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Consider a directed acyclic graph (DAG) of nodes where attached to each node is a set of
“simple concepts” {a, b, c, . . . , m}. A set of simple concepts having more than one element
might itself be considered a “complex concept”, though in reality this is only a distinction
in the complexity of the representation not in the meaning of the concept.

Consider two simple concepts a and b appearing in the DAG of nodes. We say that a
leads to b, denoted a ; b, and use the probability calculus to express the strength of this
relationship, Pr(a ; b), and make the following assertions.

If a and b are in constituent concepts of the same node, say Ni, in the DAG, then
conditional on that node alone, we have either a ; b or b ; a and we assert that each has
equiprobability of occurrence. That is,

Pr(a ; b | a ∈ Ni, b ∈ Ni) = Pr(b ; a | a ∈ Ni, b ∈ Ni) = 1/2 (1)

Synonyms might then be defined in any given context C as follows: a and b are synonyms
in context C, if and only if

Pr(a ; b | C) = Pr(b ; a | C) = 1 (2)

Suppose we know that there exists in Ni a concept that leads to b, written Ni 3? ;

b. Then we assert that under these conditions each constituent concept has a non-zero
probability of leading to b and (again under these conditions) that only constituent concepts
of Ni have non-zero probability of leading to b. In general, these non-zero probabilities could
all be different provided they sum to 1. Without further means of specifying these, however,
we will take them to be equiprobable and so assert that

Pr(a ; b | a ∈ Ni, Ni 3? ; b) = n−1
i (3)

where ni is the number of constituent concepts in node Ni.
Let par(N), the “parents” of node N , denote the set of nodes in the graph that have

directed edges connected to N . Let anc(N) denote the set of nodes in the graph for which a
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directed path exists from them to the node N . Both of these apply to sets of nodes so that,
for example, for any set A of nodes,

par(A) =
⋃

N∈A
par(N)

and similarly for anc(A). Then we can write

Pr(a ; b, a ∈ anc(Nb) | b ∈ Nb)

= Pr(a ; b, a ∈ par(Nb) | b ∈ Nb)

+ Pr(a ; b, a ∈ anc(par(Nb)) | b ∈ Nb)

− Pr(a ; b, a ∈ par(Nb) ∩ anc(par(Nb)) | b ∈ Nb) (4)

This first term can now be written as

Pr(a ; b, a ∈ par(Nb) | b ∈ Nb)

= Pr(a ; b | a ∈ par(Nb), b ∈ Nb)

× Pr(a ∈ par(Nb) | b ∈ Nb) (5)

For simplicity, let’s enumerate the nodes of par(Nb) = {N1, N2, . . . NnP} = P , say, with
nP = |P|. Now denote by NI , or equivalently (with some abuse) by ∩i∈INi, the intersection
of the concept sets of the nodes indexed by the index set I ⊆ {1, 2, · · · , nP}. Finally, denote
by AI the event a ∈ NI for any such set I of indices. Now the application of the inclusion-
exclusion principle to these events means the first term of the last equation’s right side can
be expressed compactly as the sum

Pr(a ; b | a ∈ par(Nb), b ∈ Nb)

=
∑
|I|=1

Pr(a ; b, AI | a ∈ par(Nb), b ∈ Nb)

−
∑
|I|=2

Pr(a ; b, AI | a ∈ par(Nb), b ∈ Nb)

+ · · ·+ (−1)nP−1Pr(a ; b, A{1,2,···,nP} | a ∈ par(Nb), b ∈ Nb)

=
nP∑
k=1

(−1)k−1
∑
|I|=k

Pr(a ; b, AI | a ∈ par(Nb), b ∈ Nb) (6)

If the concept set DAG is such that, for some integer k0 > 0, we have

Pr(a ; b, AI | a ∈ par(Nb), b ∈ Nb) ≈ 0

for all I ⊆ {1, 2, · · · , nP} (with |I| = k) whenever k > k0, then the previous sum is consid-
erably simplified.
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Suppose k0 = 1, then

Pr(a ; b | a ∈ par(Nb), b ∈ Nb)

=
∑
|I|=1

Pr(a ; b, AI | a ∈ par(Nb), b ∈ Nb)

=
nP∑
i=1

Pr(a ; b, A{i} | a ∈ par(Nb), b ∈ Nb) (7)

=
nP∑
i=1

Pr(a ; b | A{i}, a ∈ par(Nb), b ∈ Nb)× Pr(A{i} | a ∈ par(Nb), b ∈ Nb)

(8)

If, for example, k0 = 2, then (7) is only an approximation (overestimating in this case) to
the correct probability of (6).

The first term in the sum of equation (8) becomes

Pr(a ; b | A{i}, a ∈ par(Nb), b ∈ Nb) = Pr(a ; b | a ∈ Ni, a ∈ par(Nb), b ∈ Nb)

= Pr(a ; b | a ∈ Ni, b ∈ Nb)

= Pr(a ; b | Ni 3? ; b, a ∈ Ni)

=
1

ni

(9)

where ni = |Ni|. The second equality follows since Ni ∈ par(Nb). The third is an assertion
that in this case, the probability has the same meaning as that of equation (3), from which
the last equality follows.

The second term in the sum of equation (8) becomes

Pr(A{i} | a ∈ par(Nb), b ∈ Nb) = Pr(a ∈ Ni | a ∈ par(Nb), b ∈ Nb)

=
1

nP
. (10)

The latter equality is simply asserted to be the case here for simplification of the model –
there being nP nodes in par(Nb), all are given equal probability.

Together, the results of equations (9) and (10) can be inserted into the simple equation
(7) to yield (at least as a coarse approximation):

Pr(a ; b | a ∈ par(Nb), b ∈ Nb)
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≈
∑
|I|=1

Pr(a ; b, AI | a ∈ par(Nb), b ∈ Nb)

=
nP∑
i=1

Pr(a ; b | A{i}, a ∈ par(Nb), b ∈ Nb)× Pr(A{i} | a ∈ par(Nb), b ∈ Nb)

≈
nP∑
i=1

(
INi

(a)

ni

)
×
(

1

nP

)
=

1

nP

nP∑
i=1

(
INi

(a)

ni

)
(11)

the last line being an estimation where

INi
(a) =

{
1 if a ∈ Ni

0 otherwise

is an indicator function to show whether a node Ni ∈ par(Nb) actually contains a.
Together equations (5) and (11) suggest the following might be used:

Pr(a ; b, a ∈ par(Nb) | b ∈ Nb)

≈
[

1

nP

nP∑
i=1

(
INi

(a)

ni

)]
× Pr(a ∈ par(Nb) | b ∈ Nb) (12)

The probability Pr(a ∈ par(Nb) | b ∈ Nb) might be estimated in a variety of ways. For
example, let mP =

∑nP
i=1 ni be the total number of concepts (not necessarily unique) in

par(Nb) and mA the total number in the ancestors anc(Nb). The ratio mP/mA might be
used as an estimate. This would give

Pr(a ; b, a ∈ par(Nb) | b ∈ Nb)

≈
[

1

nP

nP∑
i=1

(
INi

(a)

ni

)]
× mP

mA

=
n

mA

nP∑
i=1

(
INi

(a)

ni

)
(13)

where n = mP/nP is the average number of concepts per node in par(Nb). Alternatively, if
G is a local graph under consideration (or the whole DAG) and mG the total number of (not
necessarily unique) concepts, one might use the ratio mP/mG instead to give

Pr(a ; b, a ∈ par(Nb) | b ∈ Nb) ≈
n

mG

nP∑
i=1

(
INi

(a)

ni

)
(14)
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Another possible choice is to use only the ratio of the number of parent nodes, nP to the
total number of nodes in the graph G, say nG. The estimate would then be:

Pr(a ; b, a ∈ par(Nb) | b ∈ Nb) ≈
1

nG

nP∑
i=1

(
INi

(a)

ni

)
(15)

Equations (13), (14), and (15) each provide a rough estimate of Pr(a ; b, a ∈
par(Nb) | b ∈ Nb). The principal distinctions are twofold: first between counting concepts as
in (14) or nodes as in (15); the second depends on the choice of the graph G for comparison,
the ancestor graph A as in (13) or any other “local graph”. Any of these choices gives an
estimate of the first term of equation (4). The quality of the estimate depends on both the
quality of this choice and, perhaps more importantly, on the applicability of the simplifying
equality (7).

The second term of (4) will now be treated in much the same way as the first – we begin
by splitting the probability using inclusion exclusion of sets as in equation (6) and then apply
conditional probability rules to each term as in (5). In this case, however, we now let AI

denote the event a ∈ anc(NI), where NI is now NI =
⋃

i∈I Ni and I denotes a set of indices
I ⊆ {1, 2, · · · , nP}. This yields

Pr(a ; b, a ∈ anc(par(Nb)) | b ∈ Nb)

= Pr(a ; b, a ∈
nP⋃
i=1

anc(Ni) | b ∈ Nb)

=
nP∑
k=1

(−1)k−1
∑
|I|=k

Pr(a ; b, AI | b ∈ Nb) . (16)

Again, dropping all higher order terms as having significantly smaller contributions, we
have

Pr(a ; b, a ∈ anc(par(Nb)) | b ∈ Nb)

≈
nP∑
i=1

Pr(a ; b, A{i} | b ∈ Nb) (17)

=
nP∑
i=1

Pr(a ; b, a ∈ anc(Ni) | b ∈ Nb) (18)

The ith term in the sum has a structure that is similar to that of the left hand side of
(4) except that in (18) we are not considering the ancestors of Nb (which appears in the
conditioning event), but rather the ancestors of one of the parent nodes, Ni, of Nb. Following
identical reasoning we have

Pr(a ; b, a ∈ anc(Ni) | b ∈ Nb)
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= Pr(a ; b, a ∈ par(Ni) | b ∈ Nb)

+ Pr(a ; b, a ∈ anc(par(Ni)) | b ∈ Nb)

− Pr(a ; b, a ∈ par(Ni) ∩ anc(par(Ni)) | b ∈ Nb) (19)

the first term of which can be written as

Pr(a ; b, a ∈ par(Ni) | b ∈ Nb)

= Pr(a ; b | a ∈ par(Ni), b ∈ Nb)

× Pr(a ∈ par(Ni) | b ∈ Nb). (20)

As before, the first term in (20) is separated and we follow the same reasoning used in
equations (6), (8) and (9). Following this we have

Pr(a ; b | a ∈ par(Ni), b ∈ Nb))

≈
|par(Ni)|∑

j=1

Pr(a ; b | a ∈ Ni,j , b ∈ Nb)× Pr(a ∈ Ni,j | b ∈ Nb)

≈
|par(Ni)|∑

j=1

(
INi,j

(a)

|Ni,j|

)
×
(

1

nP
× 1

|par(Ni)|

)
(21)

where Ni,j is the j’th parent node of Ni (the i’th parent node of Nb), |Ni,j| the number of
concepts in Ni,j, |par(Ni)| the number of parent nodes (or in-degree) of Ni, nP = |par(Nb)|
as before, and INi,j

(a) is an indicator function that is 1 when a ∈ Ni,j and 0 otherwise.
The second term of (20) should be analogous to the choice made in (13), (14), or (15).

In the present case, this would correspond, respectively, to using ratios . . . . Et cetera.
With a little more work a general formula can be written down.
Note that this approach takes into account both path distance and feature matching.

Put it all together

Continue in this way until the graph is exhausted (no more ancestors).
Could choose a local graph, instead of the whole graph (e.g. at most 4 levels of ancestors

or path-lengths back).
Iterate over every node in the whole graph and over every concept in that node. Average

to get final Pr(a ; b) for every pair of concepts (a, b). Note ; is not symmetric.
Possible measures of semantic similarity (a to b) include:

• pa,b = Pr(a ; b)

• information theoretic measure like info(a, b) = −pa,b log(pa,b)
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• For the ith concept (in some order), construct the vector xi = (xi,1, xi,2, · · · , xi,n)T

where n is the total number of concepts and xi,j = pi,j (or = info(i, j)). Form Eu-
clidean distance matrices based on these vectors and use the distances as a measure of
dissimilarity.

Concepts could be clustered using any one of these similarities.
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