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Abstract
White balancing is a fundamental step in the image process-

ing pipeline. The process involves estimating the chromaticity of
the illuminant source and using the estimate to correct the im-
age to remove any color cast. Given the importance of the prob-
lem, there has been much previous work on illuminant estimation.
Previous work is either more accurate but slow and complex, or
fast and simple but less accurate. In this paper, we propose a
method for illuminant estimation that uses (i) fast features known
to be predictive in illuminant estimation and (ii) single feature de-
cision boundaries in ensembles of multivariate regression trees,
(iii) each of which has been constructed to minimize a multivari-
ate distance measure appropriate for illuminant estimation. The
result is an illuminant estimation method that is simultaneously
fast, simpler, and more accurate.

Introduction
White balancing is either performed onboard the camera—

if the image delivered by the camera is in JPEG format, for
example—or in a post-processing phase—if the image delivered
by the camera is in the camera’s native RAW format. When done
onboard the camera, real-time and space considerations place ad-
ditional restrictions on white balancing algorithms. Most com-
mercial cameras use simple algorithms based on the gray-world
assumption [13], such as using the mean color of the image as
an estimate of the illumination, as these algorithms have the ad-
vantage of being fast and simple, albeit at the expense of accu-
racy [11].

Given the importance of the problem, there has been much
previous work on illuminant estimation (e.g., [3, 8, 15, 16, 18,
19, 21, 33, 34]; see [22] for a recent survey). Presently, convo-
lutional neural networks (CNN) can provide state-of-the-art ac-
curacy [4, 32]. However, in terms of simplicity and speed, the
CNN approach is at a definite disadvantage. To get credible speed
performance requires a GPU to process each image. Even then,
a CNN can take approximately three seconds on a GPU to pro-
cess a single image with present state-of-the-art methods [32].
While it is unclear whether this waiting time is tolerable for post-
processing, it is certainly the case that the slow speed and the need
to add specialized hardware is unacceptable for onboard a camera.

The most successful methods to date in illuminant estimation
are based on regression and minimize the squared error loss when
constructing their predictive models [11, 32]. However, when
evaluating the performance of the predictive models, the squared
error loss is not used and distance measures more appropriate for
illuminant estimation, such as angular error, are used instead.

In this paper, we propose a method for illuminant estimation
that uses (i) fast features known to be predictive in illuminant es-

(a) (b)

(c) (d)
Figure 1. Percentage improvement over Cheng et al. [11] for the (a) mean,

(b) median, (c) mean of the best 25%, and (d) mean of the worst 25% of

the distances measures for an image set, where each image set is captured

by a single model of a camera, and there are 11 image sets and 5 distance

measures for each image set.

timation and (ii) single feature decision boundaries in ensembles
of multivariate regression trees, (iii) each of which has been con-
structed to minimize a multivariate distance measure appropriate
for illuminant estimation. The result is an illuminant estimation
method that is fast, simple, and accurate. Figure 1 summarizes
the improvement in accuracy over Cheng et al. [11].

The rest of the paper proceeds as follows. We first review
distance or performance measures that have been proposed for
evaluating the effectiveness of white balancing algorithms. We
then present our proposed method of constructing predictive re-
gression models based on minimizing an appropriate distance
measure. We next present the results of experimentally evaluat-
ing our proposed method, comparing against the most successful
methods to date [11, 32]. Finally, we end the paper with some
conclusions.

Distance Measures
Finlayson and Zakizadeh [17] have shown that the ranking

of white balancing algorithms changes depending on the chosen
distance or performance measure. The distance measures assume
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normalized RGB; i.e.,

r =
R

R+G+B
, g =

G
R+G+B

, b =
B

R+G+B
,

where R, G, and B are the red, green, and blue channel measure-
ments and r+ g+ b = 1. In what follows, let all vectors be row
vectors, ê = (r̂, ĝ, b̂) be the estimated illuminant, and e = (r,g,b)
be the ground truth illuminant.

The most widely used distance measure [20, 25], recovery
angular error, measures the angular distance between the esti-
mated illuminant and the ground truth illuminant,

distθ (ê,e) = cos−1
(

ê · eT

‖ê‖‖e‖

)
,

where ê ·eT is the dot product of the vectors, ‖ ·‖ is the Euclidean
norm, and we assume the angular distance is measured in degrees.
Gijsenij et al. [20] note that human observers sometimes judge the
recovery angular error underestimates the perceived differences
between two images. One reason is that the recovery angular error
ignores the direction of the deviation from the ground truth, which
can be important from a perceptual point of view.

Finlayson and Zakizadeh [17] propose reproduction angular
error,

distrep(ê,e) = cos−1

 r/r̂+g/ĝ+b/b̂√
(r/r̂)2 +(g/ĝ)2 +(b/b̂)2

√
3

 ,

as a distance measure. In words, once the image has been cor-
rected with the estimated illuminant, the angular error between
the white balanced ground truth and the target of uniform gray
1 = (1,1,1) is determined.

Gijsenij et al. [20] discuss the use of the Minkowski distance
for measuring the distance between ê = (r̂, ĝ, b̂) and e = (r,g,b).
Two special cases are the Taxicab distance,

dist1(ê,e) = |r̂− r|+ |ĝ−g|+ |b̂−b|,

and the Euclidean distance,

dist2(ê,e) =
√

(r̂− r)2 +(ĝ−g)2 +(b̂−b)2.

Gijsenij et al. [20] note that the Euclidean distance treats
each of the RGB channels uniformly whereas it is known that the
sensitivity of the human eye to perceived differences varies across
color channels. To this end, they define the perceptual Euclidean
error,

distped(ê,e) =
√

wr(r̂− r)2 +wg(ĝ−g)2 +wb(b̂−b)2,

where weights wr, wg, and wb capture this sensitivity and wr +
wg +wb = 1. In experiments, Gijsenij et al. [20] found that the
weight vector (wr,wg,wb) = (0.21,0.71,0.08) gave a higher cor-
relation with the judgment of human observers than that of distθ ,
dist1, and dist2.

Our Proposal
In this section, we present our approach for white balancing

based on ensembles of multivariate regression trees. We begin
with a brief review of univariate (ordinary) regression trees and
how they were applied by Cheng et al. [11] for white balancing.

Univariate regression trees
Univariate regression trees are constructed in a greedy, top-

down manner from a set of labeled training examples {(x1,y1),
. . . , (xn,yn)}, where xi =(xi1, . . . ,xim) is a vector of feature values
and yi is a scalar response variable (see, e.g., [7, 29, 23]). As it
is sufficient for our purposes, we assume that the feature values
and the response variable are real-valued. The root node of the
tree is associated with all the training examples. At each step in
the construction of the tree, the training examples at a node are
partitioned by choosing the feature j ∈ {1, . . . ,m} and partition p
that minimizes the total of the squared-error loss functions,

argmin
c1

∑
i∈L( j,p)

(yi− c1)
2 + argmin

c2
∑

i∈R( j,p)

(yi− c2)
2, (1)

where the partition is into two subsets, L( j, p) and R( j, p), formed
by branching on feature j according to xi j ≤ p and xi j > p, respec-
tively. For any choice of feature j and partition p the minimization
is solved by taking the scalar c1 to be the mean of the yi values
in the left branch and the scalar c2 to be the mean of the yi values
in the right branch. Once the best pair ( j, p) is found, a left child
node and right child node are added to the tree and are associated
with the subsets L( j, p) and R( j, p). The partitioning continues
until some stopping criterion is met, in which case the node is a
leaf and is labeled with the scalar c associated with the subset of
examples at the node.

To estimate an illuminant e = (r,g,b), Cheng et al. [11] pre-
dict the r chromaticity and the g chromaticity independently us-
ing separate univariate trees fit with the squared-error loss func-
tion and from these two values the estimate of the b chromaticity
can be determined using b = 1− r− g. Cheng et al. [11] use
four pairs of simple features in their univariate trees: ( f 1

r , f 1
g ),

the mean color chromaticity as provided by the gray-world algo-
rithm; ( f 2

r , f 2
g ), the brightest color chromaticity, an adaptation of

the white-patch algorithm; ( f 3
r , f 3

g ), the bin average of the mode
of the RGB histogram, and ( f 4

r , f 4
g ), the mode of the kernel den-

sity estimate from the normalized chromaticity plane.
Two important points are that Cheng et al.’s [11] method (i)

predicts the r and g chromaticities independently, and (ii) min-
imizes the distance measure of interest—in their work, the re-
covery angular error—indirectly by minimizing the squared-error
loss function. Our starting point is (i) the observation that our
response variable is not a scalar but a vector e = (r,g,b) of chro-
maticities, and (ii) the related observation that independently fit-
ting using the squared-error loss function is not necessarily a good
surrogate for minimizing distance measures used in white balanc-
ing; Example 1 illustrates the point.

Example 1. Let e = (r,g,b) be the ground truth illuminant. Con-
sider the two estimates of the illuminant ê1 = (r̂1, ĝ1, b̂1) and
ê2 = (r̂2, ĝ2, b̂2), where

r̂1 = r+α, r̂2 = r+α,

ĝ1 = g+α, ĝ2 = g−α,

b̂1 = 1− r̂1− ĝ1 = b−2α, b̂2 = 1− r̂2− ĝ2 = b,

and α > 0 is some residual error. Here, the pair of estimates
r̂1 and r̂2 and the pair of estimates ĝ1 and ĝ2 both have equal
squared error (α2). Thus, from the point of view of independently
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Figure 2. An example multivariate regression tree when the distance measure is recovery angular error, showing only the first four layers (out of 18 layers).

The three (green) leaf nodes are labeled with the number of training examples at that node and the illuminant estimation if that node is reached. Also shown are

the four images associated with the green bottom-most leaf node; the images have been gamma corrected for presentation.

fitting using the squared-error loss function, the two estimates of
the illuminant have equal error. However, for distance measures
that have been proposed for white balancing, the error of the es-
timate ê1 is larger (and can be much larger) than that of ê2. For
example, let e = ( 1

3 ,
1
3 ,

1
3 ) and α = 0.05. For the recovery angular

error, distθ (ê1,e) = 11.977 and distθ (ê2,e) = 6.983. Thus, min-
imizing the squared error is not necessarily a good surrogate for
minimizing a distance measure of interest in white balancing.

Multivariate regression trees
We show how multivariate regression trees [30, 12, 27],

where each tree predicts multiple responses, can be used to ef-
fectively estimate an illuminant. In the case of multiple re-
sponses, multivariate trees are more compact than univariate trees
and can be more accurate when the response variables are cor-
related [28]. Multivariate regression trees are constructed in a
greedy, top-down manner from a set of labeled training examples
{(x1,y1), . . . ,(xn,yn)}, where as before xi is a vector of feature
values but now yi = (yi1, . . . ,yik) is a vector of response variables
[30, 12, 27].

Our proposed method for illuminant estimation is for a single
tree to simultaneously predict all three chromaticity components
of an illuminant e = (r,g,b), rather than multiple trees predicting
them independently, thus taking into account that the chromaticity
components of the illuminant are correlated and constrained (see
Figure 2). We fit a multivariate regression tree by directly min-
imizing a distance measure (loss function) of interest. Previous
work on multivariate regression trees minimize only loss func-
tions that are variants of the squared-error loss function [12, 30].
In our proposed method, at each step in the construction of the
multivariate regression tree, the training examples at a node are
partitioned by choosing a feature j ∈ {1, . . . ,m} and partition p
that minimizes the total of the loss functions,

argmin
ê1

∑
i∈L( j,p)

dist(ê1,ei) + argmin
ê2

∑
i∈R( j,p)

dist(ê2,ei), (2)

where the partition is into two subsets, L( j, p) and R( j, p), formed

by branching on feature j according to xi j ≤ p and xi j > p, respec-
tively; dist(·, ·) is any distance measure that has been proposed for
white balancing (see Section “Distance Measures”); and ê1, ê2,
and ei are normalized RGB vectors in R3, i.e., the chromaticities
sum to one. The partitioning continues until some stopping cri-
teria is met, in which case the node is a leaf and labeled with the
estimated illuminant ê associated with the subset of examples at
the node. When such a tree is used to estimate the illuminant of
an image that has not been seen before, one starts at the root and
repeatedly tests the feature at a node and follows the appropriate
branch until a leaf is reached. The label of the leaf is the estimated
illuminant of the image.

Ensembles of multivariate regression trees. To improve pre-
dictive accuracy, an ensemble of trees is learned where each tree
is a multivariate regression tree. Various methods have been
proposed for constructing ensembles including manipulating the
training examples, manipulating the input features, injecting ran-
domness into the learning algorithm, and combinations of these
methods (see [14]). We adopt the method for constructing ensem-
bles that injects randomness into the construction of an individual
tree. When constructing the tree, each feature j partition p pair
considered in Equation 2 is accumulated along with the total of
the loss functions associated with the pair. Rather than taking the
( j, p) pair that minimizes the total of the loss functions, a ( j, p)
pair is chosen at random from all pairs within a given percentage
of the minimum. This ensures that diverse yet accurate trees are
constructed. We also experimented with bagging [5] and Cheng et
al.’s method [11], two methods that manipulate the training exam-
ples to construct diverse trees, and with random forests [24, 6], a
method that manipulates both the training examples and the input
features. However, in each case the alternative led to a decrease
in accuracy.

Given a new image, the individual predictions of the trees in
the ensemble are combined into a single estimated illuminant ê for
the image as follows (see Figure 3). Let S = {ê1, . . . , êk} be the
set of predictions from the individual trees. The final estimated
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Figure 3. Our adaptation of Cheng et al.’s [11] method. Given an input image, four triples of feature values are calculated, the feature values are used by each

tree in the ensemble to predict the illumination, and the individual predictions {ê1, . . . , êk} are combined into a single estimate ê of the illuminant that is used to

white balance the image.

illuminant is the normalized RGB vector ê = (r̂, ĝ, b̂) that mini-
mizes ∑i∈S dist(ê, êi); i.e., the same minimization problem as the
one that is solved in partitioning the training examples at a node
and in labeling a leaf when constructing the trees (Equation 2).

Fitting multivariate regression trees. In fitting a multivariate
regression tree to a set of labeled training examples, the idea is to
repeatedly, in a greedy and top-down manner, find the best fea-
ture j and partition p that results in the largest drop in the total
error, as measured by a given distance measure (see Equation 2).
The minimization in Equation 2 is a constrained, non-linear opti-
mization problem. The problem must be solved many times when
learning the ensemble of trees (approximately 40,000 calls to the
minimization routine is typical for constructing a single tree) and
also once every time the ensemble is applied to a new image and
the individual predictions of the trees are combined to obtain a
final estimated illuminant. Note that learning the trees is an of-
fline process that occurs once while applying the ensemble to a
new image is an online process that will occur many times, as it
occurs each time an image is captured by the camera.

The minimization problem can be solved using exact but so-
phisticated and computationally expensive numerical optimiza-
tion routines such as those based on interior-point or sequential
quadratic programming methods. Exact methods are suitable for
offline learning of a single ensemble of multivariate trees, but un-
fortunately are too slow for experimental evaluation where cross-
validation and repeated trials are necessary to obtain accurate es-
timates of performance. This impediment also arises in univariate
trees when using loss functions other than squared error (see, e.g.,
[23, p. 342]). As well, sophisticated exact methods are unlikely
to be suitable for online application of the ensemble onboard the
camera, given the real-time and space considerations.

Instead, we propose to solve the minimization problem ap-
proximately by taking the median of the ground truth illuminants
of the training examples at a node and normalizing so that the
RGB values sum to one (see Example 2). The method is sim-
ple and fast. As well, the method often finds the exact solution
and otherwise finds good quality approximate solutions for dis-
tance measures that arise in white balancing. Further, solving the
minimization problem approximately does not appear to have a
significant impact on the accuracy of the multivariate regression
trees, perhaps because the tree construction itself is a greedy, and
hence approximate, process.

Example 2. Consider the follow three training examples, where
the ground truth illuminants are shown but feature values are not
shown, and let dist2 be the distance measure.

example r g b
e1 0.4285 0.4468 0.1247
e2 0.4221 0.4473 0.1306
e3 0.4098 0.4682 0.1220

The median of the training examples gives (0.4221, 0.4473,
0.1247) and normalizing so that the RGB values sum to one re-
sults in the illuminant estimate (0.4246, 0.4500, 0.1254) with
an associated cost of 3.5134. The mean is (0.42012, 0.45411,
0.12577) with an associated cost of 3.7619. The illuminant esti-
mate that exactly minimizes the sum of the distance measure over
the training examples is (0.4228, 0.4487, 0.1285) with an associ-
ated cost of 3.4049.

Experimental Evaluation
We compare a MATLAB implementation of our multivariate

regression tree method1 to Cheng et al.’s [11] univariate regres-
sion tree method and Shi et al.’s [32] CNN method.

We used the following image sets in our experiments. The
SFU Laboratory image set consists of images of objects in a lab-
oratory setting captured by a video camera under 11 different illu-
minants [1]. Following previous work, we use a subset of 321 im-
ages (the minimal specularities and non-negligible dielectric spec-
ularities subset). The Gehler-Shi image set consists of 568 indoor
and outdoor images captured by two different cameras [18, 31].
As done in previous work, we used the reprocessed version of the
image set which starts from a camera RAW image file and cre-
ates a linearly processed, lossless 12-bit PNG file using the well-
known dcraw program. The NUS 8-camera image set consists
of 1736 images captured by eight different cameras [9], where in
most cases each camera has photographed the same scene. Each
image is captured as a minimally processed camera RAW image
file and is linearly processed to create a lossless 16-bit PNG file.
The NUS-Laboratory 8-camera image set is a complementary lab-
oratory set of 840 images captured with the same cameras. These
additional images correct for a bias towards images captured out-
doors in daylight [10].

1Our software is available at:
https://cs.uwaterloo.ca/~vanbeek/Research/research_cp

274-4
IS&T International Symposium on Electronic Imaging 2018

Computational Imaging XVI



Experimental methodology
To assess our approach, we followed Cheng et al.’s [11] orig-

inal experimental setup closely. In particular, we used the follow-
ing methodology in our experimental evaluation.

Training data generation. Cheng et al. [11] use four pairs
of simple features in their univariate trees (see the description in
Section “Univariate regression trees”) and in our main set of ex-
periments, we used the same features. In addition, to each of
these pairs of features we add a blue component f i

b, i = 1, . . .4.
Although redundant, these additional features come for free and
significantly improve the accuracy of our multivariate trees. In
both approaches, training and testing is done on each camera sep-
arately; i.e., a predictive model is built for a particular model of
camera rather than a generic model that can be used by any cam-
era. To construct the machine learning data for a camera, each
image taken by the camera in an image set is processed by (i) nor-
malizing the image to a [0, 1] image, using the saturation level and
darkness level of the camera, (ii) masking out the saturated pixels
and the color checker, if present, (iii) determining the feature val-
ues for the image, and (iv) labeling the example using the ground
truth illuminant. The result is a set of labeled training examples
{(x1,y1), . . . ,(xn,yn)}, where xi = ( f 1

r , f 1
g , f 1

b , . . . , f 4
r , f 4

g , f 4
b ) is

a vector of feature values and yi = (ri,gi,bi) is the ground truth
illuminant.

Parameter selection. In both approaches, parameters were
set on 1/3 of the Gehler-Shi image set using distθ as the dis-
tance measure. The parameters were then fixed for all other cam-
eras, image sets, and distance measures. Cheng et al. [11] set
the following parameters: (i) the number of trees in an ensem-
ble (30× 4× 2 = 240 trees, where each feature pair is used to
build a tree for predicting r and a tree for predicting g, and this
is repeated 30 times), (ii) the amount of overlap and the number
of slices of the training data used in constructing the ensemble,
and (iii) a threshold value for determining the consensus of the
ensemble. In our method, we set the following parameters: (i)
the number of trees in an ensemble (30 trees), (ii) the amount of
randomization used in constructing the ensemble (10%), and (iii)
a threshold value, where a node is partitioned only if the average
error at the node is greater than the threshold (0.5).

Cheng et al. [11] use the MATLAB routine fitrtree for
fitting a tree using the squared-error loss function. The routine has
two parameters that were used at their default values: each branch
node in the tree has at least “MinParentSize = 10” examples and
each leaf has at least “MinLeafSize = 1” examples per tree leaf.
These values are used as a stopping criteria when building the
tree. We used the same stopping criteria in our implementation
for fitting a tree using a chosen white balancing distance measure.

Performance evaluation. We used standard k-fold cross val-
idation, to evaluate and compare the accuracy of our method and
Cheng et al.’s [11] method. In k-fold cross validation, the image
set is randomly partitioned into k approximately equal folds and
each of the folds is, in turn, used as a testing set and the remaining
k−1 folds are used as a training set. In our experiments we used
10-fold cross validation, as 10-fold is the most widely recom-
mended, especially for our setting where the amount of data per
camera is limited in some regions of the output space [26, 2, 23].
To reduce variance, the statistics we report are the result of per-
forming 30 runs of 10-fold cross validation with different random
seeds. Both methods share the same random seeds so that the par-

titions into training and test are the same for each algorithm for
each experiment. Although for space considerations we only di-
rectly compare against Cheng et al.’s [11] method, we note that
results comparing [11] to many other algorithms can be found in
their original paper (the results reported here differ somewhat to
those reported in [11] on common image sets as that paper uses
3-fold cross validation and reports results based on only a single
run of a method).

Experimental results
We compared the approaches on accuracy, simplicity, and

speed. All experiments were performed on a PC with an Intel
i7-6700K, 4GHz running MATLAB R2016a.

Accuracy. Figure 1 shows a comparison of the accuracy of
our method of ensembles of multivariate regression trees against
Cheng et al.’s [11] method on the five distance measures discussed
in Section “Distance Measures”. On these image sets, our method
gives comparable accuracy as measured by the mean of the worst
25% errors and a significant improvement in accuracy as mea-
sured by the mean, median, and mean of the best 25% errors. The
current best-performing CNN approach [32] reports percentage
improvements over Cheng et al. [11] of 5.1% for the mean, 8.2%
for the median, 2.0% for the mean of the best 25%, and 4.7%
for the mean of the worst 25%, where the improvement is mea-
sured over the geometric means of the eight cameras on the NUS
8-camera image set. As a point of comparison, on the combined
NUS and NUS-Laboratory 8-camera image set, we achieve an im-
provement of 3.5% for the mean, 11.1% for the median, 24.7% for
the mean of the best 25%, and −0.6% for the mean of the worst
25%, again as measured over the geometric means.

Simplicity. The only source of complexity of trees is their
size and number. For the Canon 1Ds Mark III camera, we
recorded the size of each tree and the size of each ensemble of
trees, as measured by the number of nodes. Our method leads to
ensembles that are an order of magnitude smaller. For example,
averaging over 30 runs, Cheng et al.’s method has approximately
207 nodes per tree and 49,575 nodes per ensemble compared to
143 nodes and 4,317 nodes for our method, when using the distθ
distance measure.

Speed. For the processing of an image, our method and
Cheng et al.’s method are for practical purposes identical, ours
being negligibly faster due to having fewer and shallower trees.
As noted by Cheng et al. [11], processing an image takes 0.25
seconds or less and such speeds are comparable to simple gray-
world algorithms, as used in many commercial cameras [13]. In
contrast, Shi et al. [32] state that the CNN processing of an image
takes approximately 3 seconds on a GPU.

Conclusion
Multivariate regression trees, where each tree predicts mul-

tiple responses, can be used to effectively estimate an illuminant
for white balancing an image. In our method a multivariate re-
gression tree is fit by directly minimizing a distance measure of
interest. We show empirically that overall our method leads to
improved performance on diverse image sets. Our ensembles of
multivariate regression trees are more accurate and simpler, while
inheriting the fast run-time of previous work.
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