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Abstract: TC?e notion of a conditioning analysis of a general, ~3nlinear set of relations is defined 
along with an associated definition of ill conditioning. From these, one may identify at least three 
different kinds of conditioning analyses of inttrest in statistics and econometrics: data, estimato:r? 
and criterion conditioning. While these three coincide in the OLS/linesr case, they can and do 
diverge otherwise. The absence of a general mathematical solution for a conditioning analysis p+ts 
to computer-intensive alternatives, one of which is suggested and illustrated. 
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Conditioning r, initially a numeric-analytic concept pertaining to the sensitivity 
of solutions to linear systems, is finding increasingly useful applications in 
statistics and econometrics. Its main use to date has been to diagnose collinearity 
and its consequent ills, but, as this paper demonstrates, this is only the beginning 
of its value in statistics. Proceeding from a general definition, we distinguish three 
different kinds of conditioning analyses that are of statistical interest, namely 

* All computation was accomplished using the TROLL sysiem at MIT. 
’ The word ‘conditioning’ is sufficiently well-established in the i;umerical-analytic literature that its 
use here cannot reasonably be avoided. It should be ck;r from tu ‘-c context that no reference to 

conditional probability is intended. 
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data, estimator, and criterion conditioning. The three coincide in the ubiquitous 
case of least squares estimation of a linear model (OLS), but can and do diverge 
otherwise. 

In what follows we first provide a general definition of ill conditioning and a 
conditioning analysis. We then emphasize a concept that is vitally important to a 
meaningful measure of conditioning but which is frequently overlooked in 
practice: contextual or structural interpretability. Section 4 introduces general 
considerations pertaining to three specific types of conditioning: data, estimator, 
and criterion. Section 5 exemplifies these three types of conditioning in the 
special case of OLS estimation of a linear model and demonstrates their coinci- 
dence there. Section 6 discusses the kinds of problems that arise when examining 
the conditioning of nonlinear models, and Sectivn 7 introduces and demonstrates 
a computer-intensive means of perturbation analysis that would seem to allow the 
practical conditioning of any situation to be assessed. 

. A general notion of ill conditioning 

Suppose rather generally any system of continuous equations 

X=f(4, (2 1) . 
where A, ~3, and f are vectors and/or matrices. The elements of o could be data, 
parameters, or random variables. Thus (2.1) might describe an estimator, a 
stochastic model, a system of data dependencies, or, in general, any system of 
interest in which elements X are assumed to be dependent upon elements w. In 
some applications this relationship might be defined implicitly as f (A, a) = 

Frequently, it is of interest to know something about the sensitivity of A with 
respect to particular changes in o: changes that belong to some specified set 0. 
Typically, concerns arise when, depending on circumstances, disproportionately 
large or small changes in X can result from a given change in ~3. In such a 
situation X will be said to be ill conditioned. 

For example, if w represents data, then the set D might reasonably consist of 
changes corresponding to the measurement accuracy of the data Further, if A is 
an estimator based on these data, then A’s being ill conditioned with respect to D 
would indicate that the given estimate. is not well-determined due to the inade- 
quate quality of the observed data. 

Mathematically, the problem can be decomposed as follows: Suppose the 
quantities o and A are related according to (2.1) so that an additive perturbation 
8w in o results in a ycrturbation in X equal to 6X = f (o + 80) -f(w). For fixed 
0, a function g( So) = f( o + 60) -f(w) may be defined which maps the ele- 
ments of 80 of a given domain D to elements 6X in the corresponding range set 
A. That is, 

g: 8w-6X 

or, 
g: ti*-,A. 
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Conceptually, there exists a third set A* which consists of all those perturba- 
tions SX which are considered, a priori, to be reasonable given the set Q. Concern 
arises when, corresponding to some 60 in Q, there exists 8A in A which is not in 
A*. For example, in a sensitivity analysis, the set i(2 consists of all ‘reasonably 
small’ perturbations 6w, and concern arises when some such 60 can produce 
perturbations 6X in A which are not ‘reasonably small’. 

These considerations suggest the following general definitions: 
Conditioning analysis: The specification of the conditioning triple K = ( f, .Q, 

A* > followed by a determination of whether X is ill conditioned. 
III conditioning: Given K and its implied A, X is said to be ill conditioned with 

respect to o (or Sz) if A ct A*. Equivalently, one san call the system f ill 
conditioned. 

The relevance of a conditioning analysis depends critically on the determina- 
tion of the sets 52 and A* in K. As we see in the next section, these sets must be 
determined within the context of the problem at hand. To determine them 
otherwise is to render the definition meaningless. 

For many practical applications, we have found the following specifications of 
ti and A* to be useful: 

and 

A*= (6X: II~~ll/ll~ll lm2), (2 3) . 

(2 2) . 

where ml, m2 2 0 are real constants and I] l II denotes some norm (Euclidean snd 
spectral norms will be used here). Cases could also be considered in which either 
or both of the inequalities in (2.2) and (2.3) are replaced by ‘ 2 ’ or ‘ = ‘, 

depending on the kind of conditioning being investigated. 
In our experience, A* often follows naturally once Q has been specified. This 

being the case, it is important that the perturbations Qo be meaningfully 
interpretable within the context of the problem. co denote such perturbations, 
Belsley [2,3] has introduced the term structural interpretability, a concept we now 
briefly examine in greater detail. 

3. levance of the con 

A conditioning analysis has been defined formally above so that its parts may 
be recognized and understood. In particular, the conditioning triple K completely 
specifies the conditioning analysis: changing any of its elements produces a 
different conditioning analysis. Clear and explicit specification of K is therefore 
mandatory; anything less necessarily renders the analysis irrelevant. This section 
highlights two critical, but frequently overlooked, aspects in specifying K. 

The first is the necessity of specifying clearly what sensitivity is to be addressed 
by the analysis, since a conditioning analysis intended for one purpose can be 
quite misleading for, and indeed often confused with, another. Belsley [2], for 
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example, shows how the condition number of centered data can inadvertently 
mask an intended analysis of the sensitivity of OLS estimates to perturbations in 
the basic, or uncentered, data. 

The second is the necessity of having interpretable elements in K if the 
conditioning analysis itself is to be interpretable. Each element of K must be 
defined to be meaningfully interpretable within the context of some larger 
investigation. Only against such a backdrop (which typically comprises the 
information relevant to the study of some subject matter) can we hope to argue 
the meaningfulness of the results of a particular conditioning analysis. 

Specifically, G represents a set of additive changes 80 in o which are 
considered to have some special meaning or interpretation within an associated 
context. For example, in one analysis, knowledge from the underlying context 
may be used to show that the perturbations 60 may be considered as incon- 
sequential, while in another that they are especially larcc I Clearly, care must be 
taken in the selection of w and 52. The changes 60 are nt,.;ssarily defined relative 
to the w included as arguments to f, and hence the SW can only be argued to be 
interpretable if the o are so. 

Suppose, for example, A2 is defined as in (2.2). The value given to m, will 
depend upon both w and 60. In the absence of any suppI ,ing context to provide 
a basis for interpretation, one might think that m, = 0.01 is an inconsequential 
proportionate change in any w. For the particular o under consideration, 
however, the context may in fact suggest values as large as 4.0 should be regarded 
as inconsequential. What constitutes the set of inconsequental changes 0, then, 
depends upon w and its interpretation within the overall context. 

Similarly, A = f( w) must be interpretable within the underlying context before 
any defensible choice for A* can be made. 

If this discussion seems unnecessarily laborious, we stress it because we have 
found that overlooking its message can be the source of much needless confusion. 
To facilitate reference to this important concept, then, we describe those elements 
in K which can be meaningfully interpreted in terms of an underlying or 
associated context by the phrases contextually or structurally interpretable. We 
view the former term more broadly, the latter being reserved for those cases 
where the context is supplied by some underlying real-life situation that is the 
subject of some investigation, statistical or otherwise. 2 Thus, the relevance of a 
conditioning analysis must be argued on the basis of a contextually interpretable 
K, and it is incumbent upon the investigator to convince the reader of the 
relevance of this interpretation. 

We turn now to three kinds of conditioning analyses which are often of interest 

2 T’nis use of the term structwnl is borrowed from simultaneous-equations theory in Econometrics 
and r_:ay not be completely familiar outside that field. A particular set of values for all the 
parameters of a model of a real-life situation constitutes a structure. Structural elements, then, 
denote those parts of the model that can be paired up with particular elements of the real-life 
situation being modelled, and as such must be interpretable through one’s a priori knowledge of 
that situation. 
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in statistical applications: data conditioning, estimator conditioning, and criterion 
conditioning. They are treated quite generally in the next section and discussed 
again for the particular case of least-squares linear regression in Section 5. 

ata, estimator, itioning: the general case 

To fix ideas, we now examine three different kinds of conditioning analyses. 
The first, which we call data conditioning, is directly associated with the well- 
known concept of collinearity. The others, estimator and criterion conditioning, 
forge new directions. 

Data conditioning (collinearity) 

Given zr,..., zP, observed n-vectors on p variables (endogenous, exogenous, 
or both), we wish to know if there exists an exact, or nearly exact, linear relation 
among them. If so, the variables zl,. . . , z,,, or the columns of the matrix 
Z=[zr,e.., zP], are said to be collinear. Among the various formalizations of this, 
that given in Gunst /6] is useful. Given i] zi I] = 1 for all i, collinearity exists 
among the zi’s if, for a suitably small predetermined q > 0, there exist constants 
cr = PI, ’ l l 9 cJ, not all zero, such that 

Zc=)c (4 1) . 

and 

II Y II < rl II c II l (4 2) . 

This definition of collinearity is equivalent to the following conditioning 
analysis. Let X and o be defined by 

h=f(w)=Zw. (4 3) . 

Consider perturbations 

6X = g(Sw) = 2% (4 4) . 

having domain set 

Q= (aa: II~4l/ll4l =mJ (4 5) . 

and acceptable response set 

A*= (6X: ]I8Xl]/]]X]I >m2). (4 6) . 

That is, perturbations 6w of fixed relative size m, are required to result in 
perturbations 8A whose length relative to X is not less than m2, some small 
number. If this cannot be the case, then the data of Z are ill conditioned with 
respect to D of (4.5). The degree of such data conditioning will depend upon the 
selection of the constants Wr and .m2. 

The equivalence of this notion of data conditioning to that of Gunst is shown 
as follows: Suppose first the data 2 are ill conditioned as above; that is, for some 
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II b II /II * II = m, we observe ]I 6A [I / ]I A I] < m2, which implies II Sx 11/l] SW II < 

( m2/m1) II X II /II o 11. Thus, taking q = ( m2/m1) 11 A II /II c3 11, we find the data to 
be collinear according to Gunst’s definition with (4.1) replaced by (4.4). Con- 
versely, suppose we observe II 6h ]I c q I] 60 II for some ‘suitably small’ q > 0 and 

. Choose I] 80 I] so that I] So]] = ml II o II for some Ilo]] and ml, so we 
observe II 6x I] < qm, II o 11, or, letting m2 = rlm1 II 0 II/II x IL II a II/II A II < m2* 

Estimator conditioning 

Consider an estimator z, of parameters 8 

#=f(X, Y), (4 7) . 

where X is a matrix of observed exogenous variables and Y is a matrix of 
observed endogetous variables. This system (4.7) pairs up with (2.1) in obvious 
fashion with XT 8 and o = [ Y]. Our interest he s to determine the potential 
sensitivity of 9 -with respec o perturbations in or Y or both, that is, the 
conditioning of 8 with respect to w = [X, Y]. 

In the case when numerical problems are an issue, interest often attaches to the 
sets 

and 

,6Y] : 116X I]/]] XI] < ml, II 6Y II = 0} 

A*= (SA=6&@(]/](6]] <m2), 

where m, is usually chosen quite sma!l, say 0.01, and nj2 usually larger, perhaps 
0.05 or 0.1. To determinf wheiher 8 is ill conditioned with respect to Q we 
consider m = sups0 E c ]I 88 I] / 118 I]. If m > m2, then 8 is ill conditioned with 
respect to 52. 

With regard to shifts in Q might be chosen as 

Q2= (SW= [6X, 8Y] : ]]SY]l/li 

where ml determines a region relative to the stochastically-generated 8Y so that 
Prob( Q) = 0.95, or some other such probabilistically defined region. This choice 
of ti suggests a way of viewing the intimate relation known to exist between ill 
conditioning and high-variance estimates. 

Criterion conditioning 

Parameters 8 are often estimated by minimizing some criterion function of the 
t9), where X is exogeno 
s to be estimated and 

(4 8) . 

ary least squares estimates, 
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(ii) - log L( 0), where L( 6) is the likelihood function of 8 for maximum-like- 
lihood estimates, and 

, y, 9), for M-estimation, where p is some function chosen for its 
robustness properties. 

In each case, it is desirable that large changes 88 = 8 - 8 from 8 should be 
detectable by the selected criterion function, for failure to do so would indicate a 
poor determination of the parameter estimate. The following perturbation sets L? 
and A* are therefore of interest: 

d-i?= (se:lp9II =m,>O) (4 9) . 
and 

(4.10) 

If II811 # 0, then II&II in (4.9) might be more meaningfully replaced by 
1168 11 /II 8 11. Note that the denominator in the definition of A* should not be 

II Q<X K 0) IL since Q(X, Y, 6) itself could be repla,.ud by Q( 
where c > 0 is an arbitrary constant, without changing 8 or SQ. In this case the 
constant m, would be difficsllt to assign meaningfully since its value would 
depend on c. Of course the denominator could be set equal to one if absolute 
perturbations in the criterion were deemed important. 

The appeal of A* as defined in (4.10) lies in its assessing the effect of any 
perturbation only relative to the worst possible effect. That is, ,fhe worst case 
becomes a standard of acceptability. If, however, perturbations 68 in L? produce 
&Q’s which are not in A*, then there must exist 8* that.differ substantially from 
6 but which are relatively indistinguishable from 8 by criterion Q( 0). If 
inf,g, c 11 SQ II = 0, then 8 could be said to be inestimable with respect to this 
criterion and these data in those directions 86 for which 11 SQ II = 0. 

As an exampZep consider 

, Y, e) = -log L(e). 

Here SQ = -log L( 6 + 88) + log L( 6), so that SQ represents the drop in log- 
likelihood due to setting 8 = 8 + 88 over 8 = 8, or the log of the likelihood ratio 
statistic of 8 = 8 versus 8 = @ + S@. When ill conditioning of the maximum-likeli- 
hood estimate occurs according to D and A* defined as above, there must be 
some perturbation 88, E 9, say, for which the log-likelihood ratio can numeri- 
cally distinguish the difference between 8 and 8 + S6i better ,,than it can the 
difference between 8 and 8 + 84 for some other perturbation St$ E 0. 

More generally, to determine the criterion conditioning for the A* defined as 
above, one must evaluate 

SUP II SQ II /&Ja II SQ II l 
S&ED 

(4.11) 

Since this is rarely easily done, we approximate this quantity to provide a rough 
guide to the possibility of ill conditioning. The first few terms of a Taylor 
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expansion of Q( Y, 6 + 88) about 6 (assuming that ]I 68 I] or m, is suitably 
small) yields 

SQ = Q(X ,hd)-Q(X, Y,8) 

, e)/aeaeT) 1 Iy=Bs& 
(4.12) 

For those many criterion functions for which the first-order term is zero at 8 = 4, 
(4.12) becomes 

(4.13) 

where A is the Hessian matrix of Q with respect to 8 at 8 = 6. 3 Using (4.13) in 
(4.11) and recalling the well-known (e.g. Rao [9]) extremum properties of eigen- 
values of symmetric matrices, we see that (4.11) is e 
condition number of the matrix A. In practice, then, K 

rough guide to assess the criterion conditioning. 

ah, estimator, and criterion conditioning: the linear case 

The three kinds of conditioning given above are easily developed for the linear 
model 

Y = +& (5 1) . 
with j3 estimated by ordinary least squares (OLS). Here y 
p x 1, and X is an n x p matrix of rank p. A single numb 
central to assessing all three forms of conditioning in this near case - a 

is not generally true. The quantity K(X) is the condition number 
and is defined to be the ratio of the largest to smallest singular 

We first present an inequality important to the conditioning analyses that 
follow. Let b = ( XTX)- ‘XTY be the OLS estimator of B, 9 be the OLS fitted 

lues, and R be the uncentered multiple correlation coefficient of y regressed on 
Further, let SX, Sb, and 6y represent perturbations in X, 6, and y, 

are assumed of full rank, this latter assured if 
and Lawson [7]). Then, from Golub and Van 

Loan [5], 

II 66 II/II b II )R-‘[2 + (1 - R2)1’2~( (5 2) . 
where 21= max( II 8Y II/II Y IL 
and does not depend upon K( 

)). Exact equality is possible 

We now examine in this OLS/linear context the three forms of conditioning 
introduced in Section 2. 

3 This is, of course, <he sample information matrix if Q = - log L( 8). 
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Data conditioning 

In (5.1), the data conditioning of interest is that of the data matrix X. Let 
denote the Moore-Penrose inverse of .Take&jandA* asin 

(4.6) and, for any w, define X by X = Xw, so that o and A also obey 
o this latter equation (with only X per- 

1160 II/j1 o 11, where note in this case 
that R, the uncentered mult ion of X regressed o 
From this in lity, which may be an equality for certain 
seen that, if ) is large, the X data will be ill conditio 

Estimator conditioning 

The estimator to be examined is the OLS b = y. Two w’s are of immediate 
interest to perturb, namely c3 = X and o = y. /a d, w=E(y)= , will also 
be considered in this section. 

o = X: As usual in a conditioning analysis, three items must be specified: the 
sets 52 and A*, and the relation X = f( w) (from which we get 6X = g( 60)). When 
X is perturbed, these quantities are taken to be 

Q= (6X: ll~~Il/ll~ll sm,), (5 3) . 

A*= (66: llW/Ilbll sm,), (5 4 . 

and 

)=(X+SX)+y-x+y. (5 5) ” 

In practice, choices of 0.01 for m, often prove reasonable, as do values for m2 of 
approximately 2O~d,. If the range A of 66 given by (5.5) based on the Q of (5.3) 
contains any element not in A*, the OLS es ate is ill conditioned with respect 
to Sz. Thus, if small relative changes in the matrix can produce large relative 
changes in the estimate, the estimate is sai be ill conditioned. To determine 
whether the OLS estimate is ill conditioned in any particular instance, we must 
calculate 

sup II 6th II/II b II* 
6XEJ2 

(5 1 .6 

Should this quantity be larger than m2, then A C A*, and b is ill conditioned. In 
practice (5.6) is not easily evaluated, but, by (5.2) with only perturbed, it is 
known to be bounded from above by 

(5 7) . 

and may in fact be equ to (5.7) for some X, 
to the conditioning of with respect to fi, t 
compared to m2. If it is much hi@5 thtG2 

conditioned. This guide is particularly good (and 
when the fit is good (i.e., when R is near unity), but could understate the extent 
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of ill conditioning when the fit is poor and the K~(X) term dominates. In any 
event, we note that K(X) is an important multiplicative factor, it being possible, 
for example, that a 1 percent (m, = 0.01) relative change in could produce a 

) percent change in ]I 66 I] /]I b 11. For this reason the co tion number has 
been given much attention in Belsley, Kuh and Welsch [4]. 

0 = y: The second quantity to be perturbed is y, where 52, A* and g( 6~) are 
as follows: 

Q= (6s’: ll~YII/II YII ~4, (5 8) . 

A*= (6b: ll~bll/llbll sm2), (5 9) 

66 = g( Sy) = X+6y. (5.io) 

By proceeding in a manner entirely analogous to that above, the relevant bound 
again becomes 2m,K( X)R-‘, in which K(X) remains an important factor. 

w = E( y): Consider now a third perturbation for this estimator, again involv- 
ing y. This time, however, we do not perturb y about its observed value but 
rather about its theoretical, or expected, value, namely E( y) = Xb. Since the 
perturbations are taken about Xp, it is reasonable, when constructing the set 9, 
to take into account elements of the stochastic mechanism that generates y. That 
is, Sy could be taken to be equal to a possible e of (5.1). In this case 

Q= ~~Y:ll~YII/llwII 541 (5.11) 

and mi’ could be chosen to be the minimum ‘signal-to-noise’ ratio expected to 
be encountered in the model (5.1). The set A* is now taken to be 

A”= 166: llwl/llBll -21. (5.12) 

To distinguish this basis for a conditioning analy+ from the others, we call it a 
stochastically-based conditioning analysis. 

Since y has been taken to be Xb and y + Sy = Xj3 + e, we have 

Sb= ‘(y+Sy) -x’y=x+6y=jLj?3, (5.13) 

where B is the least squares estimate based on the realization Xp + e. Therefore, 

llw12=&--B~T@-~~ is a squared error, and determining whether b is ill 
conditioned in this situation also determines whether, for probable realizations of 
e, the maximal squared error of the resulting OLS estimator is less than some 
amount m2 I] fl I]. A guide to such an occurrence again results from applying (5.2) 
to (5.13), yielding (R = 1 here) 

IIwI/IIPII = ll8-sll/llB ww II SY II/‘II xi? II 

= 2KW II Wll 
The last quantity in (5.14), for 6y E 52, is less than 2m,K( 
dominant consideration in determining the conditioning. 

Criterion conditioning 

In OLS, the criterion to be minimized is 

(5.15) 
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Here the Taylor series expansion of (4.12) is exact, so that (4.11) can easily be 
evaluated. Taking fi and p as in (4.9) and (4.10), where now 8 = /3 and 
#+jE +y, and SQ = g( &I) = Zi#‘( X )@, we note that tk e criterion (5.15) 
is ill conditioned with respect to D if IC~( X) is greater than m2. Once again, it is 
K(x) that provides information on the ill conditioning in the OLS/hnear case. 

earities 

So far we have given a general definition of conditioning, exemplified it quite 
generally in three forms (data, estimator, and criterion conditioning), and shown 
that the condition number coincidentally provides important information for 
assessing all three types of conditioning in the special OLS/linear case. The 
simple expedient of a condition number is not, however, always available. While 
some forms of nonlinearities (see, for example, Belsley [I]) can be normalized so 
that t,heir conditioning admits of a similar analysis, this is readily seen not to be 
true for all forms of nonlinearities. 

The several simple examples that follow well illustrate the types of problems 
that can arise and the divergences among the different types of conditioning that 
can occur when nonlinearities (in variables and/or parameters) are allowed. 

Consider first the two orthogonal vectors x1 = (1, 1, 1, l)T and x2 = (-1, 
1, - 1, l)T which, for the analysis at hand, are considered to be the structurally 
interpretable, and therefore basic, data. These basic data would be very suitable 
for estimating the linear (in both parameters and variables) model 

Y = &Xl + P2x2 + &9 (6 1) . 

but would be useless if the model were 

y = &x, + ax; + e; 

they would again become suitable for estimating 

y = p,x: + &xl + E, 

(6 2) . 

(6.3) 

but not for 

Y = &x2 + P2v2 + E* (6 4) . 

From this we see that, in the assessment of estimator conditioning when there 
are nonlinearities, both ahe data and the nature of the model must be considered. 
The divergence between the perfect basic-data conditioning and the ill condi- 
tioning of the OLS estimators of models (6.2) and (6.4) is clear. 

Further problems can arise when there are nonlinearities in the parameters. 
Consider 

y = &Xl -I- pzx; + E. (6.5) 

For the basic data x1 and x2 as above, it is clear that these data might be suitable 
for estimation if (II = 1, but could be problemful if a = 2. Unfortunately, (Y must 
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be estimated, and hence any measure of the suitability of the x series must 
depend on an estimate, a, of (x. This is further complicated by the fact that cy = 1 
does not guarantee that a will be near 1. Indeed, in most cases there will still be a 
non-zero probability that a will be arbitrarily close to 2, leaving one with little 
hope for correctly assessing the conditioning, say, by using the condition number 

xz]. In such cases, assessment of conditioning may require the 
introduction of prior information on cy. 

7. An exa putational alternative 

In the OLS/linea r case of Section 5, it is possible to provide a mathematical 
solution to the conditioning problem - K(X), for example, figures prominently in 
a theoretically derived bound on the sensitivity of ]I 66 11 /iI b 11 to relative 
changes in X or y. Such solutions are not generally available: either the 
mathematics becomes too cumbersome or the breadth of perturbations deemed 
relevant invalidates simple approximations. In this section we suggest and exem- 
plify a more generally applicable computational alternative. 

A computatioud alternative 

We recall from Sectior? 2 that any conditioning analysis consists in determining 
the triple .K = ( f, 52, A* j, where from X = f (w) we derive 6x = g(6o) which 
relates responses 6X to perturbations 60, 52 is the set of a priori ‘reasonable’ 
perturbations, and A* is the set of a priori ‘reasonable’ responses. The objective 
is to determine whether reasonable perturbations 6w E A2 can result in unreasona- 
ble responses 6X 4 A*. A straightforward, albeit computer intensive, way of 
conducting such an analysis is randomly to select elements 6w from Sz, calculate 
their corresponding 6X = g( 80) and check if any fall outside A*. 

This procedure has many advantages. First, it is universally applicable. So long 
as the conditioning triple K can be defined, the method can be employed. 
Second, for highly ill conditioned problems, a few random picks for 6w from 52 
should suffice to find a response 6A lying outside A*. Our experience supports 
this. Third, it allows for complete generality in the way perturbations are defined. 
This last point is especially relevant in practice. In the mathematical solution to 
the conditioning of the OLS/linear case given in Section 5, it was necessary to 
assume that all perturbations are in terms of relative shifts ]I 60 II/ ]I w I] and that 
the appropriate measure is a vector norm. Such perturbations will often lack 
structural interpretability. More likely, the appropriate structurally interpretable 
perturbations will differ for each element of e3, as we see in the example that 
follows. Fourth, in analyzing nonlinear models g, this computational alternative 
does not rely on any linear approximations. Thus it can properly accommodate 
perturbations 8w that are considered reasonable relative to the problem at hand 
(60 E a) but which would be unreasonably large for a Taylor approximation to 
hold. Finally, the procedure measures more than conditioning as formally defined 
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in numerical analysis (i.e., the sensitivity of the exact solutions to a system of 
equations), for the observed sensitivities also contain elements of algorithmic 
stability. From the practical perspective of assessing the reliability of a given 
solution, this is as it should be. 

The method, of course, has drawbacks. Like any computationally intensive 
procedure, it can be expensive. Of greater import is the fact that, whereas the 
method seems readily to show the presence of ill conditioning, it cannot (without 
a complete examination of KQ demonstrate the absence of ill conditioning. At 
best, after many draws from 52, a reasonable presumption may be allowed to the 
statement that ill conditioning is absent. 

The consumption function 

As an illustration of the method suggested 
analysis of a nonlinear formulation of the U.S. 
The model J is given as 

above, consider a conditioning 
personal-consumption function. 

Ct=a*& l DPI,“~ l $3. (DPI,/IIPI,_,)~~ + E,, (7 1) . 

where all observations are annual 1948 to 1974 and C, is U.S. consumption in 
billions of 1958 dollars, DPI, is U.S. disposable personal income in billions of 
1958 dollars, rr is the interest rate in percent (Moody’s Aaa). 

Here the consumption function used in [4] is given a Cobb-Douglas form with 
an additive error. This function differs from a ‘linear in the logs’ formulation 
commonly employed in econometric analysis only in the specification of an 
additive rather than a multiplicative error. This alteration, however, makes (7.1) 
an essentially nonlinear function, one incapable of simple transformation into a 
form amenable to linear estimation and linear conditioning analysis. 4 Its lack of 
use in econometric studies is less on the grounds of economic plausibility than the 
added complications introduced through requiring nonlinear estimation. 

To complete the specification of a conditioning analysis, we must give Sz and 
A*. This is readily done here, since each of these economic time series is in a 
structurally interpretable form. That is, their magnitudes, and in particular,’ 
changes in their magnitudes, can be meaningfully assessed as being large or small 
through our knowledge of the underlying economic’phenomena they measure. 

Thus, we determine that perturbations SC, and 6DP1, that are within f 0.1 
percent ( + 0.001) of C, and DPI,, respectively, are small. Not only are such 
magnitudes of little macroeconomic consequence, but they would be perceived by 
most economists as lying within the bounds of measurement error. Relative 
perturbations make sense in this context. By contrast, we assume perturbations 
Sr, that lie in an interval of one basis point ( f 0.05 of a percentage point) are 
reasonably considered small in measuring interest rates. Here we are assuming 

4 Had the error been mul+iplicative. the standard QLS/linear methods of [4] could be used with the 
modifications given in 111. 
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Table 1 
Extreme responses to random perturbations in D of nonlinear consumption function (7.1) 

Coefficient Range 
(i.e. A) of &A 

a = 0.975 0.064 
bI = 0.130 0.081 
bz = 0.867 0.080 
b3 = - 0.022 0.012 
b4 = 0.097 0.081 

Largest Largest 
percent increase percent decrease 

3.8 2.8 
24.6 37.8 

5.2 4.0 
32.1 22.9 
44.4 39.3 

additive perturbations make sense. Thus, s2 is chosen as 

Q = ((S& GDP&, Gr$ft: 

SC, E +O.l% of c, SDPI, E +O.l% of DPI,, Sr, E +O.OS). (7.2) 

To pick A*, we merely state that a relative response to such perturbations by any 
coefficient estimate nn excess of 10% is too large (e.g., would yield a substantively 
different policy analysis.) 

The sensitivity analysis is now straightforward. First estimate (7.1) with nonlin- 
ear least squares (NLS) using the basic data w = [C, DPI, r] to obtain base 
estimates, 6. Repeatedly re-estimate (7.1) with perturbed data o + 60 determined 
by random draws 60 from 52 given in (7.2). This can be accomplished through 
uniform selections from 

SC, - U(O.999G,, l.OOlc,), 

GDPI, - U(0.999DPI,, l.OOlDPI,), 

6r* - v( -0.05,0.05). 

Each re-estimation produces a new estimate b*, and a resulting Sb = b* - 6. Our 
interest centers on whether any of the 6bi/;bi fall outside the 10 percent level 
chosen for A*. Table 1 shows the extreme results over 30 replications for each of 
the parameters of (7.1). 

The base estimates b are shown in column 1. These estimates are completely 
compatible with the estimates of the analogous linear model analyzed in [4]. 
Column 2 shows the range of the perturbed estimates over the 30 replications, 
and columns 3 and 4 show, respectively, the largest percent increase and the 
largest percent decrease for the particular coefficient. It is clear that the 10 
percent target level of A* has been exceeded in both directions for b,, b,, and b,, 
and is almost met on an overall basis for b2. Only the constant (or scale factor) a 
seems relatively stably determined. 

These results are wholly consonant with the conditioning analysis given in [4] 
to the analogous linear model of the consumption function. Indeed the same 
patterns of instability are exhibited. Thus, for example, we can plot scatter 
diagrams showing how the instability in the estimate of one coefficient relates to 
that of another over the different perturbations. Such scatter plots are given in 
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Table 2 
Variance-decomposition proportions and condition indexes for consumption-function data, with 
linear model taken from [4] 

Condition 
index 

Const. 

-r(a) 
G-l 

var&) 

DPI, 

var( b2 1 
G 
var( b3 1 

ADPI, 

var( b4 1 

1 0.001 0.000 0.000 0.000 0.001 

4 0.004 0.000 0.000 0.002 0.136 

8 0.310 0.000 0.000 0.013 0.000 

39 0.264 0.004 0.004 0.984 0.048 

376 0.420 0.995 0.995 0.000 0.814 

Figure 1. The tight dependency pairs (b, and b,), (a and b3), (b, and bd), and 
( b2 and b4) draw immediate attention, each showing that instability in the 
estimate of one of the pair tends to be accompanied by covariant instability in the 
other. These scatter plots provide useful auxiliary information to a conditioning 
analysis and are, in this day and age, quickly acquired. They tell similar 
information for two-dimensional relations that one gets from the variance-decom- 
position proportion matrices of the linear analysis of [4]. Indeed, for comparison, 
this matrix for the linear consumption function of [4] is given in Table 2. 

Some further thoughts on analyzing the Jacobian matrix 

Unlike the variance-decomposition proportions matrices, two-dimensional 
scatter plots can (but need not) overlook joint dependencies involving three or 
more parameter estimates. We found it of interest, therefore, to pursue the 
suggestion motivated in [4] that the variance-decomposition matrix derived from 
the Jacobian matrix of the particular nonlinear model with respect to its parame- 
ters (here, the Jacobian of (7.1) with respect to ) be used to analyze the 
composition of more involved dependencies. 

It is unnecessary tc reproduce the matrix that results from analyzing the 
Jacobian here because it is virtually identical to Table 2. The analysis of the 
Jacobian, then, holds promise, but it is premature to claim too much for it. As 
indicated in Section 5, the proper use of this Jacobian requires knowledge of the 
actual, not the estimated, parameters. In practice, of course, this cannot be. Use 
of the estimated Jacobian (one whose derivatives are based on estimated coeffi- 
cients) runs the very real danger of basing a diagnostic of the extent to which the 
estimates of particular coefficients are ill conditioned on those possibly ill 
conditioned estimates themselves. 

Furthermore, the condition indexes one obtains for this Jacobian have ques- 
tionable value. In general they depend upon the units in which the basic variables 
are measured, and there is to date no uniform normalization that allows for a 
stable interpretation of these indexes outside the linear case of [4] and that dealt 
with in [l]. Still, if one feels the estimates are reasonable, the information from 
the variance-decomposition proportions matrix of the Jacobian can offer valuable 
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complementary hints as to the nature of the ill conditioning, hints that could then 
be tested for directly, using variations on the computer-oriented technique 
described above. 

Fortunately, one need not bank on the value of the Jacobian here, for scatter 
plots like those of Table 1 offer much relevant information that is relatively easily 
and directly obtained. In addition, the scatter plots can provide visual indications 
of nonlinear dependencies (as possibly between b3 and b4) and bifurcated 
dependencies (as between b, and b4 or between b, and &) that could never be 
seen in a table of variance-decomposition proportions. 

. Conclusion 

A conditioning analysis is a sensitivity analysis carefully constructed to 
guarantee its results relate meaningfully to the problem at hand (through the 
selection of 52 and A*). Such a conditioning analysis can be directed at many 
interesting elements of a given statistical analysis, as exemplified by data, 
estimator, and criterion conditioning. 

In some circumstances, conditioning can be assessed mathematically, through 
the derivation of some measure that bounds the potential sensitivity. This is seen 
to be the case for the OLS/linear problem, for which the condition number K(X) 
applied to structurally interpretable data conveniently provides the needed mea- 
sure for all three: data, estimator, and criterion conditioning. 

In more general (for example, nonlinear) contexts, however, such a mathemati- 
cally derived bound need not be forthcoming. But, in these cases it should always 
be possible to investigate any form of conditioning empirically, and a method for 
doing so is illustrated in the context of analyzing the estimator conditioning of a 
nonlinear version of the consumption function. 

One way or another, then, it should always be possible to examine whether, for 
example, trivial changes in the inputs of a statistical analysis can produce 
substantive alterations in important outputs of the analysis. To us, such condi- 
tioning analyses and their resultant information are an important adjunct in 
interpreting the reliability of a statistical study. 
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