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Abstract We propose using graph theoretic results to develop an infrastructure that tracks movement from

a display of one set of variables to another. The illustrative example throughout is the real-time morphing of

one scatterplot into another. Hurley and Oldford (2008a) made extensive use of the graph having variables

as nodes and edges indicating a paired relationship between them. The present paper introduces several

new graphs derivable from this one whose traversals can be described as particular movements through high

dimensional spaces. These are connected to known results in graph theory and the graph theoretic results

applied to the problem of visualizing high-dimensional data.

Keywords Data Visualization · High dimensional space · variable graphs · scatterplot matrices · 2d

tours · Line graphs · Hamiltonians · Hamiltonian decompositions · Graph products · Euler Tours · Kneser

graph · Space graphs

1 Introduction

The perennial challenge of visualizing high dimensional data has been addressed in many ways over the

years. Typical of many approaches is to lay out small dimensional structures, either spatially or temporally,

in such a way that they may be visually linked by the data analyst. In this way, by alternately focussing on

low dimensional structures and then linking these together, it is hoped that higher dimensional structure

might be revealed. The value of such focussing and linking has long been appreciated within the data

visualization community (e.g. Buja et al 1991). In this paper we propose that graph theory can be put to

good use in organizing the low dimensional structures and the links between them. The resulting graphs

provide infrastructure that can then be navigated to explore high dimensional space.

To be more concrete, suppose we have a cloud of n points in �p and choose to visualize this structure by

examining all
`p
2

´
scatterplots of two variables. How might we appreciate its higher dimensional structure?
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We might cycle through all scatterplots in place on the screen, one after another (e.g. an option offered

in GGobi, see Swayne et al, 1998), perhaps having the points coloured to aid linking. For relatively small

p, a scatterplot matrix which lays out these 2d projections in a spatial array could be a better choice –

then data features can be more leisurely connected by visually scanning along rows and columns. A parallel

coordinate plot does something similar, laying out univariate dot plot displays in some order and linking

identical points by line segments between displays. Grand tour methods (e.g. Buja et al 1988) move a

projection plane through �p, displaying the projected points on the screen with their positions changing

over time as the projection plane moves smoothly about the high dimensional space. Points and structures

are easily followed over time. Randomly selecting the planes would ensure some probabilistic coverage of the

high dimensional space; alternatively, projection pursuit methods try to optimize the projection by having

the projection plane at each step move in a direction that is more “interesting”.

Each of these methods is an attempt to navigate through high dimensional space. Each projection is

a region of that space and a sequence of projections a trail connecting the regions. Projection pursuit is a

local movement strategy that tries to find a more interesting region than the one we are at. An analogy

is driving a car in a strange city with no map. The roads are there and we can easily travel from one

street to another, but we have no idea which regions of the city are the most interesting to visit. A random

drive might ensure that we see the interesting neighbourhoods with some probability (which can be high if

we drive a long time) but it will also entail visiting a lot of uninteresting parts as well. Pursuing the most

interesting street at each intersection could also be considered, though there is no guarantee that this would

lead to a truly interesting neighbourhood. What would be nice to have would be a map, with well marked

routes that showed interesting regions and tours.

In an earlier paper (Hurley and Oldford, 2008a) we showed how complete graphs on variables can provide

a structure for organizing display components. By associating variables with nodes of a graph, and variable

pairs with edges, we were able to turn the problem of ordering one dimensional displays (and 2d transitions

between them) into travelling along paths on the complete graph of variables. Immediately, graph path

concepts such as Hamiltonian paths, Euler tours, and Hamiltonian decompositions become relevant. Both

Hurley and Oldford (20008a) and (2008b) show the application of this graph theoretic framework to improve

existing visual displays (e.g. star glyphs, parallel coordinate plots) and to propose new ones (e.g. multiple

comparison plots, model selection plots). The algorithms we use and some of the plots we developed are

available as an R package called PairViz.

In the present paper, we further pursue the idea of bringing a graph theoretic approach to bear on

problems in data visualization. A number of new graphs are introduced as being relevant to providing nav-

igable infrastructures for high dimensional visualization. Section 2 lays out the basic ideas in the simplest

of high dimensional challenges – when the dimension is four. The famous iris flowers of the Gaspé peninsula

in Canada provide a four dimensional data set which needs no introduction. In this section, the complete

variable-pair graph, the 3d transition graph, the 4d transition graph, and the 3d-space graph are all in-

troduced. With these understood in this simplest case, Section 3 moves on to five and higher dimensional

data. Five dimensional data graphs are used for illustration though the discussion is general and expressed

in terms of an arbitrary number of p variates. The same graphs as introduced in Section 2 are discussed

in this more general setting. Graph theoretic properties which are useful in determining when Eulerians,

Hamiltonians, and Hamiltonian decompositions exist are discussed. The more general setting allows con-

sideration of rich set of relevant graphs which we call k-space graphs to be introduced. In both Sections 2

and 3, the starting position was a complete graph of all variables. Section 4 departs from this and shows

that the same constructions can be made from other graphs, graphs which better reflect the interests of the

analyst in exploring the data. Section 4.1 takes this a step further, begins with two graphs, each of which

represents meaningful structure, and explores how these graphs may be usefully combined according to a

number of graph products. Graph theoretic results for these graph products, in particular the existence
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of Hamiltonian decompositions, are summarized there. Concluding remarks, as well as some indication of

where we might go from here, are given in the final section.

2 Four dimensional example: Gaspé Irises

The Iris data, first published by Anderson (1935) and made famous by Fisher (1936), have measurements on

four variables: PetalWidth, PetalLength, SepalWidth, and SepalLength. The six possible pairs of variables

can be laid out as nodes of a complete graph as in Figure 1. Nodes represent some display involving the

<PetalWidth, 

    SepalWidth>

<SepalLength,

    SepalWidth>

<PetalLength,

    SepalWidth>

<PetalWidth, PetalLength>

<PetalLength,

     SepalLength>

<PetalWidth, 

   SepalLength>

Fig. 1 Complete graph on variate pairs from the Iris data.

two named variables and edges between nodes indicate a transition from the display of one variable pair to

that of another.

To be concrete, suppose that each node is a scatterplot and that the edge between them indicates a

real time transition of one scatterplot morphing into the next. For example, at the left top node of Figure

1 is the scatterplot of the pair < PetalWidth, SepalLength > and moving up and right along that edge to

the top node means rotating the SepalLength axis into the PetalLength axis to arrive at the scatterplot of

< PetalWidth, PetalLength >. Each node defines a 2d plane upon which the data points are projected and

moving along the edge between nodes corresponds to a sequence of 2d projection planes which smoothly

morph the scatterplot of one node into that of another.

All edges in the complete graph connect variable pairs which either have one variable or no variables in

common. Decomposing the complete graph into these two (as in Figure 2) separates the set of transitions

into those which are inherently three dimensional and those which are four dimensional. Movement along

edges in Figure 2(a), correspond to rigid rotations through three space. These connect with common visual

experience and so are easily comprehended.

In fact, the 3d transition graph can itself be decomposed into components which correspond to the

individual 3d spaces. Figure 3 arranges these components as nodes of a 3d space graph, where edges indicate

that it is possible to move from one 3d space to another through a rigid rotation (3d transition). The 3d

space graph is not in general complete; it is only so in the case of four variables as in this example. Traversing

this graph amounts to exploring a 3d space (possibly through arbitrary rotations) at each node and moving

from one 3d space to another along an edge by a simple and easily comprehended 3d rigid rotation.
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(a) 3d transition graph: edges connect nodes that
share a variable.

(b) 4d transition graph: edge connects nodes that
share no variables.

Fig. 2 The complete graph can be decomposed into two separate graphs, each having edge transitions restricted to
spaces of fixed dimension, either 3 or 4.
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Fig. 3 The graph of 3d spaces. Each node is a 3d space component of the 3d transition graph.

The transitions of Figure 2(b) are less familiar but only slightly more complicated. Moving along an

edge here represents a sequence of 2d planes within the space of the 4 node variables. The sequence could

be chosen by selecting the variable basis vectors for the source and destination planes (nodes) and smoothly

interpolating one orthogonal basis set into the other, say along a geodesic path as described in the grand

tour (e.g. Buja et al, 1988, Cook et al, 1995) and as implemented, for example, in XGobi (Swayne et al,

1998, now GGobi). The movement is no longer a rigid rotation and we lose this grounding of common visual

experience. However, because each axis of the screen plane has one variable being morphed into one other

variable, point movements are still comprehensible within the context of the variables (cf. a grand tour).
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These two graphs provide substantively different route patterns for exploring the same higher dimen-

sional space. In the scatterplot matrix of this data of Figure 4 we see that the 3d rigid rotations are

Gaspe Iris data

Scatter Plot Matrix
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(b) 3d transitions
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(c) 4d transitions
(a) Routes on the scatterplot matrix

Fig. 4 Routes on the scatterplot matrix of the Iris data. Solid arrows of (a) correspond to 3d transitions of (b),
dashed arrows of (a) to the 4d transitions of (c).

equivalent to moves within rows or within columns of the scatterplot matrix. The 4d transitions cannot be

achieved by a move along a single row or column. Of course, as is seen from the scatterplot matrix of Figure

4 and even more easily from the complete graph of Figure 1, any 4d transition can be effected as two 3d

transitions (with some, presumably minor, loss of information).

Hopping along rows and columns of a scatterplot matrix, but not both simultaneously (i.e. from row

i column j to either row i column k or to row k column j but not to row k column m), is equivalent to

following a path on the 3d transition graph of Figure 2. Following a path on the 3d transition graph is

the same as viewing one scatterplot after another via 3d rigid rotations. If the path is also Hamiltonian

then, like a scatterplot matrix, we will be assured that every pair of scatterplots has been viewed. To follow

a Hamiltonian cycle on the 3d transition graph would be to “cycle” through all scatterplots (preferably

smoothly via 3d rigid rotations) in the fewest number of steps as opposed to, say, cycling across all rows of

the scatterplot matrix (e.g. cycling of static XY-plots in GGobi, 2008).

Of course not all Hamiltonian cycles are created equal. The solid line cycles shown in Figures 5(a)

and 5(b) are both Hamiltonians. However that of Figure 5(a) contains no transition in the 3 space defined

by PetalWidth, PetalLength, and SepalWidth – there is no edge in the path from the triangle of these

three variables. Every other 3d space will have two 3d rigid rotations presented. By contrast the solid line

Hamiltonian of Figure 5(b) contains at least one such rotation for every possible 3d space, though now only

two of the four 3d spaces will have two 3d rigid rotations presented. Moreover, the dashed edges of Figure

5(b) also form a Hamiltonian cycle and this too contains at least one 3d transition in every 3d space. The

latter is characteristic of Hamiltonians from any Hamiltonian decomposition of the 3d transition graph.
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(a) A Hamiltonian cycle (solid lines). (b) A Hamiltonian decomposition.

Fig. 5 Examples of Hamiltonian cycles on the 3d transition graph for 4 variables.

If all 3d transitions are to be presented, then an Eulerian path (one which visits all edges) is called

for. These are easily found via general algorithms such as Hierholzer’s (1873) or Fleury’s (1883) (see also

Hurley and Oldford, 2008a). A Hamiltonian decomposition as in Figure 5, however, would allow an Eulerian

to be easily constructed from first following one Hamiltonian and then following the next. The resulting

presentation would consist of two separate blocks of all six scatterplots and each block would contain 3d

rotational transitions within every one of the four 3d spaces with no transition repeated anywhere.

If the graph has weighted edges, say some cognostic measure of how interesting the transition might be

to view, then the GrEul algorithm of Hurley and Oldford (2008a) could be employed to find an Eulerian

that tends to have interesting transitions appear earlier in the sequence. As its name suggests GrEul is a

greedy Eulerian algorithm and so is not guaranteed to produce the best such ordering.

2.1 Construction

These graphs are easily constructed. Begin with the individual variables as nodes of the complete graph,

shown in Figure 6(a) for the Gaspé iris data. From this graph both the 3d and 4d transition graphs are

SepalLength

PetalLengthPetalWidth

SepalWidth

(a) The complete variable graph, G.

G L(G)

(b) Construction.

Fig. 6 Constructing the 3D transition graph. Each node in L(G) corresponds to an edge in G; an edge is drawn
between them in L(G) if and only if the corresponding edges in G meet at a node in G.
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easily constructed.

For any graph G the line graph of G, L(G), is defined to be that graph whose nodes correspond to edges

of G and which has an edge e between nodes of L(G) whenever the corresponding edges of G are adjacent

(i.e. meet in a node) in G. This is illustrated in Figure 6(b). Constructively, begin with the variable graph

Figure 6(a), denoted G in Figure 6(b). The three dashed edges in G of Figure 6(b) become the three dashed

nodes in L(G) shown in Figure 6(b). The large node of G of Figure 6(b) where the dashed edges meet

becomes the three solid edges of L(G).

If G is the variable graph as in Figure 6(a), then as Figure 6 shows, L(G) is the 3d transition graph of

these variables as in Figure 2(a) and the 4d transition graph of Figure 2(b) is simply the complement of

the 3d transition graph in the complete graph of the variable pairs.

3 Five and higher dimensions

As dimensions increase the graphs become increasingly complex. Nevertheless, certain structure persists

regardless of dimension.

3.1 3d transition graph

Figure 7(a) shows the variable graph for 5 variables labelled A,B,C,D, and E; the 3d transitions graph is

A

B

CD

E

AB

CE

AD

AC

AE

CD

BC

BD

DE

BE

(a) G, the variable graph for 5 dimensions. (b) L(G), the 3d transitions graph.

Fig. 7 Variable graph and the 3d transition graph for 5 variables: A,B,C,D,E.

given by its line graph in Figure 7(b). As with the Iris data, the 3d transitions graph for 5 variables is even.

More generally, a 3d transition graph, L(Kp), has p(p−1)/2 nodes and p(p−1)(p−2)/2 edges and every

node has even degree, namely 2(p − 2). L(Kp) is sometimes called the triangular graph; it is 2k-regular

(for k = (p − 2); regular means all nodes have the same degree) and, being even, is also Eulerian, can be

decomposed into cycles, and has an odd number of cycle decompositions (e.g. see Gross and Yellen, 2004,

p. 215). If we had weights on the edges of the graph, we could find an Eulerian where smallest (or largest)

appeared early in the tour (see Hurley and Oldford, 2008ab). L(Kp) is also Hamiltonian; it contains a

spanning cycle.
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The graph L(Kp) has many possible cycle decompositions or 2-factorizations. A 2-factor of a graph G

is a set of subgraphs of G which spans G with no two subgraphs sharing an edge and the degree of each

vertex is two. Clearly every 2-factor is a set of cycles if G is a simple graph (no loops, no multi-edges).

A 2-factorization is a collection of 2-factors whose edge intersection is null and whose union is G – it is a

decomposition of a graph into 2-factors.

Cycle decompositions of L(Kp) provide non-intersecting routes for visiting different regions of p-space

via 3d transitions between 2d spaces. Each cycle of a two-factor is a 3d transitional tour through a particular

“neighbourhood” of 2d spaces. For example, the cycle decomposition of Figure 5(a) has one two factor that

provides two 3-cycle routes, one through the 3 dimensional “neighbourhood” of {PetalWidth, PetalLength,
SepalLength} and one through the 4 dimensional “neighbourhood” of all variables. Its second two factor is

a Hamiltonian cycle and so provides a longer tour through the four dimensional space. The two factorization

of Figure 5(b) provides two different detailed tours through the whole space, a Hamiltonian decomposition.

Hamiltonian decompositions are of particular interest precisely because each 2-factor is a single unique

route that tours the entire p-space by visiting every two variable subspace. Different Hamiltonians provide

different views of the entire space.

Every Euler tour of a graph G corresponds to a Hamiltonian cycle on its line graph L(G). Heinrich

and Verrall (1997) and Verrall (1998) construct a “perfect set” of Euler tours on K2k+1 and on K2k + I,

respectively (or Ke
p for odd or even n, in the notation of Hurley and Oldford 2008a), which perfectly partition

the set of 2-paths (pair of adjacent edges) on these graphs. Each Euler tour of a perfect set shares no 2-path

with another and is therefore a distinct Hamiltonian on the line graph. By partitioning the 2-paths, the

perfect set of Euler tours on K∗
p becomes a cycle decomposition of Hamiltonians on its line graph. The

result is that the 3d-transition graph, L(Kp), is Hamilton decomposable for all p.

Other cycle decompositions of L(Kp) also exist. For example, Cox and Rodger (1996) show that m-cycle

decompositions of L(Kp) exist for certain values of m and p. In particular, if m = 2i then there exists an

m-cycle decomposition of L(Kp) if and only if p ≡ 1 (mod 2m) or p ≡ 0 or 2 (mod m). These and other

decompositions could be helpful for large p.

3.2 4d transition graph

The 4d transition graph for p = 5 is shown in Figure 8(a). It is a 3-regular graph, therefore not even and so

is not Eulerian. The graph is isomorphic to the well known Petersen graph and usually drawn as in Figure

8(b) (e.g. Gross and Yellen, 2004, p. 23). Though the graph is not Hamiltonian (i.e. does not contain any

cycle that visits every vertex exactly once), it does contain many Hamiltonian paths. For example, begin

at AB of in either graph of Figure 8, move to CD and follow the edges of the pentagram to DE. From DE

move to BC and then follow the edges of the regular pentagon clockwise until reaching AE. The result is a

Hamiltonian path that visits all 2d spaces through 4d transitions.

For any p, the 4d transition graph, L(Kp), is a kind of Kneser graph, namely KG(p, 2). More generally,

a Kneser graph KG(p,m) is a graph whose vertices are the
` p
m

´
subsets of size m with edges between

vertices whose subsets do not intersect. The complement of a Kneser graph is sometimes called a Johnson

graph (providing yet another name for the 3d-transition graph L(Kp)). The 4d transition graph L(Kp) is

a k-regular graph for k =
`p−2

2

´
and connected whenever p > 4. Chen (2000) has shown that KG(p,m)

graphs are Hamiltonian for p ≥ 3m and so 4d transition graphs have a Hamiltonian cycle whenever p ≥ 6.

Moreover, 4d transition graphs are even whenever (p− 2)(p− 3) ≡ 0 (mod 4). A generative formula is

p = (5 +
p

1 + 4a(a+ 1))/2 for integer a > 2 with a (mod 4) ∈ {0, 3} (as shown in the Appendix). Because

it is connected, whenever this 4d transition graph is even it is also Eulerian. So at least half the time we

can employ a greedy Eulerian algorithm to tour all 2d spaces via 4d transitions.
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(a) 4d transition graph for p = 5. (b) Petersen graph.

Fig. 8 The 4d transition graph for 5 variables: A,B,C,D,E. It is L(K5) complement of L(K5).

3.3 Simpler graphs – Ozone example

So far, we have considered 3d and 4d transition graphs built from the complete graph of all variables. This

will not always be the best starting point in the analysis of real data sets, particularly for large numbers

of variables. However, any variable graph, whatever its edge set, will produce 3d and 4d transition graphs.

Whatever the variable graph G the procedure is the same: the corresponding 3d transition graph will be

the line graph L(G) and its complement, L(G) will be the relevant 4d transition graph. The challenge,

then, is to start with a variable graph having many fewer edges. Choosing which edges should appear in

the variable graph will be influenced by the statistical context and the features of the data set which one

might choose to explore.

For example, consider the Ozone data used by Breiman and Friedman (1985) to illustrate their ACE

algorithm. Breiman and Friedman (1985) explored how to optimally transform the dependent variable,

“Ozone” (the upland ozone concentration in ppm), and each of the eight remaining variables so as to

arrive at the best additive regression relationship. The ACE stepwise procedure chose only four dependent

variables: “Temp”, “Pres”, “Vis”, and “Hgt” (we use the variable names and data as provided by Ozone

from the gclus R package of Hurley 2004).

Were we to consider all pairwise relationships in our variable graph for the Ozone data, we would have

a complete graph K9 on nine variables – 9 nodes and 36 edges. The corresponding 3d transition graph

would be the line graph L(K9) with 36 nodes and 252 edges; the 4d transition graph, L(K9), would have 36

nodes and 378 edges. However, if we consider only those relations chosen by ACE, both the variable graph

GACE and the 3d-transition graph, L(GACE), are considerably simplified as shown in Figures 9 (a) and

(b), respectively.

Note that the 3d transition graph is a complete graph and hence its complement, the 4d transition graph,

would have the same nodes but no edges – no 4d transitions would be available. This is characteristic of

a univariate response multiple regression problem. The variable graph will connect the single response to

each of the explanatory variables in the regression, no other edges will exist. The 3d transition graph will

be a complete graph and the 4d transition a graph with nodes but no edges.

Other relatively small graph structures might be explored as well. What is required is some rule for

deciding when an edge should appear between two nodes and when one should not.

For example, rather than a multiple regression framework, we might investigate the relationships among

the Ozone variables by placing an edge between variable nodes if and only if there is a relatively strong
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Hgt
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Temp

InvHt
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Hum

Wind
Ozone x InvHt

Ozone x TempOzone x Vis

Ozone x Pres

(a) GACE (b) L(GACE)

Fig. 9 Ozone data example. This variable graph, GACE , connects the single dependent variable with the four
explanatory variables selected by ACE. L(GACE) is the resulting 3d transition graph.

monotonic relationship in the data. A rough measure of the monotonicity apparent in a scatterplot is

given by the absolute value of the Spearman’s rho coefficient (i.e. the sample correlation between the ranks

observed on each variable). Figure 10(a) shows a variable graph of the Ozone data where edges appear if

and only if the corresponding Spearman rho value is one of the top 10% of the values from the 36 possible

scatterplots, hence the notation GSpear.

Figure 10 shows the scatterplot matrix of all nine variables. Highlighted panels correspond to the edges

of the GSpear and also to the nodes of L(GSpear) and L(GSpear) of Figure 10. Overlaid on the upper

triangle of the scatterplot matrix are the 3d (solid arrows) and 4d (dashed arrow) transitions between the

scatterplots corresponding to the edges in the 3d transition graph L(GSpear) and L(GSpear) of Figures 10

(b) and (c), respectively.

It is clear from Figure 11 that the highlighted panels (i.e. the nodes found in the transition graphs)

are indeed those scatterplots showing the strongest monotonic relationships. Figure 12 shows five steps

in the 3d transition from “Temp vs Ozone” to “Temp vs InvTmp”. Though statically presented, it can

still be seen that this is a rigid rotation in 3d, rotating the “Ozone” axis into the “InvTmp” axis all the

while maintaining a constant vertical “Temp” axis. Note that the (positive) monotonic relationship at each

endpoint, or node, is maintained throughout the 3d rotation though this need not be the case in general

(e.g. one endpoint negative correlation, the other positive). Similarly, the 4d transition (the dashed edge in

Figure 10(c) and the dashed arrow in Figure 11) from “Temp vs Ozone” to “InvTmp vs Hgt” is shown in

Figure 13. The three intermediate scatterplots have a linear combination of “Temp” and “InvTmp” on the

vertical axis and of “Ozone” and “Hgt” on the horizontal. A careful examination reveals the differential

stretching and compression of the point cloud typical with a 4d transition – a visually less familiar transition

than the rigid rotation of 3d. Even so, the monotonicity of the two end frames of Figure 13 is in this case

also seen in the 4d transition between them (though need not be seen in general).

More generally, this example illustrates two general approaches to developing relatively simple yet

statistically meaningful variable graphs, and consequently much simpler transition graphs.

The first exploits the structure of the statistical problem, in this case multiple regression with a subset

of variables selected. The variable graph will be a bush having branches of only a single edge and will result

in a complete 3d transition graph and an (edge) empty 4d transition graph.

Other graphs will arise naturally from other statistical contexts. For example, Hurley and Oldford

(2008b) contain examples of the hypercube graph from all subsets nested modelling and the use of two

separate complete graphs in a parallel coordinate plot for categorical data. In Section 4, we describe some
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(a) GSpear

(b) L(GSpear) (c) L(GSpear)

Fig. 10 Ozone variable graph for monotonic relations. (a) GSpear, is constructed from the data itself by calculating
the Spearman rho coefficient on all pairs of Ozone variables. An edge appears between two nodes if and only if the
corresponding Spearman rho value for those two variables is in the top 10% of all pairs. 3d and 4d transition graphs

follow as (b) L(GSpear) and (c) L(GSpear), respectively.

graph algebra and show how it can be used to build 3d and 4d transition graphs from a multiplicity of

simpler variable graphs.

The second approach illustrated by the Ozone example is to place weights on the edges of the variable

graph so as to explore the most interesting pairs in the 3d and 4d transition graphs. Beginning with the

complete variable graph K9 for all 9 variables in this data set, we weight the edge between every two

variables by the absolute value of the Spearman correlation between those two variables. Figure 10(a)

shows the variable subgraph of the complete K9 variable graph had by retaining only the top 10% weighted

edges. Clearly a number of other weighting schemes might be used in different contexts. In Hurley and

Oldford (2008a) we made use of scagnostic weights (Wilkinson et al, 2005) with some success on parallel

coordinate plots. Our early exploration of their use in the development of interesting 3d and 4d transition

graphs also shows much promise.

Each of these approaches will lead to simpler 3d (and 4d) transition graphs. Traversing the edges will

allow the data to be explored via 3d rotations (or 4d transitions) from one a priori statistically interesting

space to another. Unfortunately, there is no longer any guarantee that either a Hamiltonian or an Eulerian

path (or cycle) exists. It will depend on the actual structure of the graph produced. Nevertheless, as we

will review in Section 4, some relatively simple transition graphs can be constructed as products of simple

statistically meaningful variable graphs.
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Fig. 11 Routes on the scatterplot matrix of the Ozone data. Highlighted panels have Spearman’s rho value in the
top 10% of all scatterplots in the matrix. Solid arrows correspond to 3d transitions of Figure 10(b) L(GSpear), dashed
arrows to the 4d transitions of Figure 10(c).

Before moving on to graph products however, we complete the exposition of graphs where the nodes

themselves represent three and higher dimensional spaces.

3.4 3d spaces graph

Separating the 3d transition graph into 3d space subgraphs yields the 3d space graph for 5 variables of

Figure 14(a). The obvious isomorphism with the 3d transition graph is peculiar to the p = 5 case. In

general the 3d space graph has
`p
3

´
nodes, each of degree 3(p− 3) which happen to match those of the 3d
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Temp vs Ozone  Temp  Temp vs InvTmp
vs (Ozone × InvTmp)

Fig. 12 Travelling from the node “Temp vs Ozone” to the node “Temp vs InvTmp” of Figure 10(b) is a rigid
rotation through 3d.

Temp vs Ozone  (Temp × InvTmp)  InvTmp vs Hgt
vs (Ozone × Hgt)

Fig. 13 Travelling from node“Temp vs Ozone” to node “InvTmp vs Hgt” of Figure 10(c) is a 4d transition.

ABC

CDE

ABE

BCE

ACE

BDE

BCD

ABD

ADE

ACD

ABC

CDE

ABE

BCE

ACE

BDE

BCD

ABD

ADE

ACD

(a) The graph of 3d spaces (S2). (b) Complement of the 3d space graph (S1 since p = 5).

Fig. 14 3d variable spaces for p = 5 variables.

transition graph when p = 5. Similarly, when p = 5, the complement of the 3d space graph (Figure 14(b))

is isomorphic to the 4d transition graph although this is not generally the case.

The 3d space graph is reminiscent of the Kneser graph. The nodes correspond to all
`p
3

´
subsets of three

variables from the p available, but instead of edges between disjoint subsets edges exist between nodes that

share a single variable. In general, if the complete graph on the 3d space nodes is Kn where n =
`p
3

´
with

vertex set V and edge set E, then this graph can be decomposed into 3 distinct graphs S0, S1, and S2 where

Si has vertex set V but edge set Ei and e ∈ Ei if and only if the vertices of e share exactly i variables.
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S2 is the 3d space graph constructed from the 3d transition graph. Movement along edges here cor-

respond to 3d transitions. For example, moving along the edge from ABC to BCD might be achieved by

rotating A into D on one axis while holding the other fixed as either B or C. Alternatively, the semantics

of the common pair of variables might be something quite different altogether. The common pair might

identify variables to be conditioned on, so that edge indicates that an interest in the joint behaviour of the

distinct variables given the common variables.

S1 is a 3d space graph as well, one where the connected spaces share only one variable. Although

movement along edges here indicate 4d transitions, it is not clear how this graph would be derived from

the 4d transition graph.

S0 is the same as KG(p, 3); when p = 5, E0 = φ. If p ≥ 6, the edges connect disjoint 3d spaces.

Movement would represent transitions from one 3d space to another, 6d transitions. One possible visual-

ization connecting ABC to DEF, say, might be a scatterplot matrix of ABC dynamically morphing into a

scatterplot matrix of DEF by 4d transitions of scatterplots AB to DE, AC to DF, and BC to EF.

3.5 k-d spaces graph

The decomposition of the complete 3d space graph and its similarity to the Kneser graph suggests a more

general graph construction. Let S(p, k, i) denote the k-d space graph whose nodes are the
`p
k

´
subsets of the

p variables and where edges are drawn only between nodes having exactly i variables in common. Clearly

i < k < p and if S(p, k) is the complete graph on this vertex set it can be decomposed as

S(p, k) =

k−1X
i=0

S(p, k, i).

Of course S(p, k, 0) = KG(p, k). Such graphs would seem to provide navigational structure between large

dimensional spaces. Again one could imagine morphing one scatterplot matrix on k variables into another

scatterplot matrix on a disjoint set of k variables by moving along an edge of S(p, k, 0).

The theoretical properties of these graphs need to be explored. Some mileage might be had from the

following observation. Consider the case p = 5 illustrated above. The 3d space graph seems to be constructed

from the complete variable graph as follows. First construct the 3d transition graph as L(Kp). Now take

the line graph of this graph. The result will be a graph whose nodes might be written as AaBbCcDdEe

where a, b, c, d, e ∈ {0, 1, 2} and a + b + c + d + e = 4. Letters with zero exponent need never appear in

the label. Suppose R(·) is a graph operator that replaces each power that is 2 or greater by 1 and then

replaces all nodes having the same label by the single reduced label, preserving a single edge between any

connected and distinct labels. Using this operator, the 3d space graph of Figure 14(a) would be expressible

as R(L2(Kp)). Similarly, the 3d space graph of Figure 14(b) is R(L2(Kp)). Many interesting graphs seem

to be built up from a complete graph through the three operators L(·), R(·) and complement. It would be

of interest to know what graph properties, if any, are preserved and/or created by these operations, singly

and in composition.

4 Other relevant graph structures

The complete graph on all variables treats all variables symmetrically. In some cases it is more interesting

to distinguish variables and/or the pairwise relations we wish to consider in our displays.

For example, a multivariate regression model distinguishes response variables Y1, Y2, . . . , Yq from ex-

planatory variables X1, X2, . . . , Xr. The relationship between Y s and Xs are of primary interest. This

interest could be represented by the graph shown for q = 2, r = 3 in Figure 15(a) where only connections
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X3

X2

X1

Y2

Y1
X1Y2X1Y1

X2Y2X2Y1

X3Y2X3Y1

X1Y2X1Y1

X2Y2X2Y1

X3Y2X3Y1

(a) Initial variable graph: G (b) The 3d transition graph: L(G) (c) The 4d transition graph: L(G)

Fig. 15 The variables are restricted to reflect response (Y s) and explanatory (Xs) variables.

between Y variables and X variables are allowed. That is only the various (explanatory, response) relations

are of interest.

The 3d transition graph is constructed as before as the line graph of the variables graph, as shown

in Figure 15(b). Transitions along here could be displayed as 3d rotations of one scatterplot into another

where the horizontal axis is reserved for changes in X variable and the vertical for changes in Y variables.

Similarly, the 4d transition graph is shown in Figure 15(c). Again we could imagine the Y s determining

the vertical coordinate and the Xs the horizontal coordinate as one scatterplot morphed into the next by

interpolation through a 4d space. These sets of transitions are similar to the 2× 1d tours of GGobi with the

restriction that each axis only considers either a single variable or linear combinations of a pair of variables

in each 1d tour.

Construction of these graphs are the same as before except that we start with a graph, G, structured

to reflect the pairwise relationships of interest, instead of Kp. The 3d transition graph is L(G) and the

4d transition L(G). The 3d space graph can again be formed as suggested in Section 3.4 as R(L2(G)). In

this example, it is the complete graph K9 corresponding exactly to L2(G) with nodes relabeled to have

only three distinct variables (i.e. here R(·) did not compress any nodes into one). It is even, Eulerian, and

possesses many Hamiltonian decompositions (see Hurley and Oldford, 2008a).

Note that there is neither an Eulerian nor a Hamiltonian cycle in G of Figure 15(a). Yet there is a

Hamiltonian for its 3d transition plot L(G). Chartrand (1965) gave necessary and sufficient conditions for

this to be the case.

Definition 1 A graph G having q edges is called sequential if the edges of G can be ordered as e0, e1, e2, . . . ,

eq−1, eq = e0, so that ei and ei+1, i = 0, 1, 2, . . . , q − 1, are adjacent (share a vertex).

L(G) contains a Hamiltonian cycle if and only if G is sequential graph (Chartbrand, 1965).

The graph G of Figure 15(a) is a sequential graph and so its 3d transition graph has a Hamiltonian

cycle. G is in fact K2,3, a complete bipartite graph. The general complete bipartite graph is denoted Kq,r

and is easily seen to be a sequential graph for all q and r. Consequently, the 3d transition graph L(Kq,r)

will be Hamiltonian for any “multivariate regression problem” as described above.

Chartrand (1965) also gives conditions for a Hamiltonian to exist in repeated (or interated) line graphs,

which might be helpful in traversing a 3d-space graph for example. In particular, if G is Hamiltonian, then

so is Ln(G) for all n ≥ 1. And, if G is a nontrivial connected graph of order p, and G is not a path, then

Ln(G) is Hamiltonian for all n ≥ p − 3. Later Chartbrand and Wall (1973) showed that it is enough that

G is connected and of minimum degree 3 for L2(G) to be hamiltonian.

It is also of interest to know when a Hamiltonian decomposition exists for the 3d transition graph L(G).

Muthsamy and Paulraja (1995) provide three relevant results. First, if G has a Hamiltonian cycle decom-

position into an even number of Hamiltonian cycles, then L(G) has a Hamiltonian cycle decomposition.
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Second, if G has a Hamiltonian cycle decomposition into an odd number of Hamiltonian cycles, then the

edge set of L(G) can be partitioned into Hamiltonian cycles and a 2-factor. And finally if G is a 2k-regular

graph that is Hamiltonian, then the edge set of L(G) can be partitioned into Hamiltonian cycles and a 2-

factor. An example of this last result from the “multivariate regression problem” is the symmetric complete

bipartite graph G = Kq,q when q is even.

Also related to bipartite graphs is the following result from Pike (1995). If G is bipartite and (2k + 1)

regular and Hamilton decomposable, then so is L(G). These (and other) results support a general conjecture

attributed to Bermond (Alspach et al, 1990), namely that if G has a Hamiltonian cycle decomposition, then

so does L(G).

4.1 Graph products

Another way to construct graphs for pairs of variables is via graph products. Suppose the variables separate

into two sets U = {U1, U2, . . . , Um} and V = {V1, V2, . . . , Vn} and that there is a graph associated with

each of these sets, say G and H respectively. Each graph would separately model the relationships between

that variable set according to some semantics.

For example, Figure 16 shows two possible variable graphs G and H. The semantics of these graphs are

U1

U2

U3 V2V1

(a) G (b) H

Fig. 16 Variable graphs: G for variables from U ; H for those from V.

such that in G interest lies in how U1 relates to U2 and U2 to U3 but not U1 to U3. (If all three relationships

were of interest, then a complete graph K3 would be in order for G.) For example, U3 follows U2 in time,

and U2 follows U1; having U1 follow U3 would not make sense. Another example might be that Ui is the

ith principal component (corresponding to the ith largest eigenvalue of some matrix) and interest lies in

the effect of adding the principal components in order. Or the data analyst is just declaring interest in this

order of variables for some reason. The graph H would be similarly interpretable for variables in V. H = K2

of Figure 16(b) has only two variables whose relationship is of interest.

Figure 17 shows three different graph products of these graphs. Figure 17(a) shows the Cartesian

product, Figure 17(b) the Tensor product, and Figure 17(c) the Strong product. These products share the

same vertex set, U × V = {< Ui, Vj >: Ui ∈ U , Vj ∈ V}, and differ only in the edges. Each tries to

preserve something of the original variable relationships in G and H. As the figures and notation suggest,

(G�H) + (G×H) = (G×�H).

The Cartesian product, G�H, has an edge between vertices < u, v > and < s, t > iff either u = s ∈ U
and v is adjacent to t in H or v = t ∈ V and u is adjacent to s in G. This is the 3d transition graph,

restricted to the permitted transitions between variables.
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<U1, V1> <U1, V2>

<U2, V1> <U2, V2>

<U3, V1> <U3, V2>

<U1, V1> <U1, V2>

<U2, V1> <U2, V2>

<U3, V1> <U3, V2>

<U1, V1> <U1, V2>

<U2, V1> <U2, V2>

<U3, V1> <U3, V2>

(a) Cartesian product: G�H (b) Tensor product: G×H (c) Strong product: G×�H

Fig. 17 Graph products of G and H from Figure 16.

The tensor product (or direct product or weak product or conjunction), G × H, has an edge between

vertices < u, v > and < s, t > iff u and s are adjacent in G and v and t are adjacent in H. This is a 4d

transition graph, restricted to the permitted transitions between variables.

The strong product (or strong direct product or normal product), G×�H, has an edge between vertices

< u, v > and < s, t > iff u and s are adjacent in G and v = t, or, u = s and v and t are adjacent in H,

or both u and s are adjacent in G and v and t are adjacent in H. As the figures and notation suggest,

(G�H) + (G×H) = (G×�H). So the restricted 3d transition graph is the complement of the restricted 4d

transition graph in G×�H (i.e. not in the complete graph).

These products are but three of a potential twenty graph products which can be formed having vertex

set V (G)×V (H) and edge set determined only by the edge sets in G and H (Imrich and Izbicki, 1975). These

three graph products are both associative and commutative (in that the resulting graphs are isomorphic

to one another). An example of an associative graph product which is not symmetric is the lexicographic

product which is perhaps better named the composition of two graphs.

The composition (or lexicographic product or sometimes the wreath product) G[H] of graphs G and H

has an edge between vertex < u, v > and vertex < s, t > if and only if either u is adjacent to s in G or

u = s and v is adjacent to t in H. Note the asymmetry of G and H in the definition. Figure 18 shows the

<U1, V1> <U1, V2>

<U2, V1> <U2, V2>

<U3, V1> <U3, V2>

<V1, U1> <V2, U1>

<V1, U2> <V2, U2>

<V1, U3> <V2, U3>

(a) G[H] (b) H[G]

Fig. 18 Graph compositions of G and H from Figure 16.
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compositions G[H] and H[G] respectively.

It is straightforward to see that the composition of two complete graphs is symmetric. Indeed, the

composition of two graphs commutes if and only if either both graphs are complete, or both are edgeless, or

both are “powers” (with respect to composition) of the same graph G (p. 489 of Gross and Yellen, 2004).

The composition is also the only one of the above products that is self complementary, in the sense that

G[H] ∼= G[H].

Much is known about these products, in particular about their Hamiltonian decompositions. For exam-

ple, some results are summarized in Table 1 (dashed entries indicate absence of information). Most of these

Table 1 Summary of Hamiltonian decompositions of Graph Products

G H G�H G×H G×�H G[H]

Ham-decomp Ham-decomp Ham-decomp — Ham-decomp Ham-decomp

and order(G) — Ham-decomp — —
is odd

Km Kn Ham-decomp as: (m+n-2)-reg. Km×n G×�H

(m+n) even (m + n− 2)/2 cycles – Eulerian
(m+n) odd (m + n− 3)/2 cycles

and one 1-factor

G = Km H = Kn all rectangular moves all diagonal both both
in a scatterplot matrix
rectangle

moves

G = H = Kp (+ univariate) (+ univariate) (+ univariate) (+ univariate)

can be found in either Bosák (1990) or Gould (2004). Clearly, it helps to have G and H both be Hamiltonian

decomposable to start, then all four products are Hamiltonian decomposable, the tensor product being the

only one with an extra condition.

Recall that G�H is the relevant 3d transition graph and G×H the relevant 4d transition graph. Com-

plete graphs are of special interest as the products correspond to moving about rectangles of a scatterplot

matrix. This means that we can focus on some region in the scatterplot matrix and construct Hamiltonians

and/or Eulerians in most cases. That case where we cannot (i.e. m + n odd), there will still be a Hamil-

tonian decomposition but there will be redundant moves in connecting the 1-paths of the 1-factor. The

theory and algorithms of Hurley and Oldford (2008ab) are relevant to all these cases. When G = H = Kp,

the scatterplot matrix is square and has a univariate display on its diagonal (e.g. that produced by GGobi

which has a univariate density estimate on its diagonal cells).

It would be nice to extend this table to other graphs whose structure is of interest. For example paths are

useful to model time order or data from specified links in a chain (e.g. Markov or causal). Bipartite graphs

are useful to model “multivariate regression” situations. It is easy to imagine situations where exploring

the product of these (in any combination path times bipartite, etc) could be of statistical interest.
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5 Concluding remarks

The above theory may be directly applied to the layout of statistical graphics. The temporal morphing

of one scatterplot into another via 3d or 4d transitions could be easily implemented in any system that

supports fast drawing and erasure of scatterplots. These could, for example, be specialized tours in GGobi.

Similarly, a whole square block of a scatterplot matrix could be simultaneously morphed into another target

block of the same size to show a transition from a many dimensional space to another of the same size.

There are no doubt many new graphics that could be designed around traversal of these graphs.

For small p the graphs could even provide a user interface to drive the transitions. For example, moving

a ball around a Petersen graph could be an effective control for the user. For large graphs, it might be

more useful to use as a map to show where we are going as well as where we have been, perhaps marking

interesting paths as we proceed.

Weights can be placed on the edges of any of these graphs. In Hurley and Oldford (2008a) we used

various scagnostic indices (Wilkinson et al, 2005) on the edges of the complete variable graph to produce

interesting arrangements of parallel coordinate axes. In the case of the 3d and 4d transition graphs, the

edges represent transitions between two dimensional spaces. Some of the scagnostics naturally port to higher

dimensions, others do not. There is an opportunity to develop fundamentally new cognostics for transitions

between these and higher dimensional spaces.

With weighted graphs, Hamiltonians of minimum weight (a travelling salesman problem), greedy Eule-

rian ordering, and total weight of each cycle of a Hamiltonian decomposition become interesting.

Most of the discussion has used the real time morphing of one scatterplot into another as illustration,

but this need not be the case. The displays at each node could be anything on those variables and the layout

might be spatial rather than temporal. Moreover the semantics of the edge transitions might be different.

For example, in a 4-space graph S(p, 4, 2) (p ≥ 6) nodes ABCD and CDEF would be connected and the

transition from one node to another might mean conditioning on the shared variables. We might temporally

morph Cleveland’s (1993) conditional plot of (A,B)|(C,D) into that of (E,F )|(C,D).

A large number of variables need not be intimidating. As Section 4 pointed out, in many cases there

may not be interest in connections between some variables. For example, the original variable graph might

be bipartite. Or it might decompose into two (or more) subgraphs for which some graph product is of

interest. In these cases, there are still graph theoretic results available vis-à-vis hamiltonians, Eulerians,

and meaningful decompositions. Alternatively, considerably reduced graphs can be produced by trimming

all edges with too low (or high) weights.

In Hurley and Oldford (2008ab) we used graph theory to good effect for the spatial ordering of pairwise

displays such as parallel coordinate plots, glyphs, and multiple comparison plots. In the present paper,

we have shown that graph theoretic structure is of interest more generally for the layout (spatially or

temporally) of any displays of high dimensional information (variables or otherwise). The structure is

navigable and can often be decomposed and/or simplified. We anticipate that a broader graph theoretic

approach to layout will lead to new tools and methods for visualizing high dimensional data.

Appendix

The generative formula referred to at the end of Section 3.2 is simply derived.

For p > 5, the 4d transition graph (or KG(p, 2)) is even whenever

p =
5 +

p
1 + 4a(a+ 1)

2
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with integer a > 0 such that a (mod 4) ∈ {0, 3}. Proof: The 4d transition graph is a regular graph with

vertex degree
`p−2

2

´
and is even iff this equals 2k for some integer k > 0. And this is true

⇐⇒ (p− 2)(p− 3) = 4k

⇐⇒ p =
5±
√

1 + 16k

2
.

This last quantity is rational iff
√

1 + 16k is an odd integer. Or for some integer a ≥ 0 we must have

√
1 + 16k = 2a+ 1

⇐⇒ k =
a(a+ 1)

4
.

k is integer and because one of a or (a+ 1) must be odd, 4 must divide the even one – either (a+ 1) or a.

So we have either a ≡ 0(mod 4) or a ≡ 3(mod 4). �
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