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1. Background 
 
We were asked by CBSA to investigate a prediction problem in 83 dimensions. The training set 
contained 15,279 observations, each labeled either “clean” or “dirty.” The goal was to find good 
ranking algorithms so that “dirty” observations can be ranked ahead of the “clean” ones, and to 
test all algorithms on an independent test set containing 6,259 observations, which were not to be 
used to help develop the algorithm in any way.  
 
Performance metric 
 
This is a “rare target detection” problem, because most training data belong to the “clean” class 
and only a tiny fraction belong to the “dirty” class. CBSA used the area under the ROC curve 
(AUC) as the main performance metric to evaluate the effectiveness of various algorithms. This 
is a suitable — and, in fact, the most widely used — performance metric in the statistics 
community. We also focused on this metric, using the “ROCR” package in R to compute AUC, 
but we will also briefly describe a more direct performance metric below. 
 
Benchmark 
 
The learning algorithm produced internally by scientists at CBSA (simply the “CBSA algorithm” 
below) had an AUC performance of 0.7294 on the test set.  
 
2. Results 
 
We experimented with a number of learning algorithms. In principle, one would normally begin 
with simple algorithms and gradually move towards more complicated ones if simple methods 
were inadequate. However, we primarily focused on algorithms that our students were studying, 
such as the ones outlined in Zhu (2008). When relevant, tuning parameters were selected by two-
fold cross validation on the training set alone, without using the test data set in any way. Once 
the tuning parameters were selected, the algorithm was re-trained using the entire training set 
before being applied to the test set. Table 1 summarizes our main results; details of our work are 
given in the Appendix.  
 
Conditional results 
 
Results shown in Table 1 are conditional on the fact that all algorithms were trained on a 
particular training set and evaluated on a particular test set, i.e., the ones given to us by CBSA, 
which use the last six months of data as the test set. If different training and test sets had been 
used — e.g., if the data were randomly separated into two halves, the results could very well 
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have been different. In fact, there is often considerable variability associated with creating the 
“train-test” split. An algorithm may perform well with one “train-test” split and poorly with 
another. Tiger Woods is considered the best golfer in the world, not because he has won a few 
occasional tournaments, but because, over many tournaments, he has consistently demonstrated 
that he is hard to beat. Likewise, to find the best learning algorithm for any given data set, it is 
often necessary to repeat the same experiments many times, each time using a different “train-
test” split. A large number of such repetitions are often needed in order to detect the typically 
small differences among competing algorithms, just as many tournaments are needed in order to 
identify the best golfer in the world. Results shown in Table 1 consists of just one such 
“tournament,” and they may not be enough for us to draw a final conclusion about these 
algorithms’ relative strengths and their respective suitability for this particular problem. 
 

Table 1. Performance of various learning algorithms on the independent test set. 
The CBSA algorithm has a performance of 0.729 on the AUC scale.  

Regular Algorithm Best possible 
(AUC) AUC Top 500 

Ensemble approach      
   Random Forest     
      - R package (Figure 3) (a) 0.652 - - 
      - “quick and dirty” (Figure 4)  0.742 0.727 18 
      - Salford Systems (Table 4) (b) 0.738 - - 
   AdaBoost (Figure 5)  0.680 0.678 12 
     
Kernel approach     
   SVM – radial basis kernel (Figure 6)  0.734 0.720 19 
   LAGO – radial basis kernel (Figure 7)  0.695 0.683 13 
     
Bayesian approach     
   BART – default prior  - 0.676 - 
     
Linear approach (18 predictors; Figure 8) (c)    
   Logit (d) - 0.728 20 
   SVM – linear kernel (Figure 9)  0.737 0.722 20 
   LAGO on the unit sphere (Figure 10)  0.723 0.720 20 
     
Experimental approach (c)    
   Logit + trend heuristic (Figure 11) (d) - 0.741 21 
(a) Cross validation results are omitted, and irrelevant given the poor “best possible” performance. 
(b) A 3-day trial version of this commercial software was used; cross validation was not performed.  
(c) These experiments were added as this report was being written. 
(d) There are no tuning parameters for this method. 
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“Best possible” results 
 
It is clear from Table 1 that the CBSA algorithm is quite competitive. We also asked the 
following question: what could the “best possible” performance be for each of these algorithms? 
To answer this question, we simply fitted, for each algorithm, a series of models on the entire 
training set using a variety of different tuning parameters, and examined the performance of 
these models on the test set. This allowed us to obtain a rough estimate of the “best possible” 
performance for the algorithm under consideration, one that we would have obtained if we had 
been able to find the ideal tuning parameters for the test set itself — notice that reporting this 
kind of result would normally be considered “cheating.” Table 1 shows that the CBSA algorithm 
remains competitive against these “best possible” results.  
 
A low-dimensional logit model 
 
As part of our data exploration on the training set, we also found that 18 out of the 83 predictors 
were more important than others, and that linear classifiers trained using just those 18 predictors 
could perform surprisingly well (Appendix A.4). In particular, the first right singular direction 
(similar to the first principal component direction) of the training set was dominated by 18 
predictors: X1, X2, X4, X12, X22, X23, X24, X25, X40, X42, X47, X51, X59, X61, X63, X72, 
X77, and X81 (see Figure 8). A standard logistic regression model fitted using just these 
predictors (simply the “low-dimensional logit model” below) performed quite well on the test set 
(see Table 1), suggesting that these predictors may span a potentially informative subspace! As 
previously forewarned, however, we are hesitant to jump to this conclusion without having 
repeated all the experiments with different training and test sets.  
 
3. Discussion 
 
We now discuss a few points that we deem relevant and important. 
 
A more direct performance metric 
 
Given two observations, X and Z, let SX and SZ be the scores assigned to them by a certain 
algorithm. It can be proven that (see, e.g., Pepe 2003) 
 

AUC = Prob(SX > SZ | X is “dirty” and Z is “clean”). 
 
That is, AUC can be interpreted as the (conditional) probability that, given a pair of “dirty” and 
“clean” observations, the algorithm correctly ranks the “dirty” one ahead of the “clean” one. If 
we randomly rank these observations, this probability is 50%. This probabilistic interpretation of 
the AUC is important because it gives us the much needed intuition to judge just how good (or 
bad) an algorithm is if its AUC is 72%. In this regard, an even more direct performance metric is 
to simply count the number of “hits” among the n top-ranked items. For example, our “quick and 
dirty” random forest got 18 “hits” among the first 500 of its top-ranked items from the test set 
(see Table 1). At first glance, one might think that this kind of performance is not very good 
because an overwhelming majority of the top-ranked items are not “hits.” However, on this 
particular test set, one would expect only about 5.35 “hits” if we selected 500 items at random — 
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about 1%. Therefore, the algorithm is doing 3+ times better than random selection. Put in this 
perspective, the performance is not as bad as it first appeared to be. Many find this direct 
performance metric to be more intuitive and easier to understand than the AUC.  
 
Differences between training and test sets 
 
There is overwhelming evidence that the test set seems to be quite different from the training set. 
Based on two-fold cross validation on the training set alone, we estimated that the AUC would 
be about 58–61% for most algorithms we investigated (see Figure 4, Figure 6, Figure 7, Figure 9, 
and Figure 10). When the algorithms were applied to the test set, however, their AUCs invariably 
increased by almost 10 percentage points, to about 68–72%! We found this highly surprising. 
Figure 1 shows the same 2-dimensional projection of both the training set and the test set, using 
the first two right singular directions estimated on the training set. The distributions of the 
majority class (“clean”) appear to be fairly stable across the training and test sets, but the 
distributions of the rare class (“dirty”) appear quite different. This is not entirely surprising — 
the rare class is expected to exhibit more sampling variations, just by virtue of being rare. 
However, in the current context, there exist other possibilities. As we were told, the test set 
consists of only marine containers arriving between July and December, whereas the training set 
includes containers arriving between January and June as well. We don’t have the information to 
check whether this is what caused the distributional differences, but we can easily think of 
reasons why this could be so. If seasonal differences exist, then different prediction models 
should be built for different seasons. We think this direction is worthy of further pursuit. Another 
possibility is that the distributions are changing over time (more on this below), which would call 
for a different approach.  
 

 
Figure 1. Visualization of training and test data using the first two right singular 
directions (similar to the first two principal components) of the training set. 
Green dots denote “clean” observations and red crosses denote “dirty” ones.  
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Distributional changes over time 
 
As we were told, the training set consists of data from 2006 and the first half of 2007, whereas 
the test set consists of data from the second half of 2007. Though individual time stamps were 
not available, the training set was sent to us in three separate parts. We conjectured that these 
records might have been organized chronologically. Figure 2 contains the same type of plots as 
Figure 1, except that the three parts of the training set were plotted separately. If our conjecture 
held, then “training set – part 1” would correspond roughly to the first half of 2006, “training set 
– part 2” to the second half of 2006, and “training set – part 3” to the first half of 2007. Figure 2 
would then tell a very interesting story. Let us divide this two-dimensional space roughly into 
two regions: top and bottom. In the top region, the distributions appear relatively stationary over 
time. In the bottom region, however, the prevalence of “dirty” containers appears to be 
decreasing steadily from 2006 to 2007! Clearly, for test data in the bottom region, ignoring a 
“trend” like this would lead us to overestimate their probabilities of being “dirty.”  
 
A simple “trend heuristic” 
 
To take this “trend” into account, we implemented a very simple heuristic (Figure 11 and 
Appendix A.5), and it improved the performance of our “low-dimensional logit model” on the 
test set from AUC = 0.728 to AUC = 0.741. 
 
Kernels for binary data  
 
For kernel-based algorithms (i.e., SVM and LAGO), we used the radial basis kernel function. It 
is arguably not the most suitable kernel function for binary predictors. It is of considerable 
research interest to ask what the “right” kernel function is for binary data. We will be 
investigating this direction during the next phase. The reason why it has not been pursued in the 
current phase is because it is not easy to experiment with non-standard kernel functions using 
only the standard implementations of these kernel algorithms.  
 
Prediction contest 
 
In the winter semester of 2009, we will be offering a graduate course on “Kernels and 
Ensembles,” and we are considering using these data as a course project in the form of a 
prediction contest. The plan is to challenge the students to each come up with the best prediction 
algorithm possible. We think we might gain some more insights by opening this problem to a 
group of fresh-minded students. We also feel that we have not experimented enough with the 
more basic but often powerful learning algorithms. For example, it was interesting to see that we 
could do quite well with just logistic regression plus variable selection, and would like to find 
out whether simple strategies like this can hold up against repeated trials.  
 
4. Summary 
 
We experimented with a variety of learning algorithms. Conditional on the given training and 
test sets, our experiments confirmed that the CBSA algorithm was quite competitive. Our 
experiments also led to a number of interesting findings and conjectures: (i) a simple, low-

 5 of 14 



dimensional logit model performed quite well on the test set; (ii) the current training set and test 
set are different; (iii) data distributions may be changing over time; and, (iv) we may be able to 
model the distributional changes and improve our predictions.  
 
 
 

 
Figure 2. Same two-dimensional visualization as Figure 1, except that the three 
parts of the training set are now plotted separately. The diagonal line is a 
manually-added boundary to separate the space into two regions, top and bottom. 
The prevalence of “dirty” observations appears to be decreasing in the bottom 
region. 
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Appendix 
 
 
This appendix provides more details about our work. However, if a learning algorithm is standard (i.e., it is well 
documented in the literature, and not invented, assembled, or modified for this particular project), we will not 
describe it in much detail here. The “clean:dirty” ratio on the training set was about 49:1, so training observations 
labeled “dirty” were weighted 49 times more heavily than those labeled “clean” when running all algorithms except 
LAGO, which automatically weights the rare class more heavily.  
 
A.1. Ensemble approach (Lu Xin, Mu Zhu) 
 
According to the project description we received from CBSA, the CBSA algorithm is essentially a hand-crafted 
learning ensemble, consisting of 7 hand-picked decision trees from a pool of over a thousand. Ensemble methods are 
indeed very “hot” in the machine-learning community; their strong predictive power is also well supported by much 
empirical evidence. Since CBSA started by taking an ensemble approach, we decided to start our investigation by 
experimenting with more standard learning ensembles built in a more systematic fashion, such as random forest 
(Breiman 2001) and AdaBoost (Freund and Schapire 1996).  
 
Random forest in R  
 
We started by using the “randomForest” package in R. Contrary to our initial expectations, its performance turned 
out to be quite poor (Figure 3). We investigated and discovered that the R implementation of random forest 
contained a bug. We asked the forest to average its individual trees’ probability estimates (rather than their final 
binary votes), but it appeared that this was the same as averaging the votes. A bug such as this would give rise to a 
significant loss of “resolution,” which would explain the poor performance on the AUC scale. A fine “resolution” is 
not as critical for classification, but it is absolutely essential for ranking. 
 

 
Figure 3. Results from the R implementation of random forest. The “best possible” performance 
on the test set is about AUC = 0.652. 

 
A “quick and dirty” random forest  
 
In view of the aforementioned difficulty, we proceeded to develop a “quick and dirty” version of random forest on 
our own (Table 2); the original random forest algorithm by Breiman is described in Table 3 for comparison. To fit 
each individual tree in our forest, we used the “rpart” package in R. The main difference between our “quick and 
dirty” version and Breiman’s original version of random forest is as follows:  
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In our “quick and dirty” random forest, a random subset of predictors is selected before building each tree. 
As a result, every split inside a single tree is optimized over the same subset of predictors (but different 
trees use different subsets).  

 
In Breiman’s original random forest, a random subset of predictors is selected not before building each tree 
but before making each split. As a result, even the splits inside a single tree are optimized over different 
subsets of predictors.  

 
Notice that, while Breiman’s random forest allows each individual tree to grow to its maximal complexity, our 
“quick and dirty” random forest seems to be sensitive to the complexity of its individual trees, which is controlled 
by the “cp” parameter in “rpart” (see Figure 4). 
 

Table 2. Our "quick and dirty" random forest algorithm; d = total number of predictors. 

1) Choose a subset size, m<d, and a complexity parameter, c. 
2) For b = 1 to B 

a) Draw a bootstrap sample of the data, call it D*b. 
b) Randomly select a subset of m<d predictors, call it Sb. 
c) Using D*b, build a tree, fb, using only predictors in the subset, Sb, and the complexity parameter, 

c.   
End For 

3) For a new observation, each tree in the forest, fb, will produce an estimated probability (that it is 
“dirty”). Average these probabilities over all trees in the forest to rank the new observation.  

 

Table 3. Breiman's original random forest algorithm; d = total number of predictors. 

1) Choose a subset size, m<d. 
2) For b = 1 to B 

a) Draw a bootstrap sample of the data, call it D*b. 
b) Using D*b, build a tree of maximal complexity, fb, as follows: for each split j, (i) form a subset, 

Sbj, by randomly selecting m<d predictors; (ii) choose the best split by a greedy search on the 
set Sbj, rather than over all possible predictors.  

End For 
3) For a new observation, each tree in the forest, fb, will produce an estimated probability (that it is 

“dirty”). Average these probabilities over all trees in the forest to rank the new observation.  
 
A commercial random forest  
 
Our “quick and dirty” random forest improved upon the R implementation, but the amount of improvement 
remained small. Concerned that our “quick and dirty” approach might have been too crude, we obtained a 3-day 
trial version of a commercial random forest software distributed by Salford Systems (www.salfordsystems.com). 
Due to the limited-time access to this software, we skipped cross validation and proceeded directly to estimate the 
“best possible” result on the test set. However, the commercial implementation did not significantly outperform our 
“quick and dirty” approach (Table 4). 
 
AdaBoost  
 
Next, we experimented with a different kind of learning ensemble. Instead of building up an ensemble using an iid 
stochastic mechanism, e.g., random forest, we can also build up an ensemble sequentially, allowing each subsequent 
member to address the weakness of the previous one. This is what AdaBoost does. We implemented AdaBoost 
ourselves in R, following Zhu (2008; Table 1) and using trees as our base learners, which were fitted with the 
“rpart” package in R. Instead of using the “cp” parameter in “rpart,” we controlled the complexity of our trees by 
limiting their “depths.” This was computationally more efficient. As it turned out, AdaBoost did not perform as well 
as random forest (Figure 5). 
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Figure 4. Results from our “quick and dirty” random forest, with a forest size of 100 trees. The 
“X” marks the tuning parameters selected by cross validation. The “best possible” performance 
on the test set is about AUC = 0.742. 

 
 
 
 

Table 4. Results from a commercial random forest software 
distributed by Salford Systems (3-day trial version), with a 
forest size of 500 trees (default). 

Subset size, m AUC 

3 0.728 
5 0.721 
8 0.730 
10 0.728 
20 0.734 
30 0.738 
40 0.738 
55 0.737 
75 0.732 

 
 
 
A.2. Kernel approach (Nancy Zhang, Mu Zhu) 
 
We also experimented with another class of learning algorithms, known as kernel methods, e.g., the support vector 
machine (Figure 6) and LAGO (Figure 7). For more details about these algorithms, see Zhu (2008). We used the 
radial basis kernel to run both SVM and LAGO. 
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Figure 5. Results from AdaBoost, with 100 trees built sequentially. The vertical line marks the 
complexity parameter selected by cross validation for each individual tree. The “best possible” 
performance on the test set is about AUC = 0.680. 

 
 
Low-information predictors 
 
As soon as we started to experiment with kernel methods, we discovered that, for three predictors (X29, X30, and 
X36), all training observations have their values equal to zero. Therefore, the training set does not contain any 
information about these three predictors; consequently, these predictors were not used. The reason why this artifact 
was not discovered during the “ensemble” phase (see Section A.1) of our project is because, if a predictor contains 
no information, the tree method will simply ignore that predictor automatically and not make any split using that 
predictor. Since useless predictors tend to “confuse” kernel-based algorithms, this raised the question of whether 
other “low-information” predictors should be discarded as well. For example, we computed the first right singular 
direction using the training data. As expected, this direction was dominated by only a few predictors. We repeated 
some of our experiments using these predictors only, but the final results were almost identical, i.e., AUC ~ 0.72 – 
0.74 for random forest, AUC ~ 0.72 – 0.73 for SVM, and AUC ~ 0.68 – 0.69 for LAGO. 
 
A.3. Bayesian approach (Hugh Chipman) 
 
Next, we ran a Bayesian ensemble algorithm called BART (Chipman, George, and McCulloch, 2008). Using the 
default prior distribution for its various parameters, BART produced a result of AUC = 0.676 on the test set. 
Potentially, this result could be improved further by a more suitable choice of the prior distribution, but we didn’t 
have the resources to pursue it at this stage.   
 
A.4. Linear approach (Mu Zhu) 
 
As previously mentioned (Section A.2), the first right singular direction on the training set was dominated by only a 
few predictors (Figure 8). Out of pure curiosity, we fitted a standard logistic regression model on the training set 
using just these predictors, applied the model to the test set, and obtained an AUC of 0.728. In view of Figure 2, we 
found it remarkable that a linear classifier could do so well, so we experimented with two other linear algorithms 
using the same subset of predictors: SVM with a linear kernel (Figure 9), and LAGO on the unit sphere (Figure 10); 
see Laflamme-Sanders and Zhu (2008). The final results were comparable. However, logistic regression using 
predictors selected by a stepwise optimization of the Akaike information criterion (AIC) did not yield as good a 
result. 
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Figure 6. Results from SVM, using the “e1071” package in R. The “X” marks the tuning 
parameters selected by cross validation. The “best possible” performance on the test set is about 
AUC = 0.734. 

 
 
 
 

 
Figure 7. Results from LAGO, using the “lago” package in R. The “X” marks the tuning 
parameters selected by cross validation. The “best possible” performance on the test set is about 
AUC = 0.695. 
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Figure 8. Sorted absolute loadings for the first right singular direction. Linear classifiers fitted 
using the top 18 predictors lying above the horizontal line are found to perform quite well on the 
test set.   

 
 
 
 

 
Figure 9. Results from running SVM using the linear kernel. The vertical line marks the tuning 
parameter selected by cross validation. The “best possible” performance on the test set is about 
AUC = 0.737.  
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Figure 10. Results from running LAGO on the unit sphere. The “X” marks the tuning parameters 
selected by cross validation. The “best possible” performance on the test set is about AUC = 
0.723. 

 
A.5. Experimental approach (Mu Zhu, Wayne Oldford) 
 
The training set was delivered to us in three parts. Having noticed some differences between the training and test 
sets in a two-dimensional projection (Figure 1; simply the “2D-space” below), we conjectured that the three parts of 
the training set might have been in chronological order. For each part, we estimated the prevalence of “dirty” 
observations in the bottom region of this 2D-space (see Figure 2). We then fitted a simple linear regression line to 
model the decreasing trend. Using this regression line, we predict that, on the test set, the prevalence in this region 
would be about 1/3 of the prevalence in the same region on the training set (Figure 11). To incorporate this 
information, we applied a simple “trend heuristic” to our baseline predictions, e.g., those produced by the low-
dimensional logit model: for test observations lying in the bottom region of the 2D-space, we discounted their 
baseline predictions by a factor of about 1/3. This increased the AUC on the test set from 0.728 to 0.741.  
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Figure 11. A simple “trend heuristic.” Using hypothesized chronological information on the 
training set, it is estimated that, on the test set,  the prevalence of “dirty” observations in the 
bottom region of the 2D-space (see Figure 2) will be about 1/3 of the prevalence in the same 
region on the training set. Therefore, this heuristic mandates that baseline predictions for test 
observations lying in this region be discounted by a factor of about 1/3. 
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