and functions associated with
the various analysis hubs, and the overall strategy of carrying
out a linear regression analysis. While each student focussed
on an area in the strategy, the breadth of the area and the detail
required in implementation ensured that each student worked
on statistical and computational issues at a variety of abstrac-
tion levels. The creativity of the students is easily seen in the
results.

Appendix

Here we describe the student designed structure implemented
for each node shown in Figure ??. Excluded are those nodes
uncompleted and those nodes described in the text above. The
structure of each node is separated into three distinct descrip-
tive pieces: initial information displayed, viewed-object, ac-
tivities available, and signposts.

Summary Stats

Initial display: Scrollable table of summary statistics for each
variate in the dataset.
Viewed-object: The dataset.
Activity: None.
Signposts: None. Terminal node.

Linear Modelling Hub

Initial display: Dataset summary as in the regression hub and
two editable text fields – one for entering the name of the re-
sponse variate, the other for entering the linear predictor in
extended Wilkinson-Rogers notation.
Viewed-object: Linear-modelling-hub
Activity: Editing the model formula to be used by the fit but-
ton.
Signposts: 1. “Model Search” leading to a corresponding hub
(unimplemented) and 2. “Fit” which fits the specified model
via least-squares and calls display with signposts on the re-
sulting fit-object.

Display of Fit



Figure 4: Modelling hub

Initial display: Two tables 1. the estimates, standard devia-
tions, t-statistic for each term in the model and 2. the Anova
table including F-statistics and the corrected R2 statistic.
Viewed-object: The least-squares fit-object which itself con-
tains pointers to a model-object, the dataset, and calculational
details like a QR-decomposition object. The whole hub is
simply the result of calling display with signposts on the fit-
object which is of interest because fit-objects can appear as
viewed-objects of many other views (e.g. the curve displayed
in a regression plot).
Activity: None.
Signposts: 1. “Diagnostics” and 2. “Inference”

Diagnostic Hub

Initial display: Model formula. Boxplots of each variate in
the dataset.
Viewed-object: Linear-regression-assessment object which it-
self contains pointers to the fit-object.
Activity: None.
Signposts: 1. “Influential Analysis”, 2. “Collinearity Analy-
sis”, and 3. “Residual Analysis”

Influential Analysis

Initial display: Table containing case name, hii, least-squares
residual, studentized residual, and externally studentized
residual. The table is scrollable over the cases.
Viewed-object: The fit-object.

Figure 5: Display of fit

Activity: Buttons to replace table display by 1. hii vs. i and
hii

1�hii
vs. ti (the externally studentized residual), 2. ti vs. i

and hii

1�hii
vs. ti, and 3. Back to the table display.

Signposts: 1. “Normed Influence Measures”

Normed Influence Measures

Initial display: Table showing the mathematical definition of
four normed influence measures as described for example in
Cook and Weisberg (1983) including “Cook’s distance” and
“DFFITS” of Belsley et al (1980).
Viewed-object: The fit-object.
Activity: Four buttons, one for each normed measure in the
table. Pressing a button produces an index plot of that mea-
sure to the right of the table.
Signposts: None.

Collinearity Diagnostics

Initial display: None
Viewed-object: collinearity-hub.
Activity: None.
Signposts: 1. Variance decomposition proportions, 2. Vari-
ance inflation factors, and estimators’ correlation matrix, 3.
Signal to noise testing.

Variance decomposition

Initial display: 1. Table showing, the log10 condition indices
and a variance decomposition proportions table (see Belsley
et al 1980, Belsley 1991).
2. A scrollable list of the terms in the model.



Figure 6: Influence analysis

Figure 7: Normed Influence measures

3. An editable list identifying the terms to be considered as
the dependent variate in an examination of auxiliary regres-
sions (see Belsley 1991 for strategy).
4. A list of the auxiliary regression models already deter-
mined.
Viewed-object: variance-decomposition object.
Activity: Editing of the terms to be considered dependent in
an auxiliary regression analysis.
Signposts: 1. Fit the identified auxiliary regressions.

Auxiliary regression analysis

Initial display: 1. A list of all fitted auxiliary regression mod-
els having the each specified term as the dependent variate.
Viewed-object: auxiliary-regression-analysis.
Activity: Fitted models may be selected.

Figure 8: Variance decomposition proportions

Signposts: 1. Fit from the currently selected model can be
displayed with signposts

V.I.F. and correlation

Initial display: 1. The correlation matrix for the coefficient
estimators.
2. The variance inflation factors associated with each coeffi-
cient.
Viewed-object: vif-correlation-analysis.
Activity: None.
Signposts: None.

Residual Analysis

Initial display: None.
Viewed-object: The fit-object.
Activity: Offers three different types of residual examination.
1. Gaussian qqplot, 2. Residuals vs. fitted values, and 3.Side
by side of (a) residuals versus an explanatory variate in the
model and (b) Added variable plot for the effect of the same
explanatory variate. Separate buttons produce each of 1,2,
or 3 in the display area. A fourth button “next” cycles the
side-by-side plots of 3 through the explanatory variates in the
model one at a time. Plot 3(b) has a “lowess” smooth super-
imposed.
Signposts: None.

Inference Hub



Figure 9: Residual analysis

Initial display: None.
Viewed-object: inference-hub.
Activity: None.
Signposts: 1. Hypothesis tests, 2. Confidence Intervals, 3.
Prediction Intervals.

Hypothesis tests

Initial display: 1. Table of estimates, standard errors, t-
statistics, and significance levels for each coefficient in the
regression.
2. Table of results for testing a general linear hypothesis.
Viewed-object: The fit-object.
Activity: 1. General linear hypothesis of the form A � = c
can be tested. User is prompted for the matrix A and the
corresponding vector c. Resulting F-statistic and significance
level are then displayed.
2. Selecting terms in the teble of estimates can be tested for
simultaneously being zero. Results are displayed in terms of
the corresponding general linear hypothesis.
Signposts: None.

Confidence Intervals

Initial display: Table of estimates, standard errors, and 95%
confidence intervals for each coefficient in the regression.
Viewed-object: The fit-object.
Activity: 1. Change the confidence level.
2. Produce a confidence interval for an arbitrary linear com-
bination of coefficients.
Signposts: None.

Prediction Intervals

Figure 10: Hypothesis tests

Initial display: Table of estimates, standard errors for each
coefficient in the regression. A 95% prediction interval and
a point prediction for the response at the pre-specified values
of the explanatory variate (prompted for at creation).
Viewed-object: The fit-object.
Activity: Change the prediction level.
Signposts: None.

References

Allegro Common Lisp (1997), PC and Unix based Common
Lisp from Franz Lisp Inc, Berkeley California.

Anglin, D.G. and R.W. Oldford (1994), “Modelling Response
Models in Software” pp. 413-424 in Selecting Models from
Data: A.I. and Statistics IV edited by P. Cheeseman and R.W.
Oldford, Springer-Verlag Lecture Notes in Statistics, 89.



Belsley, D.A. (1991). Conditioning Diagnostics: Collinear-
ity and Weak Data in Regression Wiley & Sons.

Belsley, D.A., E. Kuh, and R.E. Welsch (1980) Regression
Diagnostics: Identifying Influential Data and Sources of
Collinearity Wiley & Sons

Cook, R.D. and S. Weisberg (1983) Residuals and Influence
in Regression

Hastie, T. and J.M. Chambers (1992), (editors) Statistical
Models in S Wadsworth Publishing.

Hurley, C.B. and R.W. Oldford (1988). “Hierarchical views
of statistical objects” STAT 88-19 video Statistics technical
report from the University of Waterloo. Also available from
the video library of the ASA sections on Statistical Computing
and Statistical Graphics. 19 minutes VHS (NTSC & PAL).

Hurley, C.B. and R.W. Oldford (1991). “A software model
for statistical graphics” pp 77-94 of Computing and Graphics
in Statistics edited by Andreas Buja and Paul A. Tukey IMA
Series on Mathematics and its Applications, Volume 36.

Macintosh Common Lisp (1997), Digitool Inc., Cambridge
Massachusetts.

Oldford, R.W., C.B. Hurley, D.G. Anglin, M.E. Lewis, and
G.W. Bennett (1988-1997) Quail: Quantitative Analysis in
Lisp. A statistical programming environment available free
of charge from R.W. Oldford at the University of Waterloo.

Oldford, R.W. and S.C. Peters (1988). “Towards more statis-
tically sophisticated software.” SIAM Journal for Statistical
and Scientific Computation

Steele, G. (1991), Common Lisp: The Language, 2nd Edition
Digital Press.


