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ABSTRACT
Two million marine containers arrive each year at Cana-
dian ports, representing a significant percentage of Canada’s
trade with its overseas partners. While the majority of
these commercial shipments are perfectly legitimate, some
marine containers are used by criminals to smuggle drugs
and weapons. To address this risk, the Canada Border Ser-
vices Agency (CBSA) employs a predictive model to iden-
tify high-risk containers. Recent data-mining initiatives at
CBSA led us to study unbalanced classification problems in
which the optimal decision boundary may change over time.
In this paper, we propose a simple, two-stage approach to
deal with such problems. While we focus on the marine con-
tainer problem at CBSA, our proposed two-stage approach
is general.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; I.2.6 [Artificial Intelligence]: Learning; I.5.1
[Pattern Recognition]: Models—Statistical

General Terms
Algorithms, Experimentation, Performance

1. INTRODUCTION
Since its inception in December 2003, the Canada Bor-

der Services Agency (CBSA) has gradually moved towards a
“smart border,” where day-to-day operational decisions are
increasingly guided by science and technology rather than
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the “gut feelings” of customs officers. Over the past few
years, data mining has been used to improve the Agency’s
security efforts, an approach that is constantly evolving as
the Agency receives new data and develops more sophisti-
cated techniques to assess and manage risk.

Over 90 percent of all world trade is transported in marine
cargo containers moving from port to port. Approximately
two million containers arrive at Canadian ports each year,
and represent a significant portion of the national economy.
While the grand majority of commercial shipments are per-
fectly legitimate, some of these marine containers are used
by criminals to transport drugs and weapons into Canada.

By Canadian law, shippers are required to send CBSA a
customs document, known as a cargo manifest, which con-
tains important transactional information. Among other
data elements, the cargo manifest includes the importer name,
vendor name, container weight, port of loading, and a de-
scription of what is inside the container.

Several years ago, CBSA developed an automated system
so that shippers could send the cargo manifest electronically.
This information is processed and risk-assessed, based on
several dozen variables that predict risk. These indicators
are used to assign a risk score, indicating the likelihood that
the container holds contraband or other undesirable goods.

1.1 Data, History, and Motivation
About two years ago, a research team at CBSA procured

24 months of manifest data on marine containers that had
been fully inspected by CBSA officers, and began to apply
data-mining techniques in order to develop a better algo-
rithm based on statistical evidence rather than ineffective
profiling.

The data were obtained in two separate batches. The first
batch (used as the training set) consists of 15,279 containers
from the first few months, and the second batch (used as
the test set) consists of 6,259 containers from the remaining
months. There are 83 predictors. The exact nature of these
predictors is classified information. Each observation is la-
beled either “clean” or “dirty,” where “dirty” means CBSA
officers found drugs, weapons, or other items either in direct
violation of the Canada Customs Act or otherwise deemed
to have posed a threat to the health, safety and security



of the Canadian population. Only a small fraction of the
containers — about 2% — were labeled “dirty.”

The CBSA research team tested multiple predictive mod-
els, such as decision trees and neural networks. In 2008-2009,
CBSA started to collaborate with the University of Water-
loo (UW) on this project. To start, a team of UW students
under the supervision of their professors tested a large num-
ber of learning algorithms. The UW team also found that
the first principal component direction of the training set
was dominated by 18 predictors, and that a simple logistic
regression model fitted using just those 18 predictors (sim-
ply “Logit18”below) performed as well as other cutting-edge
algorithms such as the support vector machine (SVM) [e.g.
4, 8] and random forest [2].

However, while exploring the data, the Waterloo team
noticed the probability that a container is “dirty” seemed to
fluctuate from time to time. This is related to the idea of
concept drift [e.g., 9], and led us to study an interesting un-
balanced classification problem where the optimal decision
boundary is changing over time, which is what the current
paper is about.

1.2 Problem
Mathematically, the problem can be described as follows:

Given an observation (x, t), where x ∈ R
d is a vector of

predictors and t ∈ R is a time variable, we would like to
determine the likelihood that it belongs to a rare class.

Two features distinguish our problem from regular classi-
fication problems:

F1. The problem is highly unbalanced. The class of in-
terest is extremely rare; the majority of observations
belong to the background class.

F2. There is an extra time variable, t.

Many solutions to the class-imbalance problem (F1) have
been proposed, at both data and algorithmic levels. At the
data level, these solutions include random oversampling with
replacement and random undersampling. At the algorith-
mic level, solutions include adjusting the costs of the var-
ious classes to counter class imbalances and modifying the
decision threshold [3].

As noted by many [e.g., 5, 7], that the optimal classifi-
cation boundary may change over time (F2) is a particu-
larly challenging problem and one that has not yet received
much attention in the literature. Part of the difficulty, we
believe, is that we don’t have enough data to pinpoint how
things change over time; we shall be more specific about this
difficulty below (Section 2). For highly unbalanced prob-
lems, this difficulty is multiplied further, because informa-
tion about the class of interest is especially limited.

2. METHODOLOGY
Let y ∈ {0, 1} be the class label, where y = 0 represents

the background class and y = 1 represents the rare class.
The most natural way for dealing with F2 is to treat the
time variable simply as another predictor and model the full
conditional distribution, p(y|x, t), directly. Due to F1 and
the points made in the preceding paragraphs, however, we
shall take a different approach. In particular, we shall make
an extra assumption and obtain a much simpler, and more
practically useful, two-stage modeling strategy.

Although the problem that motivated our work has to do
with screening marine cargo containers to support border
management, the proposed two-stage strategy can be ap-
plied to any unbalanced classification problem with a time-
varying decision boundary, e.g., statistical fraud detection
[1].

We start by making the following assumption.

Assumption 2.1 Let y ∈ {0, 1} be the class label of an ob-
servation (x, t), where the class of interest is extremely rare.
We assume that, given the class label, y, the (conditional)
distribution of x does not change over time. In other words,

p(x|y, t) = p(x|y). (1)

Regardless of its actual validity, there is a practical rea-
son for making this assumption. On the one hand, p(x|y, t)
is often a high-dimensional probability distribution function
and difficult to learn even under fairly generous conditions.
On the other hand, any reasonable strategy must only allow
samples collected near time t to substantially influence the
learning of p(x|y, t). For example, one can create a time
interval, (t − ∆t, t + ∆t), and use only samples within that
interval to learn p(x|y, t). It is possible to use all the sam-
ples but, to do so, one must weigh the ones near time t more
heavily. Either way, only a fraction of the samples can ef-
fectively be used. Due to class imbalance, only a very small
number of those samples would belong to the rare class. In
situations like this, one simply does not have enough infor-
mation about how p(x|y, t) changes over time and is effec-
tively “forced” to operate as if Assumption 2.1 were true,
even if one adopts an indirect strategy that does not learn
the distribution p(x|y, t) explicitly.

If the distribution of x given y is assumed not to depend
on t, then it is clear intuitively that either the distribution
of y must depend on t — that is, p(y|t) 6= p(y) — or the
time variable t is entirely irrelevant. Theorem 2.1 formalizes
this intuition; its proof is in the appendix.

Theorem 2.1 Under Assumption 2.1, the following rela-
tionship holds:

p(y|x, t) = p(y|x) ×
p(y|t)

p(y)
× C(x, t) (2)

where C(x, t) is a quantity that does not depend on y.

2.1 Time Adjustment Factor (TAF)
We refer to the ratio, p(y|t)/p(y), as the“time adjustment

factor.” If p(y|t) = p(y), then this factor is equal to one and,
by Theorem 2.1, all that matters for classification is the
usual conditional distribution p(y|x) — the time variable t
becomes irrelevant. Notice that the quantity, C(x, t), does
not affect classification because it does not involve y; it is
simply a normalizing constant to ensure that

X

y

p(y|x, t) = 1, for any given x and t.

Theorem 2.1, therefore, suggests a two-stage approach.
To model p(y|x, t), first build a baseline classifier, p(y|x),
and then modify it by the “time adjustment factor.” This
modular strategy could be especially attractive to managers
running real-world operations because the tasks could be
easily streamlined; the analysis could be handled by two



separate teams: one with expertise in time-series analysis
and forecasting, and another with expertise in supervised
learning and classification.

Even though it may appear at first to be the most natural
approach, it is generally not possible to model the full condi-
tional distribution, p(y|x, t), by treating t simply as another
predictor. For example, the best baseline classifier, p(y|x),
may be an SVM with the radial basis kernel function

Kh(xi;xj) = e−h‖xi−xj‖
2

,

where h is a tuning parameter. Clearly, we cannot simply
treat the time variable, t, as another predictor and use

Kh((xi, ti); (xj , tj)) = e−h‖(xi,ti)−(xj ,tj)‖2

.

In addition, when predicting the future, the time variable
will always be outside the range of the training set, and
treating t simply as another predictor in an ordinary classi-
fier would often cause a disaster. This is precisely why our
two-stage approach is especially valuable. It allows us to
deal with the time variable separately so that we can easily
exploit existing methods for analyzing time-series data.

2.2 Estimation of TAF
Any existing classifier can serve as the baseline classifier,

p(y|x). To obtain the “time adjustment factor,” two quan-
tities are needed, p(y|t) and p(y). As usual, p(y) is easily
estimated from sample class proportions. This leaves p(y|t),
which can be estimated in a variety of ways. Here, we briefly
describe two options, but there is no reason why other meth-
ods cannot be applied.

2.2.1 Smoothing estimate
Recall that the class label y is coded as 0 for the back-

ground class and 1 for the rare class. One simple option
is to estimate p(y = 1|t) by the sample proportion of the
rare class within a certain time interval immediately before
t, e.g.,

p̂(y = 1|t) =

X

i

yiδ(t − ∆t ≤ ti < t)

X

i

δ(t − ∆t ≤ ti < t)
, (3)

where

δ(A) =

(

1, if A is true;

0, if A is false.

This can be viewed as a smoothing or a moving-average
model, where ∆t is the size of the moving window and a
smoothing parameter.

2.2.2 Regression estimate
Alternatively, we can also build explicit regression models

using the time variable, t. A quick way to do so is to con-
sider equally spaced time intervals, e.g., weekly or monthly
intervals. Suppose the intervals are I(1), I(2), ..., I(T ) — see
Figure 1 for an illustration. For each t = 1, 2, . . . , T , let

π(t) =
1

|I(t)|

X

ti∈I(t)

yi

be the proportion of the rare class within the time interval
I(t). A crude estimate of p(y|t) can be obtained simply by

regressing π(t) onto t. Different regression models can be
considered, depending on the amount of information in the
data, e.g., a simple linear model,

E(π(t)) = β0 + β1t, t = 1, 2, ..., T, (4)

which captures just an overall trend, or a more complicated
model that includes a cyclic or a seasonal component, such
as

E(π(t)) = β0 + β1t + α sin(γ0 + γ1t), t = 1, 2, ..., T. (5)

An advantage of working with the fractions π(1), π(2), ..., π(T )
explicitly is easy exploration of different regression models
by the method of least squares.

Figure 1: Schematic illustration. Dividing the time axis
into equally spaced intervals.

3. RESULTS
In this section, we apply our two-stage approach to the

CBSA marine container data (Section 1.1), and show that
the “time adjustment factor” — p(y|t)/p(y) — improves the
performance of the baseline classifier, p(y|x).

3.1 Performance Measure
The receiver-operating characteristic (ROC) curve [6] is

a simple two-dimensional graph measuring a model’s false
positive rate versus its true positive rate over all possible
decision thresholds. The area under the ROC curve, or sim-
ply “area under the curve” (AUC), is a common metric for
performance evaluation, and is especially useful in this con-
text, where we wish to evaluate how well a model assigns
high risk scores to “dirty” containers and low risk scores to
“clean” ones.

3.2 Baseline Classifier
Any classifier can be used as the baseline classifier, p(y|x).

Since the main focus of this paper is not on the baseline
classifier and the method we developed in Section 2 is inde-
pendent of which baseline classifier is used, we simply use
our“Logit18”model as the baseline classifier, because it per-
formed as well as other, more sophisticated classifiers such
as SVM and random forest (see Section 1.1).

3.3 Details
Only surrogate time labels are available for estimating the

TAF; the actual time labels (e.g. arrival on June 17, 2007)
are considered classified information and cannot be used in
this analysis.

The smoothing model (3) was fitted with different values
of ∆t (see Figure 2). It is evident from Figure 2 that, if ∆t is
too small, e.g., ∆t = 1 month, the resulting model becomes
very noisy, whereas, if ∆t is too large, e.g., ∆t = 12 months,
the resulting model becomes almost flat. Therefore, only



“reasonable” values of ∆t are investigated. In Table 1 below,
we report results for four values: ∆t = 2, 3, 5 and 6.
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Figure 2: CBSA Data. Smoothing model (3) fitted with
different ∆t’s on the second half of the training set.

To fit regression models (4) and (5), the time axis was
first divided into 15 intervals, that is, T = 15. The training
set spanned the first 10 intervals, and the test set spanned
the remaining 5. If actual time labels had been available,
we would have used more natural time intervals, such as
monthly intervals. Here, we chose T = 15 so that all time
intervals spanned by the training set contained at least one
observation labeled“dirty,”meaning that π(t) is strictly pos-
itive and non-zero for every time interval in the training set.
The method of least squares was then used to fit both regres-
sion models (4) and (5). Figure 3 shows the fitted regression
functions.

3.4 Discussion
Table 1 shows the performance of these different models

on the test set. In general, the two-stage strategy can be
seen to improve the baseline model. It also makes it very
easy for us to adopt more sophisticated time-series mod-
els, such as regression model (5). Even though (5) is still
a very crude model, the improvement is quite substantial,
especially in view of the fact that many sophisticated base-
line classifiers such as SVM and random forest failed to of-
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Figure 3: CBSA Data. Regression models (4) and (5)
fitted on the training set.

fer any performance improvement over the simple Logit18
model (see Section 1.1).

Judging from Figures 2 and 3, there is overwhelming sta-
tistical evidence that p(y) does depend on t. That the “time
adjustment factor” (estimated using the training set alone)
can improve the performance of the baseline classifier on the
test set also strongly indicates that the dependence is real.

Table 1: CBSA data. Performance of different modeling
strategies on the test set.

Model AUC
Baseline - p(y|x)

p(y|x) - Logit18 0.728

Proposed - p(y|x) × p(y|t)/p(y)

p(y|x) - Logit18; p(y|t) - smoothing
model (3), ∆t = 2 months 0.727
model (3), ∆t = 3 months 0.740
model (3), ∆t = 5 months 0.733
model (3), ∆t = 6 months 0.732

p(y|x) - Logit18; p(y|t) - regression
model (4) 0.745
model (5) 0.766

On the other hand, we are cautious about drawing any
definite conclusions regarding the exact nature of the de-
pendence. For example, regression model (5) has the best
performance on the test set, but it is still too early to con-
clude that the probability of receiving a“dirty”container has
such a regular cyclic pattern. Further research would need
to be conducted to determine whether there are seasonal
variations in contraband smuggling, or whether customs of-
ficers are more successful at identifying “dirty” containers in
certain months of the year compared to others.

It is also worth pointing out that, while regression models
(4) and (5) may appear to hold on the entire real line, peri-
odic updating and re-calibration are absolutely necessary as
new data become available over time. It is seldom the case
that such simple stationary models can hold over a long pe-



riod of time. They are useful for predicting the immediate
future but cannot be extrapolated into the long run. This
is widely understood and, in practice, periodically retrain-
ing one’s model is a common way to deal with concept drift
[9]. With the right understanding of this kind, the appar-
ent “problem” from Figure 3 that E(π(t)) may eventually
become negative for large t is of no real concern.

Overall, we find this two-stage approach to be valuable
and are greatly encouraged by the positive results reported
above.

4. SUMMARY
In our view, this work is significant in two ways. First,

it made a tangible difference in the CBSA marine container
problem. Accounting explicitly for the fact that the proba-
bility of receiving a “dirty” container may be changing over
time constitutes a major conceptual step forward in our
data-mining practice. Second, we have developed a method
that is not limited to the particular CBSA application that
motivated our work. Our two-stage approach of augmenting
a baseline classifier by a “time adjustment factor” is general
and easy to implement. It can be applied to many other
data-mining and predictive-analytic problems.
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APPENDIX
To prove Theorem 2.1, we first apply Bayes’ theorem to
p(y|x, t) and get

p(y|x, t) =
p(x|y, t)p(y|t)

p(x|t)
.

Assumption 2.1 then implies

p(y|x, t) = p(x|y) ×
p(y|t)

p(x|t)
.

Now apply Bayes’ theorem again, this time to p(x|y), and
we get

p(y|x, t) =
p(y|x)p(x)

p(y)
×

p(y|t)

p(x|t)
. (6)

Finally, by defining C(x, t) to be p(x)/p(x|t), a quantity that
does not depend on y, equation (6) can be easily re-arranged
to give the desired result.
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