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1 Revisiting neighbourhoods

When we began to look a smoothers, we considered condstructing a function locally by first dividing the x
axis into neighbourhoods or regions. For example, for the fake data we had considered using the average of
the ys in distinct non-overlapping neighbourhoods as in the plot below.
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Previously, because the estimate µ̂(x) here is not smooth, we went to considerable lengths to make it smooth
by using polynomials in each neighbourhood and enforcing continuity constraints between neighbourhoods.
What if we chose not to force this smoothness on µ̂(x)? Having flat pieces (the average of the ys in each
neighbourhood) the function is at least easy to understand, especially when communicating it to others. We
can even make it look a little more like our previous functions by making it continuous (if not differentiable
everywhere):
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This was based on constant width neighbourhoods. Previously we also considered varying width but constant
numbers of points in each neighbourhood. It might be that we could get a much better fit if we did not
restrict the neighbourhoods to either be of constant width or of constant size. For example, the following
has lots of points in some neighbourhoods and few in others. The neighbourhoods are also all of different
widths.
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Perhaps we could choose the neighbourhoods small enough where we need them to be small and get a better
fit.
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Or even
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Clearly we can go too far. As with smoothers, we need some measure of the how well we are fitting and also
how complex is the function that we are fitting.
How well we are fitting could simply be the residual sum of squares, as before. Now µ̂(x) is simply the
average of the ys in each x neighbourhood. If there are K neighbourhoods, or regions, R1, . . . , RK , each
having nk points (

∑K
k=1 nk = N), then we can write

µ̂(x) =
K∑

k=1

1
nk

N∑
i=1

IRk
(x) yi

=
K∑

k=1

IRk
(x) µ̂k, say, where

µ̂k = 1
nk

N∑
i=1

IRk
(xi) yi,

where the indicator function IA(x) = 1 whenever x ∈ A and is 0 otherwise.
The residual sum of squares is then

6



RSS(µ̂) =
N∑

i=1
(yi − µ̂(xi))2

=
N∑

i=1

(
yi −

K∑
k=1

IRk
(xi) µ̂k

)2

and the objective is to find non-overlapping regions Rk which cover all possible values of x.
Clearly, the more regions that are possible the smaller can be the RSS(µ̂). As with smoothing splines we do
not want too complex a function which means we do not want too many regions. The number of regions is a
measure of the complexity of the resulting function µ̂(x). As with smoothing splines then, we could instead
choose to to penalize complexity and minimize RSS(µ̂) + K, say. That is minimize

N∑
i=1

(
yi −

K∑
k=1

IRk
(xi) µ̂k

)2

+ λ K

to trade off the quality of the fit with the complexity of the function being fitted. (N.B. complexity is being
measured here by the number of distinct regions, or equivalently, the number of µ̂ks). The constant λ ≥ 0 is
again a “tuning” constant whose value can be chosen to increase (or decrease) the penalty for complexity.
Clearly K could be as large as N (one region for every distinct xi, i.e. nk = 1). Usually an upper bound on
the complexity is imposed by not letting any region contain fewer than some minimum number

nmin = min
k=1,...,K

nk

of points. This bound guarantees that the complexity K ≤ N/nmin.
Even with this restriction on complexity, there are still a great number of regions which might be considered
for any value of K. Too many to imagine conducting a search over all possible partitions of the real line to
find the best possible partition and its regions R1, . . . , RK .

1.1 Using trees to construct µ̂(x)

Instead, a greedy top-down algorithm is used. We first determine two neighbourhoods by finding a cut point
c of the xs such that the line is split into two regions B1 = {x | x < c} and its complement B2 = {x | x ≥ c}.
We choose c so that the residual sum of squares

RSS =

(
yi −

2∑
k=1

IBk
(xi) µ̂k

)2

=
∑
i∈B1

(
yi − yB1

)2 +
∑
i∈B2

(
yi − yB2

)2

is as small as possible.
Once c is chosen, we then repeat the process to separately split each of B1 and B2. That is, for B1 we choose
another c to get B11 and B12 with B1 = B11

∪
B12, and similarly we split B2 by choosing a different c to

get B21 and B22, again with B2 = B21
∪

B22.
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Continuing recursively in this fashion, we construct a partition which looks like a binary tree:

Note that the root of the tree is B and represents the whole real line for x in this instance and the leaf
nodes (bottom-most nodes) correspond to the regions R1, . . . , RK . In the above diagram K = 8. All other
interior nodes are branches. (The tree, regrettably, is upside down compared to nature.)
This recursive partitioning could continue until every leaf node was as small as possible. We need not
choose to split a node until it is as small as possible. We might, for example, choose to not split a node
(region) if the result does not change the RSS enough.
We can accomplish this kind of recursive partitioning in R using the tree function from the package of
the same name. As with other fitting functions, tree(...) takes a formula expression/object as its first
argument.
For our fake data, the default fit of a tree via recursive partitioning is had as follows:
library(tree)
fake.tree <- tree(y ~ x)

# the fit can now be plotted on our fake data as
# before
plot(x,y,

col=adjustcolor("grey10", 0.5), pch=19, cex=0.5,
main = "tree(y ~ x) on fake data")

#
# This plots the fitted values
partition.tree(fake.tree, add=TRUE, col="blue", lwd=3)
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The tree structure itself can also be displayed
plot(fake.tree, type="uniform")
# And add the labels
text(fake.tree, cex=0.75)
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|
x < 0.482766

x < 0.428714 x < 0.517586

x < 0.938263

−0.97490 −0.53400  0.07647

 0.63140  1.06100

At each binary split, the value used to separate the subsets is shown. For example from the root node, all
data points having x < 0.482766 form the left branch, all others form the right. The left branch is split once
more depending on whether x < 0.428714 or not. At each leaf, the average of the y values for all data points
in that set is also reported. The leftmost branch in the display has an average y of −0.97490 for all points
having x < 0.428714 and its partner had average y of −0.5340 for 0.428714 ≤ x < 0.482766.
Similarly, on the right side of the root, we have 0.07647 for 0.482766 ≤ x < 0.517586, 0.63140 for 0.517586 ≤
x < 0.938263, and 1.06100 for all x ≥ 0.938263
The fitted tree is a fitted model like any other and so can be summarized
summary(fake.tree)

##
## Regression tree:
## tree(formula = y ~ x)
## Number of terminal nodes: 5
## Residual mean deviance: 0.06125 = 18.07 / 295
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.79510 -0.16280 -0.00739 0.00000 0.13840 0.71840

Note that the model degrees of freedom here is equivalent to the number of terminal nodes (or leaves) in the
tree. Similarly there are residuals
resids <- residuals(fake.tree)

whose distribution is summarized above, and are used to form the residual mean deviance as
sum(resids^2) / (length(y) - 5)

## [1] 0.0612532
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Note also that the average y values are actually the values of µ̂(x) for all x in the set defined by that leaf.
Indeed, as with any previous fitted model, the fitted tree defined µ̂(x) for all x and so can be used to predict
y values at any x by calling the predict(...) function on the fitted tree with those x values.
# Get the x-values
#
newx <- seq(-0.5, 1.5, 0.5)
muhat <- predict(fake.tree, newdata=list(x=newx))
knitr::kable(round(cbind(x = newx, muhat = muhat),3))

x muhat
-0.5 -0.975
0.0 -0.975
0.5 0.076
1.0 1.061
1.5 1.061

The tree structure and other summary statistics at each node can be seen from the printed representation
of the tree as well:
fake.tree

## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 300 206.3000 -0.18800
## 2) x < 0.482766 161 12.1200 -0.90370
## 4) x < 0.428714 135 6.2920 -0.97490 *
## 5) x > 0.428714 26 1.5930 -0.53400 *
## 3) x > 0.482766 139 16.2000 0.64090
## 6) x < 0.517586 10 0.1966 0.07647 *
## 7) x > 0.517586 129 12.5700 0.68470
## 14) x < 0.938263 113 9.0780 0.63140 *
## 15) x > 0.938263 16 0.9101 1.06100 *

At each node of the tree, the (nested) splitting rule used to define the node, the number of observations in
the node, the deviance of the response values at that node, and the average response, are all shown. Leaves
of the tree are marked with an asterisk.
The same information is also available as a data.frame from the fitted tree as
fake.tree.df <- fake.tree$frame
fake.tree.df

## var n dev yval splits.cutleft splits.cutright
## 1 x 300 206.2903808 -0.18801841 <0.482766 >0.482766
## 2 x 161 12.1218607 -0.90367378 <0.428714 >0.428714
## 4 <leaf> 135 6.2918772 -0.97486313
## 5 <leaf> 26 1.5933942 -0.53403676
## 3 x 139 16.2012278 0.64090615 <0.517586 >0.517586
## 6 <leaf> 10 0.1966329 0.07646583
## 7 x 129 12.5716951 0.68466121 <0.938263 >0.938263
## 14 <leaf> 113 9.0777266 0.63140575
## 15 <leaf> 16 0.9100638 1.06077791

Here, deviance is the residual sum of squares:
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deviance(fake.tree)

## [1] 18.06969
sum(resids^2)

## [1] 18.06969
# At the root
n <- length(y)
(n-1)* var(y)

## [1] 206.2904
mean(y)

## [1] -0.1880184
# At the terminal nodes (leaves)
leaves <- unique(fake.tree$where)
# number of leaves
length(leaves)

## [1] 5
# For just the first leaf, node id is
leaves[1]

## [1] 3
# which identifies the row of the data frame for this
# leaf
fake.tree.df[leaves[1],]

## var n dev yval splits.cutleft splits.cutright
## 4 <leaf> 135 6.291877 -0.9748631
# whose values we could reconstruct
# from the contents of the leaf.
# Here are all the elements of leaf 1
leaf1 <- fake.tree$where==leaves[1]

# size of leaf1
sum(leaf1)

## [1] 135
# RSS at leaf1
sum(resids[leaf1]^2)

## [1] 6.291877
# muhat(x) (for x in leaf1)
mean(y[leaf1])

## [1] -0.9748631
#
# Similarly at an interior node

interior <- fake.tree.df[,1] != "<leaf>"
sum(interior)
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## [1] 4
#
# last interior node is made up of the last two leaves
# in rows 8 and 9
left.leaf <- fake.tree$where==8
right.leaf <- fake.tree$where==9

#
# number of data points
node.n <- sum(left.leaf) + sum(right.leaf)
node.n

## [1] 129
# Their y values:
node.y <- c(y[left.leaf],y[right.leaf])

# RSS for that node
(node.n -1) * var(node.y)

## [1] 12.5717
# average response
mean(node.y)

## [1] 0.6846612

1.2 How large could the tree be?

Clearly, the more splits we make the larger will be the tree and the more levels will be given to µ̂(x). Each
new level corresponds to another model degree of freedom. In principle, we could continue to split until
every terminal node contains a single unique x value for the data.
A bushier tree can be had via two different parameters of the tree function:

• mindev, the “within-node deviance must be at least this times that of the root node for the node to
be split”

• mincut, the smallest allowed number of observations in any child (leaf) node.
• minsize, the smallest allowed (interior) node size (typically at least twice the mincut)

Below, we set these parameters to allow the greatest number of possible splits and hence the bushiest tree
possible. Note that this produces a µ̂(x) function that tracks as closely to the observed data as possible.
fake.tree.bushy <- tree(y ~ x,

control=tree.control(nobs=length(x),

mindev = 0,
minsize= 2,
mincut = 1
)

)

The tree which results is very bushy.
plot(fake.tree.bushy, type="uniform")
# And add the labels
text(fake.tree.bushy, cex=0.35)
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−0.609500

−0.803400−0.645600

−0.911600

−0.538700−0.435700−0.625200−0.591900−0.210800

−0.524900−0.436300−0.125700−0.155600

−0.093870

−0.747800

−0.185000−0.263700

−0.519800

 0.029500

−0.096660 0.007456 0.198100 0.297900 0.138300

 0.244100 0.139300

 0.547400

 0.392600

 0.347900 0.381800 0.621700 0.554700

 1.044000

 0.301700

 0.608300

 0.226400 0.479500

 0.805000

 0.541600 0.745700

 0.468300

 0.304900 0.371300

 0.926200

 1.208000 1.324000 0.894800

 1.219000

 1.070000 1.201000

 1.033000

 1.350000

 0.835300 0.766200

 1.287000

 0.158300

 0.639500 0.481400 0.187400−0.163700

 0.366300

 0.482000 0.395600

 0.005159

 0.406000 0.339800

 0.408000

 0.209100

 0.570000 0.599400

 0.512400

 0.108200

 0.303800 0.500200

 0.236000

 0.513400

 0.184500

 0.635300

 0.349900 0.597500

 0.882500 0.609700

 0.292100

 0.697900 0.558500 0.731000

 0.621200

 0.729300

 0.696400 0.671700

 0.413000 0.484900

 0.394500 0.531000 0.477100

 0.834200

 0.743900 0.713600

 0.412200 0.350200

 0.567600 0.773700 0.745100 0.800600 0.848900

 0.231600

 0.682100 0.891900

 0.701600

 0.501900

 0.754900 0.576700

 0.761700 0.851500 0.583000

 0.770500 0.793600

 0.570100 0.612700

 1.094000

 0.764300 0.796900 0.902000 0.871700

 0.651300

 1.056000

 0.762600

 0.623300 0.756400

 0.366400

 0.887200

 0.468700 1.234000

 0.720500 0.852400 0.538000 0.737600

 1.156000 0.884400

 1.473000

 0.806100 1.087000

 0.696600

 1.141000 0.905500

 1.263000

 0.789800

 1.525000

 0.827200 0.894600

 1.059000

 1.253000 1.213000

summary(fake.tree.bushy)

##
## Regression tree:
## tree(formula = y ~ x, control = tree.control(nobs = length(x),
## mindev = 0, minsize = 2, mincut = 1))
## Number of terminal nodes: 286
## Residual mean deviance: 7.678e-05 = 0.001075 / 14
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.009845 0.000000 0.000000 0.000000 0.000000 0.009845

Not surprisingly, a bushy tree corresponds to a flexible µ̂(x), one which uses an enormous number of degrees
of freedom. The fit will be able to track the data very closely.
plot(x,y,

col=adjustcolor("grey10", 0.5), pch=19, cex=0.5,
main = "Bushiest tree")

partition.tree(fake.tree.bushy, add=TRUE,
col=adjustcolor("blue", 0.5), lwd=1)

14



0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

Bushiest tree

x

y

This fit goes very nearly through every available data point.
Clearly, the tree requires pruning …but how?

1.3 Pruning a tree

Begin with the bushy tree, we might want to cut off some branches, that is we might want to prune the tree
a bit. We could do this interactively using the function snip.tree(...). (N.B. this is not recommended;
we are doing it here only for illustration.) For example, our bushy tree looked like
plot(fake.tree.bushy, type="uniform")
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|

#
# Which we could prune by snipping off named nodes
fake.tree.snipped <- snip.tree(fake.tree.bushy,

nodes = c(4, 10, 11, 12, 13,
112, 113, 228, 229,
58, 59, 15))

# or, if the nodes argument is NOT given, by doing
# it interactively
# fake.tree.snipped <- snip.tree(fake.tree.bushy)
plot(fake.tree.snipped, type="uniform")

|

As can be seen, the resulting tree is smaller than the bushy tree having sum(fake.tree.snipped$frame[,"var"]
== "<leaf>") = 36 leaves compared to 286 leaves on the bushy tree.
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# The summary is
summary(fake.tree.snipped)

##
## Regression tree:
## snip.tree(tree = fake.tree.bushy, nodes = c(4L, 10L, 11L, 12L,
## 13L, 112L, 113L, 228L, 229L, 58L, 59L, 15L))
## Number of terminal nodes: 36
## Residual mean deviance: 0.04294 = 11.34 / 264
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.6233 -0.1315 0.0000 0.0000 0.1075 0.6335

It also produces a less complex fit µ̂(x), as seen below:
plot(x,y,

col=adjustcolor("grey10", 0.5), pch=19, cex=0.5,
main = "Snipped tree")

partition.tree(fake.tree.snipped, add=TRUE,
col=adjustcolor("blue", 0.5), lwd=1)
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As the plot shows, snipping the tree just based on viewing the tree itself, has resulted in a fit µ̂(x) that has
little variation in some regions (the left of the plot, or leftmost branch near the root) and considerably more
in other regions (right side od the plot and right most branch). This may not be the best fitting tree for
that number of leaves/regions (complexity).
In pruning, lopping of large branches near the root generally results in a really poor fit to a (potentially)
large fraction of the data (e.g. imagine cutting all branches below the first right hand split from the root).
Some sense of the relative merits of the branches of our tree can be had by plotting it with
‘type=“proportional” (the default). This will cause the length of the branches to be proportional to
the decrease they cause in RSS.
plot(fake.tree.bushy, type="proportional")

|

Similarly for the tree produced by just snipping the tree by eye.
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plot(fake.tree.snipped, type="proportional")

|

Looking at this tree, we might consider snipping again, this time snipping away those branches that have
lots of leaves but which add very little length to the tree.
What would be preferable would be a more systematic way to prune the tree, one that recognizes that bushy
branches introduce complexity (add more regions) and that long branches are more desirable than short ones
(long branches correspond to large changes in RSS).

1.3.1 What is the best pruning?

One goal is to reduce complexity and if we snip one branch at a time near the edge, each snip will reduce the
complexity of our model by 1 (as measured by the number of terminal nodes or leaves being one fewer than
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before). However, we also want to have the remaining model fit the data as well as possible. This suggests
that we should choose the branch that (once snipped) will increase the RSS the least (i.e. have the least
cost to the performance of our fitted model).
Looking at the pruning in this way, there is actually a sequence of subtrees which we can follow. In fact, it
can be shown that the set of subtrees which minimize the cost-complexity

RSS + λK

is nested. As λ increases, the optimal trees are had by a sequence of snip operations on the current tree
(i.e. pruning). This produces a sequence of trees from the bushiest down to the root node. (Note however
that as a λ increases, more than one node may be pruned at each snip.)
There is a function prune.tree(...) in the tree package that will allow us to choose the “best trees”” in
this sequence of trees. Beginning with the bushiest tree, we could find the best sub-tree with some specified
number of leaves. The snipped tree had 36 leaves; we might use prune.tree to find the best tree with that
many leaves.

|

##
## Regression tree:
## snip.tree(tree = fake.tree.bushy, nodes = c(77L, 454L, 116L,
## 75L, 13L, 12L, 153L, 959L, 235L, 71L, 149L, 78L, 226L, 297L,
## 238L, 592L, 478L, 68L, 139L, 10L, 115L, 152L, 79L, 114L, 112L,
## 11L, 15L, 70L))
## Number of terminal nodes: 37
## Residual mean deviance: 0.02782 = 7.317 / 263
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.50200 -0.11380 0.00680 0.00000 0.09413 0.52990

which produced one more leaf than we had from snipping. We can compare this function with the one
produced by snipping in the same plot.
plot(x,y,

col=adjustcolor("grey10", 0.5), pch=19, cex=0.5,
main = "Snipped versus pruned tree")

partition.tree(fake.tree.snipped, add=TRUE,
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col=adjustcolor("red", 0.5), lwd=1.5, lty=2)
partition.tree(fake.tree.snip.best, add=TRUE,

col=adjustcolor("blue", 0.5), lwd=1.5)
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The snipped tree (in dashed red) has introduced its complexity in essentially one place. This is because we
snipped off most branches close to the root, and let only one grow bushy. In contrast, the “best” pruned tree
has spread the same complexity across several different x locations. The “best” pruned tree has removed
small branches across the entire tree, depending on which branches will least affect the fit when pruned.
There is nevertheless more complexity than we might wish to consider for this data. Suppose we choose to
have only 11 regions (which corresponds to the 11 effective degrees of freedom we often used for smoothers
on this data).
fake.tree.best11 <- prune.tree(fake.tree.bushy, best=11)
plot(x,y,

col=adjustcolor("grey10", 0.5), pch=19, cex=0.5,
main = "Best tree versus smoothing spline(11 df)")

partition.tree(fake.tree.best11, add=TRUE,
col=adjustcolor("blue", 0.5), lwd=1.5)

#
# which we could compare to a smoothing spline
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library(splines)
fake.data.smooth11 <- smooth.spline(y~x, df=11)
newx <- seq(min(x),max(x), length.out = 200)
lines(newx, predict(fake.data.smooth11, x=newx)$y,

col=adjustcolor("red", 0.5), lty=2, lwd=1.5)
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Note the qualitative differences between the smoothing spline and the regression tree fit. The tree is able to
adapt to sharper changes in places (notably the middle) than is the smooth. Conversely, the smooth adapts
to small (continuous and smooth) changes throughout the data whereas the tree is forced to have flat regions
with abrupt (not differentiable) changes.
Some sense of how the fit depends on the size of the tree can be had by simply fitting the best tree for a
range of tree sizes.
max_size <- sum(fake.tree.bushy$frame[,"var"] == "<leaf>")

sizes <- seq(2,max_size)
deviances <- sapply(sizes,

FUN = function(size) {
deviance(prune.tree(fake.tree.bushy,

best=size)
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)
}
)

plot(sizes, deviances,
col=adjustcolor("grey10", 0.5), pch=19, cex=0.75,
main = "Deviance (RSS) versus size of tree")

lines(sizes, deviances, col=adjustcolor("blue", 0.5))
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As can be seen, the RSS decreases as the complexity of the tree (number of leaves) increases. As we did with
smoothers, we might use the average prediction error sum of squares or apse together with k-fold
cross-validation to compares sizes, and hopefully choose one.
The following functions are identical to those we had before. They are reproduced here only for convenience.
apse <- function(Ssamples, Tsamples, df){

# average over the samples S
#
N_S <- length(Ssamples)
mean(sapply(1:N_S,

FUN=function(j){
S_j <- Ssamples[[j]]
# get the muhat function based on
# the sample S_j
muhat <- getmuhat(S_j, df=df)
# average over (x_i,y_i) in a
# single sample T_j the squares
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# (y - muhat(x))^2
T_j <- Tsamples[[j]]
ave_y_mu_sq(T_j,muhat)

}
)
)

}

getmubar <- function(muhats) {
# the muhats must be a list of muhat functions
# We build and return mubar, the function that
# is the average of the functions in muhats
# Here is mubar:
function(x) {

# x here is a vector of x values on which the
# average of the muhats is to be determined.
#
# sapply applies the function given by FUN
# to each muhat in the list muhats
Ans <- sapply(muhats, FUN=function(muhat){muhat(x)})
# FUN calculates muhat(x) for every muhat and
# returns the answer Ans as a matrix having
# as many rows as there are values of x and
# as many columns as there are muhats.
# We now just need to get the average
# across rows (first dimension)
# to find mubar(x) and return it
apply(Ans, MARGIN=1, FUN=mean)

}
}

ave_y_mu_sq <- function(sample, predfun){
mean(abs(sample$y - predfun(sample$x))^2)

}

ave_mu_mu_sq <- function(predfun1, predfun2, x){
mean((predfun1(x) - predfun2(x))^2)

}

kfold <- function(N, k=N, indices=NULL){
# get the parameters right:
if (is.null(indices)) {

# Randomize if the index order is not supplied
indices <- sample(1:N, N, replace=FALSE)

} else {
# else if supplied, force N to match its length
N <- length(indices)

}
# Check that the k value makes sense.
if (k > N) stop("k must not exceed N")
#

24



# How big is each group?
gsize <- rep(round(N/k), k)

# For how many groups do we need odjust the size?
extra <- N - sum(gsize)

# Do we have too few in some groups?
if (extra > 0) {
for (i in 1:extra) {
gsize[i] <- gsize[i] +1

}
}
# Or do we have too many in some groups?
if (extra < 0) {
for (i in 1:abs(extra)) {
gsize[i] <- gsize[i] - 1

}
}

running_total <- c(0,cumsum(gsize))

# Return the list of k groups of indices
lapply(1:k,

FUN=function(i) {
indices[seq(from = 1 + running_total[i],

to = running_total[i+1],
by = 1)

]
}

)
}

getKfoldSamples <- function (x, y, k, indices=NULL){
groups <- kfold(length(x), k, indices)
Ssamples <- lapply(groups,

FUN=function(group) {
list(x=x[-group], y=y[-group])

})
Tsamples <- lapply(groups,

FUN=function(group) {
list(x=x[group], y=y[group])

})
list(Ssamples = Ssamples, Tsamples = Tsamples)

}

What we do need to specialize is the function µ̂(x). This is now a tree function indexed by its size. Following
the method used (so far) to construct the fitted tree, we can write a function that will return µ̂(x) for any
sample and any size of the tree.
getmuhat <- function(sample, df) {
y <- sample$y
x <- sample$x
size <- df
fulltree <- tree(y ~ x,
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control=tree.control(nobs=length(x),
mindev = 0,
minsize= 2,
mincut = 1
)

)
prunedtree <- prune.tree(fulltree, best=size)

muhat <- function(x){predict(prunedtree,
newdata=list(x=x))

}
# return this function as the value of getmuhat
muhat

}

Note that we are using the argument df as the size of the tree.
The above code is not the most efficient way to perform these calculations, especially since the full tree is
calculated to get a muhat for every tree size.
Nevertheless, we can try it out for a few sizes as we did with smoothing splines to get some idea of how the
APSE behaves as a function of tree size.
We will use the following function to carry everything out. Again, it is essentially identical to the one we
used for smoothing splines. The only differences are due to labelling the plot.
plot_apse <- function(x, y, df, k,

# plot parameters
xlab="df",
ylab="average prediction squared error",
main=NULL){

if (is.null(main)) {
main <- paste("APSE by", k, "fold cross validation")

}

samples <- getKfoldSamples(x, y, k)
apsehat <- sapply(df,

FUN = function(df){
apse(samples$Ssamples,

samples$Tsamples,
df=df)

}
)
ylim <- extendrange(apsehat)
ylim[1] <- 0
plot(df, apsehat, main=main, ylab=ylab, xlab=xlab,

ylim = ylim,
pch=19, col= adjustcolor("firebrick", 0.75))

lines(df, apsehat,
col=adjustcolor("firebrick", 0.75), lwd=2)

# return results
apsehat

}

We are now ready to investigate the average prediction squared errors for this data as a function of tree sizes.
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We will not do leave one out cross-validation because this would be too time-consuming.
First the 10-fold cross-validation:
complexity <- 2:30

# 10 fold cross-validation
apsehat_10fold <- plot_apse(x, y, df=complexity, k=10,

xlab="tree size")
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Then the 5-fold:
# 5 fold cross-validation
apsehat_5fold <- plot_apse(x, y, df=complexity, k=5,

xlab="tree size")
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and both together
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## complexity ten_fold five_fold
## [1,] 2 0.096 0.0954
## [2,] 3 0.095 0.0845
## [3,] 4 0.082 0.0799
## [4,] 5 0.070 0.0698
## [5,] 6 0.059 0.0581
## [6,] 7 0.059 0.0581
## [7,] 8 0.058 0.0596
## [8,] 9 0.057 0.0572
## [9,] 10 0.056 0.0550
## [10,] 11 0.053 0.0519
## [11,] 12 0.054 0.0526
## [12,] 13 0.056 0.0525
## [13,] 14 0.056 0.0562
## [14,] 15 0.058 0.0567
## [15,] 16 0.058 0.0569
## [16,] 17 0.058 0.0587
## [17,] 18 0.059 0.0610
## [18,] 19 0.059 0.0623
## [19,] 20 0.059 0.0625
## [20,] 21 0.059 0.0656
## [21,] 22 0.059 0.0656
## [22,] 23 0.059 0.0668
## [23,] 24 0.061 0.0672
## [24,] 25 0.062 0.0688
## [25,] 26 0.062 0.0688
## [26,] 27 0.061 0.0687
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## [27,] 28 0.061 0.0692
## [28,] 29 0.062 0.0691
## [29,] 30 0.062 0.0692

Both five fold and ten fold cross validation suggests a tree size of 11. These choices seem to be in agreement
with the choice of degrees of freedom for the smoothing spline.

1.3.2 Cost-complexity pruning

As suggested earlier, we might incorporate a penalty for complexity into the function we are minimizing to
fit the tree. The penalized RSS (or deviance) for a tree T is written as

N∑
i=1

(
yi −

K∑
k=1

IRk
(xi) µk

)2

+ λ K

where K = |T | is the number of regions/terminal nodes/leaves in the tree T and λ is a fixed constant. Clearly,
the smaller the value of λ, the greater is the complexity of the tree. The value of λ effectively determines
the size of the tree.
As was done with smoothing splines, we can think of this problem as maximizing the posterior distribution
of a tree T , where the responses (conditional on x) come from the generative model

Yi = µT (xi) + Ri

conditional on xi and the tree T and
Ri ∼ N(0, σ2)

independently. Suppose each tree T ’s marginal probability is proportional to

exp{−λ |T |}

for a fixed constant λ. That is, more complex trees have lower probability of being served up by nature than
do simple trees so that increasing λ reduces the probability of a complex tree.
In this framework, we could apply Bayes’s theorem and find the conditional probability of any particular tree
given the data. This is often called the posterior probability of the tree. Choosing the tree which maximizes
this posterior probability is equivalent to minimizing the penalized RSS (or, more generally, the penalized
likelihood) which we could write as

N∑
i=1

yi −
|T |∑

k=1

IRk
(xi) µk

2

+ λ |T |

=
N∑

i=1
(yi − µT (xi))2 + λ |T |.

However you want to think about it (minimizing a penalized RSS, maximizing a penalized likelihood, or
finding the posterior mode), the same quantity is being minimized for fixed λ. This function combines cost
(quality of fit) and complexity and we find a tree which minimizes the combination by pruning our largest
bushiest tree. This is called cost-complexity pruning.
In the tree package, the prune.tree(...) function can be used to effect cost-complexity pruning. Begin-
ning with the full tree, we prune based on λ. When λ = 0, the original tree is returned and as λ increases,
the returned tree will be less complex.
For example, suppose λ = 0.01 so that complexity is not being penalized that greatly
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##
## Regression tree:
## snip.tree(tree = fake.tree.bushy, nodes = c(7535L, 19456L, 43L,
## 897L, 1904L, 1905L, 323L, 31L, 2543L, 471L, 1217L, 82L, 45L,
## 19065L, 77L, 1832L, 8953L, 287L, 2540L, 462L, 2438L, 2443L, 225L,
## 494L, 1796L, 4477L, 454L, 8952L, 557L, 632L, 94L, 152513L, 917L,
## 1830L, 89L, 3766L, 1113L, 1116L, 1193L, 42L, 611L, 116L, 2380L,
## 3824L, 152515L, 75L, 921L, 13L, 7246L, 1810L, 461L, 142L, 1841L,
## 12L, 2381L, 4478L, 1918L))
## Number of terminal nodes: 194
## Residual mean deviance: 0.002853 = 0.3024 / 106
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.113800 -0.005506 0.000000 0.000000 0.009939 0.094360

we still have a very bushy tree.
As we increase λ = 0.1,
##
## Regression tree:
## snip.tree(tree = fake.tree.bushy, nodes = c(31L, 45L, 77L, 225L,
## 1796L, 454L, 116L, 75L, 13L, 12L, 153L, 959L, 448L, 235L, 247L,
## 1798L, 120L, 71L, 149L, 1799L, 122L, 44L, 78L, 226L, 297L, 238L,
## 592L, 47L, 478L, 68L, 492L, 139L, 10L, 115L, 152L, 79L, 114L))
## Number of terminal nodes: 52
## Residual mean deviance: 0.02328 = 5.774 / 248
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.50200 -0.09831 0.00000 0.00000 0.08393 0.32260

we have fewer terminal nodes/leaves in the tree.
When λ = 1,
##
## Regression tree:
## snip.tree(tree = fake.tree.bushy, nodes = c(112L, 15L, 29L, 113L,
## 6L, 57L, 5L, 4L))
## Number of terminal nodes: 8
## Residual mean deviance: 0.04654 = 13.59 / 292
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.62980 -0.15270 0.01011 0.00000 0.12620 0.63350

we have only 8 leaves.
As with size, we could use APSE and cross-validation to choose λ.
NOTE This requires very little change in our code. We need only specify µ̂ to be a function of the complexity
constant λ rather than of the tree size |T |:
# Only 2 changes are needed
getmuhat <- function(sample, df) {
y <- sample$y
x <- sample$x
## First change is here
lambda <- df
fulltree <- tree(y ~ x,

control=tree.control(nobs=length(x),

31



mindev = 0,
minsize= 2,
mincut = 1
)

)
## And second here
prunedtree <- prune.tree(fulltree, k=lambda)

muhat <- function(x){predict(prunedtree,
newdata=list(x=x))

}
# return this function as the value of getmuhat
muhat

}

The cross-validations are now trivially written. Since complexity is now λ, we need to have it take small
values:
complexity <- seq(0.01, 2, length.out = 20)

The 10-fold cross-validation:
# 10 fold cross-validation
apsehat_10fold <- plot_apse(x, y, df=complexity, k=10,

xlab=expression(lambda))
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Then the 5-fold:
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# 5 fold cross-validation
apsehat_5fold <- plot_apse(x, y, df=complexity, k=5,

xlab=expression(lambda))
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and both together
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This suggests a λ value somewhat less than 0.5. We could focus on the narrower region
complexity <- seq(0.1, 0.5, length.out = 20)

The results are
# 10 fold cross-validation
apsehat_10fold <- plot_apse(x, y, df=complexity, k=10,

xlab=expression(lambda))
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# 5 fold cross-validation
apsehat_5fold <- plot_apse(x, y, df=complexity, k=5,

xlab=expression(lambda))
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# And plot them together
ylim <- extendrange(c(apsehat_10fold, apsehat_5fold))
# Plot the results
plot(complexity, apsehat_10fold, ylim=ylim,

main="APSE by k-fold cross validation",
xlab=expression(lambda),
ylab="average prediction squared error",
pch=2, col= adjustcolor("steelblue", 0.75))

lines(complexity, apsehat_10fold,
col=adjustcolor("steelblue", 0.75), lwd=2, lty=2)

lines(complexity, apsehat_5fold,
col=adjustcolor("firebrick", 0.75), lwd=2, lty=3)

points(complexity, apsehat_5fold,
col=adjustcolor("firebrick", 0.75), pch=3)

legend(median(complexity), max(ylim),
legend=c("10 fold", "5 fold"),
lty =2:3, pch=c(2,3),
col=adjustcolor(c("steelblue","firebrick"), 0.75),
cex=0.75, y.intersp=2, bty="n", seg.len=10)
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t(rbind(complexity,
ten_fold=round(apsehat_10fold,5),
five_fold=round(apsehat_5fold,5)))

## complexity ten_fold five_fold
## [1,] 0.1000000 0.06880 0.07730
## [2,] 0.1210526 0.06248 0.07049
## [3,] 0.1421053 0.06264 0.06322
## [4,] 0.1631579 0.05835 0.06378
## [5,] 0.1842105 0.05553 0.05893
## [6,] 0.2052632 0.05416 0.05567
## [7,] 0.2263158 0.05437 0.05423
## [8,] 0.2473684 0.05419 0.05468
## [9,] 0.2684211 0.05314 0.05330
## [10,] 0.2894737 0.05317 0.05580
## [11,] 0.3105263 0.05319 0.05701
## [12,] 0.3315789 0.05319 0.05691
## [13,] 0.3526316 0.05459 0.05691
## [14,] 0.3736842 0.05459 0.05726
## [15,] 0.3947368 0.05459 0.05726
## [16,] 0.4157895 0.05459 0.05726
## [17,] 0.4368421 0.05459 0.05796
## [18,] 0.4578947 0.05459 0.05796
## [19,] 0.4789474 0.05491 0.05796
## [20,] 0.5000000 0.05546 0.05796

There are several ties where prune.tree produces the same tree. A value of λ̂ ≈ 0.28 or 0.29 (look around
rows 9-12) seems appropriate. (Note that λ̂ = 0.28 actually looks different!)
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The resulting trees are as follows:
savePar <- par(mfrow=c(1,2))
lambda <- 0.28
fake.tree.lambda <- prune.tree(fake.tree.bushy, k=lambda)
plot(fake.tree.lambda, type="uniform")
plot(x,y,

col=adjustcolor("grey30", 0.3), pch=19, cex=0.5,
main = expression(paste(lambda,"= 0.28")))

partition.tree(fake.tree.lambda, add=TRUE,
col=adjustcolor("red", 0.5), lwd=3)
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lambda <- 0.29
fake.tree.lambda <- prune.tree(fake.tree.bushy, k=lambda)
plot(fake.tree.lambda, type="uniform")
plot(x,y,

col=adjustcolor("grey30", 0.3), pch=19, cex=0.5,
main = expression(paste(lambda,"= 0.29")))

partition.tree(fake.tree.lambda, add=TRUE,
col=adjustcolor("red", 0.5), lwd=3)

|

0.0 0.5 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

λ= 0.29

x

y

par(savePar)

which is essentially the same one we had before based on size. This is because choosing the best λ is
equivalent to choosing the best tree size in the sequence of trees. The prune.tree(...) function by default
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produces the entire sequence of trees, from which we select.
fake.tree.sequence <- prune.tree(fake.tree.bushy)
names(fake.tree.sequence)

## [1] "size" "dev" "k" "method"
plot(fake.tree.sequence, main=expression(lambda))
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The values of λ appear on a separate axis along the top.

1.3.3 Computational efficiency and generality

In the above, the very generic functions developed for smoothing splines could be repurposed to use with
regression trees with little to no change to the code. There is an enormous advantage to having such flexible
and general code. It can be used in, or easily adapted to, new situations.
However, this comes at a price. By being so generic, little advantage can be taken of the structure of
any particular estimator. The tree package does the opposite. It provides functions for testing only tree
predictions, but at the cost of some flexibility.
The functions can be grouped as either - Training/test under user control. Here the functions are - tree(...)
with argument subset to specify which data points are in the training set, and - prune.tree(..) with
argument newdata to specify the data points on which the deviances are calculated at every node.
- K-fold cross validation. The function to be used here is - cv.tree(...) which performs a k-fold cross-
validation but assumes that the tree being used was produced by tree(...) with default values for the
tree.control parameters (i.e. not excessively bushy, as the ones we created earlier).
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To illustrate these, let’s consider the more general case (which could be used to implement any sampling or
training/test division, includinf random k-fold cross-validation).
First define a training set and a test set (here at random and with no intersection).
n <- length(x)
set.seed(12345423) # reproduceability
training <- sample(1:n, round(0.80 * n), replace = FALSE)
test <- setdiff(1:n, training)
training <- sort(training)

We can see which data appear in the training and which in the test by colouring them:
# The data
col.train <- adjustcolor("grey30", 0.3)
col.test <- adjustcolor("red", 0.3)
col <- rep(col.train, length(x))
col[test] <- col.test
plot(x,y,

col=col, pch=19, cex=0.5,
main = "Training versus test")

legend("topleft",
legend=c("training", "test"), pch=c(19,19),
col=c(col.train, col.test),
cex=0.75, y.intersp=2, bty="n", seg.len=10)
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Now build a tree based on the training set, with the parameters of your choice. Here another very bushy tree
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is chosen. (N.B. don’t usually start with this bushy a tree in practice; mincut=5, minsize=10 is common
and is the default for tree(...).)
fake.tree.train <- tree(y ~ x,

subset = training,
control = tree.control(nobs = length(training),

mindev=0,
mincut=2,
minsize=4
)

)

summary(fake.tree.train)

##
## Regression tree:
## tree(formula = y ~ x, subset = training, control = tree.control(nobs = length(training),
## mindev = 0, mincut = 2, minsize = 4))
## Number of terminal nodes: 102
## Residual mean deviance: 0.02648 = 3.655 / 138
## Distribution of residuals:
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.501700 -0.059390 0.000966 0.000000 0.069650 0.501700

As before, prune.tree can be used to select a single tree, or to examine a sequence of trees, except now we
choose to evaluate the deviance (RSS) at each node of the tree using the test set (previously we used the
training set).
fake.tree.test.sequence <- prune.tree(fake.tree.train,

# But on the test data
newdata = data.frame(x=x[test], y=y[test])
)

This provides the full sequence whose in formation we might plot to choose a tree size (or equivalently, a λ).
plot(fake.tree.test.sequence$size, fake.tree.test.sequence$dev,

col="firebrick", pch=19, main="Evaluation on the test set",
xlab="size", ylab="RSS")

lines(fake.tree.test.sequence$size, fake.tree.test.sequence$dev,
col="firebrick", lwd=2)
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# And the actual values
sel <- fake.tree.test.sequence$size > 5 & fake.tree.test.sequence$size < 15
cbind(size=fake.tree.test.sequence$size[sel], dev = fake.tree.test.sequence$dev[sel])

## size dev
## [1,] 14 4.306023
## [2,] 13 4.417758
## [3,] 12 4.310312
## [4,] 10 3.639601
## [5,] 9 3.682841
## [6,] 8 4.027870
## [7,] 7 4.141322

This suggests a tree size of 10. The analogous plots/comparisons could have been made to find a value for
λ (k from prune.tree(...)).
Having selected a size, we would then construct the best tree of that size based on all of the data.
fake.tree.train.test <- prune.tree(fake.tree.bushy, # The full data tree

best=10 # the suggested size
)

plot(x,y,
col=col, pch=19, cex=0.5,
main = "Best on test: size 10")

legend("topleft",
legend=c("training", "test"), pch=c(19,19),
col=c(col.train, col.test),
cex=0.75, y.intersp=2, bty="n", seg.len=10)
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partition.tree(fake.tree.train.test, add=TRUE,
col=adjustcolor("red", 0.5), lwd=3)
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We could of course use the above functions to build our own k-fold cross-validation procedure just for trees.
This would at least be flexible in how we choose a the tree.control parameters. It could also be more
efficient computationally than the generic approach used earlier.
The tree package provides its own k-fold cross-validation function called cv.tree(...). This is easy to use
and is fast.
set.seed(2345235)
# Begin with a default tree (i.e. not our bushy one).
fake.tree.default <- tree(y~x)
# Now get the deviances using this tree's prune sequence and
# 10 fold cross-validation (the default of cv.tree anyway)
fake.tree.cv <- cv.tree(fake.tree.default, K= 10)
plot(fake.tree.cv$size, fake.tree.cv$dev,

col="firebrick", pch=19, main="cv.tree(...) 10-fold",
xlab="size", ylab="RSS")

lines(fake.tree.cv$size, fake.tree.cv$dev,
col="firebrick", lwd=2)
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# And the actual values
cbind(size=fake.tree.cv$size, dev = fake.tree.cv$dev)

## size dev
## [1,] 5 21.50029
## [2,] 4 25.61302
## [3,] 3 27.86390
## [4,] 2 29.03055
## [5,] 1 208.58514

The cross-validation minimum produced by cv.tree(...) suggests that the best size for our tree would be
5. Consequently, we prune our tree back to size 5.
# The fitted function
fake.tree.cv.best <- prune.tree(fake.tree.default,

best=5
)

plot(x,y,
col=adjustcolor("grey20", 0.3), pch=19, cex=0.5,
main = "Best by cv.tree(...)")

partition.tree(fake.tree.cv.best, add=TRUE,
col=adjustcolor("red", 0.5), lwd=3)
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Important Note cv.tree(...) would also have produced best=5 if given the bushy tree. We can see this
as follows
# We can contrast this with the values when we begin with the bushy
# tree
fake.tree.b.cv <- cv.tree(fake.tree.bushy, K= 10)
plot(fake.tree.b.cv$size, fake.tree.b.cv$dev,

col="firebrick", pch=19, main="cv.tree(...) 10-fold",
xlab="size", ylab="RSS")

lines(fake.tree.b.cv$size, fake.tree.b.cv$dev,
col="firebrick", lwd=2)
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# And we can look at the earliest (lowest values of size)
sizes <- fake.tree.b.cv$size < 20
cbind(size=fake.tree.b.cv$size, dev=fake.tree.b.cv$dev)[sizes,]

## size dev
## [1,] 18 21.99774
## [2,] 17 21.99774
## [3,] 16 21.99774
## [4,] 15 21.99774
## [5,] 14 21.99774
## [6,] 11 21.99774
## [7,] 10 21.99774
## [8,] 9 21.99774
## [9,] 8 21.99774
## [10,] 5 21.99774
## [11,] 4 26.72662
## [12,] 3 28.75475
## [13,] 2 30.53524
## [14,] 1 206.90333

Deviances are all identical for size = 5 and beyond. Note that in cv.tree(...) the averages in the cross-
validations are calculated for the same values of the cost complexity parameter λ (or k in prune.tree(...))
and not for the tree size.
Our problem seems to be in the cv.tree(...) function itself. To see the source code just type cv.tree in
the R console.
cv.tree

## function (object, rand, FUN = prune.tree, K = 10, ...)
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## {
## if (!inherits(object, "tree"))
## stop("not legitimate tree")
## m <- model.frame(object)
## extras <- match.call(expand.dots = FALSE)$...
## FUN <- deparse(substitute(FUN))
## init <- do.call(FUN, c(list(object), extras))
## if (missing(rand))
## rand <- sample(K, length(m[[1L]]), replace = TRUE)
## cvdev <- 0
## for (i in unique(rand)) {
## tlearn <- tree(model = m[rand != i, , drop = FALSE])
## plearn <- do.call(FUN, c(list(tlearn, newdata = m[rand ==
## i, , drop = FALSE], k = init$k), extras))
## cvdev <- cvdev + plearn$dev
## }
## init$dev <- cvdev
## init
## }
## <environment: namespace:tree>

A careful examination identifies the problem. In performing its cross-validations cv.tree always calls
tree(...) with the default tree.control parameter values and not with those tree.control values we
used to constuct the bushiest tree (object in the code). This means, as with the bushiest tree, when interest
does not lie in the default settings cv.tree(...) may not be appropriate.
Fortunately, it is not hard to add the necessary feature. We define an alternative fcv.tree(...) to
cv.tree(...) as follows:
#
# Below is identical to B.D. Ripley's cv.tree with only
# those exceptions noted by comments. RWO.
fcv.tree <- function (object, rand, FUN = prune.tree, K = 10,

control = NULL, ...)
{ # Added the control ^^^^^^ argument ... rwo

#
if (!inherits(object, "tree"))

stop("not legitimate tree")
m <- model.frame(object)
#
# Added the tree package default for the control argument ... rwo
if (is.null(control)) control <- tree.control(nobs = nrow(m),

mincut = 5,
minsize = 10,
mindev = 0.01)

extras <- match.call(expand.dots = FALSE)$...
FUN <- deparse(substitute(FUN))
init <- do.call(FUN, c(list(object), extras))
if (missing(rand))
rand <- sample(K, length(m[[1L]]), replace = TRUE)

cvdev <- 0
for (i in unique(rand)) {
tlearn <- tree(model = m[rand != i, , drop = FALSE],

control = control)
# Added the above ^^^^^^^^^^^ control argument ... rwo
#
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plearn <- do.call(FUN, c(list(tlearn,
newdata = m[rand == i, , drop = FALSE],
k = init$k), extras))

cvdev <- cvdev + plearn$dev
}
init$dev <- cvdev
init

}

We can now try using this function in place of cv.tree(...).
# Begin with our bushy tree and get the deviances using
# the bushy tree's prune sequence and 10 fold cross-validation.
# We have to pass on the same tree.control parameter values
# that were used to construct our tree.
fake.tree.b.cv <- fcv.tree(fake.tree.bushy, K= 10,

control=tree.control(nobs = length(x),
mincut = 1,
minsize = 2,
mindev = 0.0))

plot(fake.tree.b.cv$size, fake.tree.b.cv$dev,
col="firebrick", pch=19, main="fcv.tree(...) 10-fold",
xlab="size", ylab="RSS")

lines(fake.tree.b.cv$size, fake.tree.b.cv$dev,
col="firebrick", lwd=2)
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# And we can look at the earliest (lowest values of size)
sizes <- fake.tree.b.cv$size < 20
cbind(size=fake.tree.b.cv$size, dev=fake.tree.b.cv$dev)[sizes,]

## size dev
## [1,] 18 18.02526
## [2,] 17 17.80739
## [3,] 16 16.73151
## [4,] 15 16.69688
## [5,] 14 16.63463
## [6,] 11 16.26059
## [7,] 10 16.43618
## [8,] 9 16.43618
## [9,] 8 17.48466
## [10,] 5 20.45860
## [11,] 4 24.50480
## [12,] 3 27.54869
## [13,] 2 28.61372
## [14,] 1 207.88216

Looking at these values suggests that the best size tree has 11 leaves.
# The fitted function
fake.tree.fcv.best <- prune.tree(fake.tree.bushy,

best=11
)

plot(x,y,
col=col, pch=19, cex=0.5,
main = "Best by fcv.tree(...)")

partition.tree(fake.tree.fcv.best, add=TRUE,
col=adjustcolor("red", 0.5), lwd=3)
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2 Multiple explanatory variates

Recursively partitioned trees are easily extended to the case where there is more than one explanatory
variate.
As we have used them, trees have fitted the response y to a single continuous explanatory variate x following
a greedy algorithm where at each step a region B of x was split into two pieces Bleft = {x | x < c} and
Bright = {x | x ≥ c}. The constant c was chosen to minimize the resulting residual sum of squares (or
deviances).
When there is more than one continuous explanatory variate, there is an obvious (and greedy) step we could
add to this greedy algorithm. Whenever a region B is to be split, we search over all explanatory variates
and choose that explanatory variate whose consequent split of B into Bleft and Bright would reduce the
RSS the most.
That is, if we have p explanatory variates x1, . . . , xp, then to split each region B

1. find the cut point ci for variate xi producing the best split on this variate into Bi
left = {xi | x < ci}

and Bi
right = {xi | x ≥ ci}. These are potential splits.

2. of these potential splits, choose the variate and the split which would most reduce the RSS.
The result is a greedy binary tree, where each branch splits the data on the basis of a single explanatory
variate only.
Note, if the explanatory variate is an unordered categorical variate, then rather than split on a cut point,
the data are split by into two non-intersecting groups of possible categories.
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2.1 Example: Ozone data revisited

Recall the ozone data from the package ElemStatLearn:
library(ElemStatLearn)
data(ozone)

which consists of 111 daily measurements taken from May until September 1973 in New York on four variates:
• ozone, the ozone concentration in parts per billion (ppb),
• radiation, the solar radiation energy measured in langleys,
• temperature, the maximum temperature that day in degrees Fahrenheit, and
• wind, the wind speed in miles per hour.

We are interested in modelling the response ozone as a function of the other three variates.
When we were considering smoothers (i.e. additive models, thin-plate splines, etc.) we used ozoneˆ(1/3) as
the response variate, so we will do the same here for consistency.
# In case you want to look at the data again.
library(rgl) # Access to all of open GL graphics
par3d(FOV=1)
with(ozone,

plot3d(radiation, temperature, ozone^(1/3),
col=adjustcolor("steelblue", 0.5),
type="s",
size =2)

)

oz.tree <- tree(ozone^(1/3) ~ radiation + temperature, data = ozone)

# We can see the structure of the tree.
oz.tree

## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 111 87.2100 3.248
## 2) temperature < 82.5 77 35.3700 2.828
## 4) temperature < 77.5 50 11.0600 2.572
## 8) radiation < 85 16 3.8930 2.238
## 16) temperature < 61.5 5 1.3990 1.805 *
## 17) temperature > 61.5 11 1.1310 2.435 *
## 9) radiation > 85 34 4.5340 2.730 *
## 5) temperature > 77.5 27 15.0100 3.301
## 10) radiation < 82 5 2.4310 2.624 *
## 11) radiation > 82 22 9.7670 3.454
## 22) temperature < 81.5 17 7.7900 3.603 *
## 23) temperature > 81.5 5 0.3218 2.949 *
## 3) temperature > 82.5 34 7.4700 4.199
## 6) temperature < 87.5 17 4.0370 3.929 *
## 7) temperature > 87.5 17 0.9438 4.470 *

Note that the tree involves both temperature and radiation. The relative importance of the splits can be
seen from the “proportional” tree:
plot(oz.tree, type="proportional")
text(oz.tree, cex=0.8)
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|
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The definition of the regions:
with(ozone,

plot(temperature, radiation, pch=19,
col=adjustcolor("grey50", 0.5), main = "Tree regions and predictions"))

partition.tree(oz.tree, add=TRUE, cex=0.8, col="blue")
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Because there are only two explanatory see this in three dimensions, using the following function:
library(rgl)

plot3d.tree <- function(x,y,z, fov = NULL,
treecol = "grey50", control = NULL,
col="blue", ...) {

if(!is.null(fov) & is.numeric(fov) & fov >= 0) par3d(FOV=fov)

plot3d(x, y, z, col= col, ...)
if (is.null(control)) {

control <- tree.control(nobs=length(x),
mincut = 5,
minsize = 10,
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mindev = 0.01)
}
# fit tree
treefit <- tree(y ~ x + z, control=control)

# determine fitted values on a grid
xrg <- range(x)
zrg <- range(z)
gridx <- seq(min(xrg), max(xrg), length.out = 200)
gridz <- seq(min(zrg), max(zrg), length.out = 200)
heights <- outer(gridx, gridz,

function(x, z) {predict(treefit,
newdata = list(x=x, z=z))}

)
# plot the fit
rgl.surface(gridx, gridz, heights, color = treecol,

alpha = 0.25, lit = FALSE)
}

The function can be used to create an interactive 3d plot:
x <- ozone$radiation
y <- ozone$ozone^(1/3)
z <- ozone$temperature
plot3d.tree(x, y, z, fov = 1, type="s", size=1)
# snapshot3d("regressiontree")

Note that the model effectively includes interaction terms.
Though plotting it is a little harder, we can easily incorporate all the explanatory variates:
oz.tree.all <- tree(ozone^(1/3) ~ radiation + temperature + wind,

data = ozone)

# We can see the contents of the fitted tree.
oz.tree.all

## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 111 87.2100 3.248
## 2) temperature < 82.5 77 35.3700 2.828
## 4) temperature < 77.5 50 11.0600 2.572
## 8) radiation < 85 16 3.8930 2.238
## 16) temperature < 61.5 5 1.3990 1.805 *
## 17) temperature > 61.5 11 1.1310 2.435 *
## 9) radiation > 85 34 4.5340 2.730
## 18) wind < 8.3 7 0.5153 3.099 *
## 19) wind > 8.3 27 2.8170 2.634 *
## 5) temperature > 77.5 27 15.0100 3.301
## 10) wind < 7.15 6 3.6080 4.147 *
## 11) wind > 7.15 21 5.8720 3.059
## 22) radiation < 133 5 0.8869 2.460 *
## 23) radiation > 133 16 2.6310 3.246 *
## 3) temperature > 82.5 34 7.4700 4.199
## 6) wind < 10.6 27 3.8430 4.348 *
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Figure 1: Fitting a regression tree to ozoneˆ(1/3), radiation, and temperature
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## 7) wind > 10.6 7 0.7113 3.624 *
# and its tree structure
plot(oz.tree.all)
text(oz.tree.all, cex=0.8)

|
temperature < 82.5

temperature < 77.5

radiation < 85
temperature < 61.5 wind < 8.3

wind < 7.15

radiation < 133

wind < 10.6

1.805 2.435 3.099 2.634
4.147

2.460 3.246

4.348 3.624

oz.tree.all.cv <- cv.tree(oz.tree.all)
plot(oz.tree.all.cv)

size
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ce

40
50

60
70

80

2 4 6 8

44.0  9.3  5.5  2.9  2.6  2.4  1.4  1.2 −Inf

Suggests we use the full size tree (smallest cross-validated deviance). Might argue that we also might do
with a smaller tree at some loss in predictive accuracy.
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Alternatively, as before we could start with a bushier tree:
bushy <- tree.control(nrow(ozone), mindev = 1e-6, minsize=2)
oz.tree.all <- tree(ozone^(1/3) ~ radiation + temperature + wind,

data = ozone,
control = bushy)

# and its tree structure
plot(oz.tree.all, type="uniform")
text(oz.tree.all, cex=0.8)

|
temperature < 82.5

wind < 6

radiation < 230.5 radiation < 50

temperature < 61.5

radiation < 13.5

radiation < 22

radiation < 17

temperature < 72.5wind < 9.45

radiation < 46

wind < 15.45

wind < 10.6

radiation < 35.5

temperature < 77.5

wind < 8.3

temperature < 74

wind < 7.15

radiation < 154

radiation < 184.5

radiation < 123radiation < 258.5

temperature < 57.5

wind < 18.65

temperature < 68.5

radiation < 294.5

radiation < 256

wind < 12.3

radiation < 157.5

wind < 10.9

wind < 12.9

radiation < 82

radiation < 161.5

radiation < 282

temperature < 65.5

radiation < 306

radiation < 323.5

radiation < 314.5

radiation < 261.5

radiation < 170

temperature < 76.5

radiation < 116

wind < 10.9

radiation < 257.5

temperature < 76

radiation < 210.5

radiation < 243

temperature < 74.5

radiation < 292

temperature < 81.5

wind < 10

temperature < 80.5

radiation < 184.5

radiation < 104radiation < 224.5

radiation < 245

radiation < 159.5radiation < 257

temperature < 80.5

radiation < 205

radiation < 248

radiation < 232

radiation < 205.5

radiation < 157radiation < 244

wind < 9.15

wind < 7.7

radiation < 174.5

radiation < 114.5

radiation < 273.5

radiation < 200

wind < 10.6

wind < 4.3

radiation < 204

radiation < 262

radiation < 240

temperature < 87.5

wind < 7.7

wind < 5.7

radiation < 181temperature < 85

radiation < 269radiation < 185

wind < 8.9

temperature < 85.5

radiation < 254.5

temperature < 89.5

wind < 6.25

radiation < 194

temperature < 93.5

wind < 5.4

radiation < 193wind < 9.15

wind < 7.45

temperature < 96.5

temperature < 88.5

temperature < 84.5

radiation < 203temperature < 85.5

radiation < 137

radiation < 257.5

4.8635.518

1.000

2.0001.5872.8442.5202.714

2.3512.224

2.080

2.410

1.9133.107

3.3023.4482.8442.6213.0373.332

1.817

3.175

2.8842.714

2.351

2.621

2.6682.621

2.4102.2242.844

2.6212.410

3.2403.107

2.351

2.3512.289

2.802

2.410

2.7592.520

2.7592.8842.759

2.1542.224

3.332

3.8934.0213.5573.5833.3913.1753.8933.634

3.530

2.8443.141

2.7143.3023.0003.5303.557

2.520

2.7142.844

2.5203.0723.037

3.271

4.179

4.9054.960

5.130

4.0004.291

4.0003.9363.6093.684

4.762

4.1794.309

3.6594.254

4.3974.344

4.4984.273

4.5894.791

4.465

4.3884.236

3.1753.4203.979

3.733

3.5303.391

4.141

And then try cross-validation
oz.tree.all.cv <- fcv.tree(oz.tree.all, control=bushy)
plot(oz.tree.all.cv)
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60
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90

1 20 40 60 80 100

4.4e+01 3.1e−01 1.5e−01 4.9e−02 2.5e−02 1.5e−03

#cbind(oz.tree.all.cv$size, oz.tree.all.cv$dev)

Looks like size could be around 12 or 13.
oz.tree.all.11 <- prune.tree(oz.tree.all, best = 12)
plot(oz.tree.all.11, type="uniform")
text(oz.tree.all.11, cex=0.8)
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|
temperature < 82.5

wind < 6

radiation < 50

temperature < 61.5 temperature < 77.5

wind < 8.3 temperature < 81.5

wind < 10

wind < 10.6

wind < 4.3

temperature < 87.5

5.190

1.529 2.331

3.099 2.612

3.643 3.202

2.854

4.793

4.043 4.446

3.624

2.2 Example: Facebook data

Recall the facebook data from the course web page:
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dataDir <- "/Users/rwoldford/Documents/Admin/courses/Stat444/Data/UCIrvineMLRep/FacebookMetrics"
completePathname <- paste(dataDir, "facebook.csv", sep="/")
facebook <- read.csv(completePathname, header=TRUE)
fb <- na.omit(facebook)
head(fb)

## All.interactions share like comment Impressions.when.page.liked
## 1 100 17 79 4 3078
## 2 164 29 130 5 11710
## 3 80 14 66 0 2812
## 4 1777 147 1572 58 61027
## 5 393 49 325 19 6228
## 6 186 33 152 1 16034
## Impressions Paid Post.Hour Post.Weekday Post.Month Category Type
## 1 5091 0 3 4 12 Product Photo
## 2 19057 0 10 3 12 Product Status
## 3 4373 0 3 3 12 Inspiration Photo
## 4 87991 1 10 2 12 Product Photo
## 5 13594 0 3 2 12 Product Photo
## 6 20849 0 9 1 12 Product Status
## Page.likes
## 1 139441
## 2 139441
## 3 139441
## 4 139441
## 5 139441
## 6 139441

Let’s consider first a tree modelling log(like + 1) as the response and Type and Category. This illustrates
the use of categorical explanatory variates in the tree building process.
fb.tree <- tree(log(like+1) ~ Type + Category, data = facebook)
fb.tree

## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 499 709.900 4.556
## 2) Category: Action 214 417.500 4.092
## 4) Type: Link,Photo,Status 207 404.700 4.053 *
## 5) Type: Video 7 2.973 5.257 *
## 3) Category: Inspiration,Product 285 212.000 4.904 *
plot(fb.tree, type="proportional")
text(fb.tree, cex=0.8)
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|
Category:a

Type:abc

4.053 5.257

4.904

Note that the missing data in facebook are not a problem for regression trees. This is because, when data
is missing, the prediction/fitted value for that case is the average at the deepest node it reaches in the tree.
(Note also that partition.tree(...) will no longer work for categorical explanatory variates.)
Let’s build a bushier tree to see what happens with categorical variates.
fb.tree.bushy <- tree(log(like+1) ~ Type + Category, data = facebook,

control = tree.control(nobs = nrow(facebook),
mincut = 2,
mindev = 1e-6))

plot(fb.tree.bushy, type="uniform")
text(fb.tree.bushy, cex=0.8)

|
Category:a

Type:abc

Type:a

Type:b

Type:a

Category:b

Type:b Type:b

3.760

4.076 4.592

5.257 3.865

4.956 4.867 4.852 4.879

fb.tree.bushy
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## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 499 709.900 4.556
## 2) Category: Action 214 417.500 4.092
## 4) Type: Link,Photo,Status 207 404.700 4.053
## 8) Type: Link 20 24.730 3.760 *
## 9) Type: Photo,Status 187 378.100 4.084
## 18) Type: Photo 184 374.600 4.076 *
## 19) Type: Status 3 2.685 4.592 *
## 5) Type: Video 7 2.973 5.257 *
## 3) Category: Inspiration,Product 285 212.000 4.904
## 6) Type: Link 2 0.272 3.865 *
## 7) Type: Photo,Status 283 209.500 4.911
## 14) Category: Inspiration 154 109.500 4.953
## 28) Type: Photo 150 108.000 4.956 *
## 29) Type: Status 4 1.435 4.867 *
## 15) Category: Product 129 99.400 4.860
## 30) Type: Photo 91 69.660 4.852 *
## 31) Type: Status 38 29.720 4.879 *

How do we interpret each node?
Now build the tree with all variates.
fb.tree <- tree(log(like+1) ~ All.interactions + share + comment + Impressions + Impressions.when.page.liked + Paid + Post.Hour + Post.Weekday + Post.Month + Type + Category + Page.likes, data = facebook)
# Or, more simply ... and equivalently
fb.tree <- tree(log(like+1) ~. , data = facebook)
fb.tree

## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 495 689.100 4.5710
## 2) All.interactions < 90.5 171 172.700 3.4000
## 4) All.interactions < 22.5 38 29.000 1.7880
## 8) All.interactions < 4.5 11 4.520 0.6611 *
## 9) All.interactions > 4.5 27 4.806 2.2480 *
## 5) All.interactions > 22.5 133 16.880 3.8600
## 10) All.interactions < 57.5 49 3.298 3.4680 *
## 11) All.interactions > 57.5 84 1.645 4.0890 *
## 3) All.interactions > 90.5 324 157.900 5.1890
## 6) All.interactions < 314.5 256 33.220 4.9020
## 12) All.interactions < 154.5 115 3.118 4.5650 *
## 13) All.interactions > 154.5 141 6.288 5.1780 *
## 7) All.interactions > 314.5 68 24.250 6.2700
## 14) All.interactions < 702 47 2.379 5.9360 *
## 15) All.interactions > 702 21 4.986 7.0150 *
# Plot again with proportional lengths
plot(fb.tree, type="proportional")
text(fb.tree, cex=0.8)
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|
All.interactions < 90.5

All.interactions < 22.5

All.interactions < 4.5 All.interactions < 57.5

All.interactions < 314.5

All.interactions < 154.5 All.interactions < 702

0.6611 2.2480 3.4680 4.0890
4.5650 5.1780 5.9360 7.0150

What variates seem important?
Let’s try excluding All.interactions (the sum of share, like, and comment).
# All but the All.interactions variate
fb.tree <- tree(log(like+1) ~. -All.interactions, data = facebook)
fb.tree

## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 495 689.100 4.5710
## 2) share < 4.5 55 77.580 2.3760
## 4) comment < 1.5 42 41.250 1.9720
## 8) share < 0.5 12 7.587 0.8837 *
## 9) share > 0.5 30 13.770 2.4070
## 18) Impressions.when.page.liked < 1832 14 3.009 1.8930 *
## 19) Impressions.when.page.liked > 1832 16 3.826 2.8570 *
## 5) comment > 1.5 13 7.301 3.6820 *
## 3) share > 4.5 440 313.500 4.8450
## 6) share < 26.5 268 89.380 4.3990
## 12) Impressions < 21713.5 214 49.260 4.2640
## 24) share < 12.5 73 17.440 3.9300 *
## 25) share > 12.5 141 19.460 4.4370 *
## 13) Impressions > 21713.5 54 20.730 4.9350
## 26) share < 18.5 41 9.611 4.7140 *
## 27) share > 18.5 13 2.833 5.6300 *
## 7) share > 26.5 172 87.550 5.5410
## 14) share < 57.5 131 28.310 5.2750 *
## 15) share > 57.5 41 20.390 6.3900
## 30) Impressions.when.page.liked < 32339.5 23 3.290 5.9330 *
## 31) Impressions.when.page.liked > 32339.5 18 6.135 6.9750 *
# Plot the tree
plot(fb.tree, type="uniform")
text(fb.tree, cex=0.8)
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|
share < 4.5

comment < 1.5

share < 0.5

Impressions.when.page.liked < 1832

share < 26.5

Impressions < 21713.5

share < 12.5 share < 18.5

share < 57.5

Impressions.when.page.liked < 32339.5

0.8837

1.8930 2.8570

3.6820

3.9300 4.4370 4.7140 5.6300

5.2750

5.9330 6.9750

Now which variates are important? How might we estimate the number of likes?

2.2.1 Response and explanatory variates

Given the context of the facebook data, the company is likely more interested in predicting viewer responses
as a function of the features that are under the company’s control.
The company can control post time: Post.Month, Post.Weekday, Post.Hour; the Category and Type; and
whether they have paid for promotion of the post or page. The remainder are arguably all user responses.
The measures of impressions could be regarded as either response or explanatory – clearly some impressions
that people experience are because friends shared it, while other impressions were purchased. Similarly, for
Page.likes.
Let’s model All.interactions as the response, and only those that are directly under the company’s control
as the explanatory variates. Again, we will take logarithms of All.interactions (+ 1).
fb.tree <- tree(log(All.interactions +1) ~ Paid + Post.Hour +

Post.Weekday + Post.Month +
Type + Category,

data = facebook)

fb.tree

## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 499 723.300 4.749
## 2) Category: Action 215 440.600 4.258
## 4) Post.Weekday < 6.5 182 307.800 4.439
## 8) Type: Link,Photo,Status 175 296.500 4.397 *
## 9) Type: Video 7 3.248 5.487 *
## 5) Post.Weekday > 6.5 33 93.970 3.261
## 10) Post.Hour < 4.5 6 11.260 4.650 *
## 11) Post.Hour > 4.5 27 68.560 2.952 *
## 3) Category: Inspiration,Product 284 191.700 5.121 *
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# Plot again with proportional lengths
plot(fb.tree, type="proportional")
text(fb.tree, cex=0.8)

|
Category:a

Post.Weekday < 6.5

Type:abc Post.Hour < 4.5

4.397 5.487

4.650 2.952

5.121

Now which are the more important variates?
According to this tree, it seems that most important is the Category, namely whether it is an Action (special
offers and contests) or not. If it is, then the time of the post (weekday and hour) matters as well as the
type of post. If the post is an Action, then it is best that the post be a video posted any day but Saturday.
Otherwise, the post should simply be either Product advertising or an Inspirational post. All others
produce fewer interactions. Paying or not has no effect here. Nor does the month of the post.
Let’s see whether there is a separation between those that liked the company’s page or not.
fb.tree <- tree(log(All.interactions +1) ~ Page.likes + Paid + Post.Hour +

Post.Weekday + Post.Month +
Type + Category,

data = facebook)

fb.tree

## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 499 723.300 4.749
## 2) Category: Action 215 440.600 4.258
## 4) Post.Weekday < 6.5 182 307.800 4.439
## 8) Type: Link,Photo,Status 175 296.500 4.397 *
## 9) Type: Video 7 3.248 5.487 *
## 5) Post.Weekday > 6.5 33 93.970 3.261
## 10) Post.Hour < 4.5 6 11.260 4.650 *
## 11) Post.Hour > 4.5 27 68.560 2.952 *
## 3) Category: Inspiration,Product 284 191.700 5.121 *
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# Plot again with proportional lengths
plot(fb.tree, type="proportional")
text(fb.tree, cex=0.8)

|
Category:a

Post.Weekday < 6.5

Type:abc Post.Hour < 4.5

4.397 5.487

4.650 2.952

5.121

No change!
What if we add Impressions?
fb.tree <- tree(log(All.interactions +1) ~ Page.likes + Paid + Post.Hour + Impressions +

Post.Weekday + Post.Month +
Type + Category,

data = facebook)

fb.tree

## node), split, n, deviance, yval
## * denotes terminal node
##
## 1) root 499 723.300 4.749
## 2) Impressions < 2761.5 32 42.140 1.930 *
## 3) Impressions > 2761.5 467 409.400 4.943
## 6) Impressions < 20610 332 205.700 4.653
## 12) Category: Action 106 86.230 4.127
## 24) Post.Weekday < 6.5 92 50.870 4.251
## 48) Impressions < 8443 55 25.300 4.017 *
## 49) Impressions > 8443 37 18.130 4.597 *
## 25) Post.Weekday > 6.5 14 24.760 3.317
## 50) Post.Hour < 11.5 9 5.939 4.081 *
## 51) Post.Hour > 11.5 5 4.094 1.941 *
## 13) Category: Inspiration,Product 226 76.430 4.900
## 26) Impressions < 6510.5 92 11.600 4.526 *
## 27) Impressions > 6510.5 134 43.110 5.157
## 54) Type: Link,Status 22 9.164 4.575 *
## 55) Type: Photo 112 25.030 5.271
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## 110) Impressions < 11101 84 14.060 5.113 *
## 111) Impressions > 11101 28 2.578 5.745 *
## 7) Impressions > 20610 135 107.600 5.654
## 14) Category: Action 79 46.250 5.347 *
## 15) Category: Inspiration,Product 56 43.440 6.086
## 30) Impressions < 55066 37 12.930 5.690 *
## 31) Impressions > 55066 19 13.390 6.858 *
# Plot again with uniform lengths
plot(fb.tree, type="uniform")
text(fb.tree, cex=0.8)

|
Impressions < 2761.5

Impressions < 20610

Category:a

Post.Weekday < 6.5

Impressions < 8443 Post.Hour < 11.5

Impressions < 6510.5

Type:ac

Impressions < 11101

Category:a

Impressions < 55066

1.930

4.017 4.597 4.081 1.941

4.526

4.575

5.113 5.745

5.347

5.690 6.858

Not surprisingly, perhaps, Impressions plays an important role. If the post appears less often (Impressions
< 2761.5), then there will be many fewer interactions with it. If the post appears often (Impressions >=
2761.5) then there will be a lot of interactions. If the post is an Action, it again seems to reduce the number
of interactions. If additionally, the Impressions are between 2, 762 and 20, 610, then Saturdays are to be
avoided, and if not, then post before noon. For Inspiration, or Product (i.e. not an Action category of
post), then the post should be a Photo and not simply a Link or Status post.
See how easily a regression tree can be used as a “decision tree”?

3 Variability

Because regression trees make such abrupt changes at values of the explanatory variates, we might expect
that where that cut is made will be sensitive to the data.
Let’s look at a few samples to get some sense of how variable these trees can be. We could return to the
fake data that we had before, since we know exactly how that data is generated (i.e. we have the generative
model). Instead, let’s look at the last few examples again.
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3.1 Sampling with replacement

We only have a single data set in hand, say the facebook data. This is a sample S which we are using to
build a regression tree T (S). Ideally, we would like to have a population P from which we could draw many
samples Si and tree estimates T (Si).
As when determining the predictive accuracy, we could use the sample S as a population P0 in place of the
unavailable P. We now draw samples Si from P0 and construct the regression tree on each. Then we could
get some idea of the variability of our regression trees.
Finally, because we are interested in the variability of trees built on samples of the same size as S, we will
need to draw our samples Si from P0 with replacement. (Otherwise we would just be drawing the same
sample over and over.)
We need a function that will do that
getSample <- function(pop, samplesize){
selection <- sample(1:nrow(pop), samplesize, replace = TRUE)
pop[selection,]

}

getTree <- function(formula, samp, ...){
tree(formula = formula, data = samp, ...)

}

Let’s try that on the facebook data and plot a few trees
formula <- paste0("log(All.interactions +1) ~ ",

paste("Page.likes", "Paid", "Post.Hour", "Impressions",
"Post.Weekday", "Post.Month", "Type", "Category",
sep="+")

)

N <- nrow(facebook)
for(i in 1:10){
samp <- getSample(facebook,N)
samp.tree <- getTree(formula, samp)
plot(samp.tree, type="uniform")
text(samp.tree, cex=0.8)

}
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|
Impressions < 2722

Post.Hour < 7

Page.likes < 136689

Impressions < 20634.5

Category:a

Impressions < 8369 Impressions < 5604.5

Type:ac

Category:ac

Page.likes < 132775

2.871

2.114 0.000

3.988 4.640 4.335

4.414 5.128

5.050 5.658

6.545

|
Impressions < 2757.5

Page.likes < 137476

Page.likes < 118136

Impressions < 27120.5

Category:a

Impressions < 7649 Impressions < 6497

Page.likes < 132078

Type:ac

Impressions < 54990.5

Type:a Category:a

0.7167 2.2660

0.0000

3.7250 4.4390 4.5650

4.1820 5.1160

5.5100

4.1010 5.4780 5.7250 6.6190
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|
Impressions < 2722

Impressions < 2081

Impressions < 2509

Impressions < 9091

Category:a

Post.Hour < 13.5

Impressions < 55088.5

Category:a Category:a

2.1560

0.3367 1.9940

4.0100 2.4340

4.6990

4.8840 5.4580 5.5550 6.9380

|
Impressions < 2722

Impressions < 2359.5 Impressions < 16294.5

Category:a

Post.Hour < 14.5

Impressions < 8443

Post.Hour < 11.5

Impressions < 7030.5

Category:ac

Impressions < 54990.5 Post.Hour < 11.5

2.1560 0.3613

4.0810 2.9080

4.6760

1.9140 4.5670 5.1140 5.1370 5.6960 5.9200 7.2560
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|
Impressions < 2722

Paid < 0.5 Impressions < 20632

Category:a

Post.Weekday < 6.5

Page.likes < 125540

Impressions < 6575

Type:ac

Category:a

Impressions < 55066

2.2030 0.9521

4.2470

2.5770 4.2780

4.5020

4.4780 5.2840

5.3890

5.7080 6.5520

|
Impressions < 2761.5

Page.likes < 136689

Impressions < 1137.5

Impressions < 19379

Category:a

Impressions < 7030.5

Type:ac

Category:a

Impressions < 51219 Impressions < 32530.5

1.478 2.538

0.000

4.044

4.521

4.462 5.227

4.979 5.672 5.541 6.366
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|
Impressions < 2761.5

Post.Month < 5.5 Impressions < 20610

Category:a

Post.Hour < 14.5

Impressions < 8443

Impressions < 6510.5

Impressions < 20035.5

Category:ac

0.000 2.096

3.943 4.629

2.276 4.439

5.206 3.931

5.464 6.330

|
Impressions < 2761.5

Post.Month < 5.5

Impressions < 2498.5

Impressions < 32263

Category:a

Impressions < 5189 Impressions < 6510.5

Category:a

Impressions < 55066

0.000

2.074 3.410

3.609 4.486 4.557 5.081

5.479

5.816 6.824
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|
Impressions < 2787

Impressions < 2440 Impressions < 15308.5

Category:a

Post.Weekday < 6.5

Page.likes < 131058

Impressions < 6510.5

Page.likes < 108788

Category:ac

Impressions < 32263

1.9350 0.4817

4.1050

2.4420 4.0970

4.4850

4.8140 5.3730

4.9490 5.6460

6.1620

|
Impressions < 2761.5

Impressions < 10765.5

Category:a

Post.Weekday < 6.5 Impressions < 6510.5

Category:ac

Impressions < 20509

Impressions < 12396

Impressions < 55066

2.018

4.213 2.577 4.565 5.044

5.438 4.434

5.433 5.697 6.834

There a several ways in which these trees are different from each other: - different numbers of branches (and
leaves) - different tree shapes - different variates defining the branches - different ordering of variates in the
tree - different value used to cut the variate at any branching - different possible averages that can be taken
at the leaves.
Such variation should give one some pause over interpreting the trees.
If interest lies in prediction, we could build a new predictor that was the average of the predictions from all
of these trees! As with any averaging, the resulting prediction will be less variable!

3.2 Effect of averaging (bagging).

For any sample, we can always resample, get an estimate based on that sample, and average the predictors.
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For example, first some functions
# It will also be handy to have a function that will return the
# newdata as a list, since that is what is expected by predict
# for that argument.
# We will write a function that takes a fitted tree (or any other fit)
# THis involves a little formula manipulation ... of interest only ...
get.newdata <- function(fittedTree, test.data){
f <- formula(fittedTree)
as.list(test.data[,attr(terms(f), "term.labels")])

}
#
# And a similar function that will extract the response values
# This is kind of hairy, formula manipulation ... feel free to ignore ...
get.response <- function(fittedTree, test.data){
f <- formula(fittedTree)
terms <- terms(f)
response.id <- attr(terms, "response")
response <- as.list(attr(terms, "variables"))[[response.id + 1]]
with(test.data, eval(response))

}

get.explanatory_varnames <- function(formula){
f <- as.formula(formula)
terms <- terms(f)
attr(terms, "term.labels")

}
# The remaining functions are the important ones
#
getTrees <- function(data, formula, B=100, ...) {
N <- nrow(data)
Trees <- Map(function(i){

getTree(formula,
getSample(data, N),
...)
},

1:B
)

Trees
}

# And now the function that actually calculates the average
aveTreePred <- function(Trees){
function(newdata){
M <- length(Trees)
if (missing(newdata)) {
predictions <- Map(function(tree) {

predict(tree)
}, Trees)

} else {
predictions <- Map(function(tree){

# New data needs to be a list
if (is.data.frame(newdata)) {
newdata.tree <- get.newdata(tree, newdata)
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} else {
newdata.tree <- newdata

}
predict(tree, newdata=newdata.tree)

}, Trees)
}
# Gather the results together
Reduce(`+`, predictions) / M

}
}

These can be used as follows
Trees <- getTrees(facebook, formula)
treeAve <- aveTreePred(Trees)
# treeAve() would predict at the data values BUT
# there's a problem ...

which would work fine except that predict.tree(...) does not always return the same number of
values of y as there were original observations. Consequently, there would be many warnings when they
were added in the prediction and the predictions would be incorrect in several instances.
But you get the idea.
It turns out that we can implement this by using the recursive partioning tree algorithm as implemented in
the rpart package. Here in place of the function tree we have the equivalent function rpart(...). This
means we need only replace the getTree(...) function.
library(rpart)
getTree <- function(formula, samp, ...){

rpart(formula = formula, data = samp, ...)
}

And the following now works without generating warnings.
Trees <- getTrees(facebook, formula)
treeAve <- aveTreePred(Trees)
# Now do the prediction
combinedPred <- treeAve(newdata = facebook)
head(combinedPred)

## 1 2 3 4 5 6
## 4.545566 4.885136 4.538956 6.752981 5.421543 5.362613

Note that rpart(...) is very much like tree(...) and also has a control argument that can be set using
the rpart.control(...) function. Similarly there is a prune(...) function for cost-complexity pruning,
and an xpred.rpart(...) to give cross-validated predictions.
Because we are taking samples without replacement from our original sample, and these samples are the same
size as the original sample, these samples are called bootstrap samples. Replacing our original estimate by
the average over several bootstrap samples is also sometimes called bagging (for bootstrap aggregation).
The idea is straightforward and the additional jargon seems gratuitous.
How large should B be? To get some sense of how many samples we should take in our average, we can split
the data into a training and a test sample, and look at the average predicted squared error as a function of
the number of samples.
N <- nrow(facebook)
N_train <- round(2* N /3)
N_test <- N - N_train
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# Select the two sample units
id.train <- sample(1:N, N_train, replace=FALSE)
id.test <- setdiff(1:N, id.train)
# Split the data into training and test sets.
fb.train <- facebook[id.train,]
fb.test <- facebook[id.test,]

We can now build a number of trees on the training set and evaluate the average predicted squared error on
the test set. We want to take B, the number of trees, to be large enough that the average predicted squared
error has settled down.
# For the notes, we set the seed for reproduceability
set.seed(135232327)
# Get a lot of trees based on the training data
Trees <- getTrees(fb.train, formula, B=300)

# Now we will get the average squared predicted error for the average of these
# trees for varying numbers of trees.
Num.trees <- round(seq(5,length(Trees), length.out=50))
maxNum.trees <- length(Trees)
#

treeAve.apse <- Map(function(B) {
# Let's sample B trees from all of the trees available
treeAve.B <- aveTreePred(Trees[sample(1:maxNum.trees, B, replace = FALSE)])
pred.B <- treeAve.B(newdata = fb.test)
actual.B <- get.response(Trees[[1]], fb.test)
error.B <- actual.B - pred.B
mean(error.B^2)

},
Num.trees)
#
# And plot the results
plot(Num.trees, treeAve.apse, type="l", main="Estimated APSE as a function of B",

ylab="Estimated APSE", xlab="Bootstrap sample size B", ylim=c(0.4, 0.6),
col="blue")
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The average predicted squared error is pretty stable by B = 150. We would choose B to be a value where
stability was reached.

4 Multiple trees

Regression trees are easy to build, to apply, and to interpret as simple decision trees.
Their performance, however, can leave something to be desired. They will certainly be poorer predictors than
the various smoothers (including for multiple explanatory variates) whenever the true underlying function
µ(...) is relatively smooth at least for the same complexity. Conversely, if µ(...) is not smooth but changes
abruptly then regression trees should outperform smoothers in such situations.
Regression trees can also be highly variable, as we saw with the Facebook data. Being a greedy algorithm, it
is also possible that a quite different tree will produce as good or even better fit than the one we got. Both
points should give us a little pause when interpreting the meaning of various branches in the tree.

4.1 Bagging (again)

Building B regression trees, each based on a bootstrap sample from the original data, we average the
predictions of all B trees as described in the section on averaging trees. As was mentioned there, this is
called “bootstrap aggregation” or “bagging”.
As with all other estimators, we can evaluate the average prediction squared error (APSE) by comparing the
predictions with the actual values on a test sample (as was done when bagging was introduced). We could
also estimate the APSE via k-fold cross-validation. A problem with cross-validation however, especially
with prediction functions that average over 100s of trees, is its computational cost.
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Trees constructed from bootstrap samples, however, present an opportunity to estimate their prediction
errors as they are being built. The basic idea is that each observation will not (with high probability)
appear in all bootstrap samples. That being the case, for any observation, i = 1, . . . , N , we can take the
average prediction of all trees from those bootstrap samples that do not contain i. The difference between the
actual value for i and its predicted value (based on the all bootstrap samples excluding i) is its contribution
(when squared) to the APSE.
This is sometimes called out of bag estimation estimation of APSE. We can get some idea as how the
might be done via the following piece of code:
data <- facebook
N <- nrow(data)
# Select the two sample units
id.all <- 1:N
# Some vectors to gather the results
count <- numeric(length=N)
pred <- numeric(length=N)
B <- 300

for (i in 1:B) {
# For each bootstrap sample
id.bootstrap <- sample(id.all, N, replace=TRUE)
id.inbag <- unique(id.bootstrap)
id.outofbag <- setdiff(id.all, id.inbag)
# Split the data into training and test sets.
samp.boot <- data[id.inbag,]
test.boot <- data[id.outofbag,]

# Fit the tree on the bootstrap sample
tree.boot <- rpart(formula = formula, data = samp.boot) #, ...)
# Evaluate the prediction on the "out of bag" sample
newdata.outofbag <- get.newdata(tree.boot, test.boot)
pred.outofbag <- predict(tree.boot, newdata = newdata.outofbag)

# Update the out of bag predictions and add to the count of predictions
pred[id.outofbag] <- pred[id.outofbag] + pred.outofbag
count[id.outofbag] <- count[id.outofbag] + 1

}

# Now determine the bagged predictions for each observation:
pred.bagged <- pred/count

# Each prediction is then based on approximately the
# following number of bootstrap trees:
mean(count)

## [1] 110.562
# Or about the following proportion of the bootstrap trees
# when into each observation's prediction:
mean(count/B)

## [1] 0.36854
#
# Now determine the "out of bag" estimate of the squared error
# Get the actual responses (using the formula from the last tree.boot)
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actual.values <- get.response(tree.boot, data)
squared.error <- mean((actual.values - pred.bagged)^2)

# And the estimated "out of bag" APSE is
squared.error

## [1] 0.520971

A little more careful coding and we could have B grow in size as well, all the while accumulating a sequence
of total out of bag predictions for the sequence of B values.
As could be seen above (with mean(count)/B = 0.36854, about a third of the trees are aggregated to predict
each observation. This is because, roughly speaking, each bootstrap tree uses only about 2/3 of the data,
and so leaves about 1/3 for a test set.
Out of the bag estimation of the error can be shown to be nearly equivalent to “leave one out cross validation”
estimates if B is large enough.

4.2 Random Forests

Stretching our tree metaphor a little, we can think of bagging as having produced a forest of trees. Each
tree in this forest was produced by recursive partitioning of a bootstrap sample of the data. The average
prediction from this forest of these trees has smaller variability than does a single tree.
Recall that if we have independent random variates Y1, . . . , YB with variance σ2, that the variance of the
average Y is σ2/B. Unfortunately, if the Yis are not independent, are at least uncorrelated, then this is no
longer the variance. Recall that if Yi and Yj have non-zero correlation ρ = Cov(Yi, Yj)/σ2, then

V ar(Y1 + Y2) = V ar(Y1) + V ar(Y2) + 2Cov(Y1, Y2) = 2σ2(1 + ρ).

The trees produced by bootstrap samples have many observations in commonand the predictions they pro-
duce will be correlated.
To break down this correlation, we can introduce a little more randomness into the construction of the trees.
Recall that in our greedy algorithm for tree construction, we examined all p explanatory variates at
each partition, and selected the best amongst them. This allowed some variates to dominate more than
others at each split, especially early on (nearer the root) in the tree growing. Recall, for example, how often
Impressions and the Action category (Category:a in the tree) appeared in the bootstrap samples of trees
from the facebook data.
Instead of every explanatory variate being allowed to be examined at every potential partition, what if we
only allowed only m explanatory variates selected at random at each partition? This would mean
that some variates were simply not considered at any step, no matter how much they might reduce the RSS
then. This allows variates to appear in a tree which might never have appeared before. This is especially
true early in the tree where the greedy algorithm will tend to favour the same explanatory variate for many
bootstrap samples.
We proceed as before, selecting B bootstrap samples. But now for each sample, we build a tree using the
same greedy algorithm but now selecting only from a random subset of m explanatory variates, a different
random subset at each step. The collection of trees constructed in this way is called a random forest. As
with bagging, we take as our prediction the average of the predictions over the B regression trees. Note that
if m = p, then this is just bagging. That is bagging is a special case of a random forest.
How might we choose m? A common rule used in practice is to choose m ≈ p/3 (people recommend √p for
classification trees).
In R there is a package called randomForest that provides us a tool set for constructing random forest
regression estimates. Note that getTree(...) is a function in the randomForest package, so we may want
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to remove the function that we created with that name from your R session. You can remove our function
as follows
rm(getTree, envir = globalenv())

Now there will be no conflict with the getTree(...) function from randomForest. Alternatively,
you could choose not to remove our getTree(...) function in which case you would have to write
randomForest::getTree(...) whenever you wanted to call the getTree(...) function from the
randomForest package.
We can illustrate this again on the Facebook data.

4.2.1 Bagging (random forest with m = p)

First we will use random forests to do bagging simply by choosing m = p.
library(randomForest)
#
set.seed(54321)
#
fb.bag <- randomForest(log(All.interactions +1) ~

Page.likes + Paid +
Post.Hour + Impressions +
Post.Weekday + Post.Month +
Type + Category,

data = facebook,
# Number of variates to select at each step
mtry = 8,
# facebook has NAs and randomForest will
# fail unless they are dealt with
na.action = na.omit)

fb.bag

##
## Call:
## randomForest(formula = log(All.interactions + 1) ~ Page.likes + Paid + Post.Hour + Impressions + Post.Weekday + Post.Month + Type + Category, data = facebook, mtry = 8, na.action = na.omit)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 8
##
## Mean of squared residuals: 0.4824976
## % Var explained: 66.71
# Can predict as before
head(predict(fb.bag))

## 1 2 3 4 5 6
## 4.736613 4.714626 4.759624 6.806932 5.807787 5.152008
# Let's run this by separating a training set and test set as before
# It will be easier if we remove all NAs for now.
fb <- na.omit(facebook)
N <- nrow(fb)
N_train <- round(2* N /3)
N_test <- N - N_train
# Select the two sample units
id.train <- sample(1:N, N_train, replace=FALSE)
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id.test <- setdiff(1:N, id.train)

fb.bag <- randomForest(log(All.interactions +1) ~
Page.likes + Paid +
Post.Hour + Impressions +
Post.Weekday + Post.Month +
Type + Category,

data = fb,
subset = id.train,
# Number of variates to select at each step
mtry = 8)

test <- fb[id.test,]
pred <- predict(fb.bag,

# Note that our get.newdata will also work on our
# formula string
newdata = get.newdata(formula, test))

actual <- get.response(formula, test)
# estimated APSE
mean((actual-pred)^2)

## [1] 0.5083341

4.2.2 Random forests (m << p)

We can now introduce a forest where the trees are more uncorrelated (and the predictions) by choosing
m << p. For randomForest(...), the default is p/3
#
fb.rf <- randomForest(log(All.interactions +1) ~

Page.likes + Paid +
Post.Hour + Impressions +
Post.Weekday + Post.Month +
Type + Category,

data = fb,
subset = id.train,
# Number of variates to select at each step
mtry = 3)

pred <- predict(fb.rf,
# Note that our get.newdata will also work on our
# formula string
newdata = get.newdata(formula, test))

actual <- get.response(formula, test)
# estimated APSE
mean((actual-pred)^2)

## [1] 0.4781065

4.2.3 Measuring importance of explanatory variates

A problem with averaging predictions over a forest of trees is that we have lost the ease of interpretation
given by a single tree. One way around this is to consider how the total amount that the RSS has been
reduced in a single tree due to splits on that variate. Each variate will have reduced the RSS by some
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amount (including zero) for every tree in our forest. For each variate, we simply sum its RSS reduction over
all B trees in the forest and divide by the number of trees (B) to get its average contribution, and hence
importance.
For example, for our random forest estimator we can ask that the importance of each variate be recorded
with the estimate.
fb.rf <- randomForest(log(All.interactions +1) ~

Page.likes + Paid +
Post.Hour + Impressions +
Post.Weekday + Post.Month +
Type + Category,

data = fb,
importance = TRUE,
subset = id.train,
# Number of variates to select at each step
mtry = 3)

And now look at the effect on the RSS for each variate.
# The type = 2 importance records the drop in RSS
importance(fb.rf, type=2)

## IncNodePurity
## Page.likes 40.374791
## Paid 6.587544
## Post.Hour 30.164212
## Impressions 257.308814
## Post.Weekday 24.938350
## Post.Month 21.008727
## Type 15.277954
## Category 43.003517

From which we can see that Impressions and Page.likes appear to be the most important variates in our
random forest estimate.
Alternatively, randomForest(...) also makes use of “out of bag” estimates to arrive at another measure of
importance.
# The type = 1 importance records average decrease in the accuracy of predictions
importance(fb.rf, type=1)

## %IncMSE
## Page.likes 15.0351988
## Paid 0.4748268
## Post.Hour -1.3251245
## Impressions 65.6109403
## Post.Weekday 2.9357690
## Post.Month 14.5325205
## Type 11.8864819
## Category 36.2622327

This is based on the average decrease in the accuracy of predictions on “out of bag” samples when that
variate is excluded from the model. We will work primarily with the easier to comprehend type=1 measure
of importance.
There is also a plotting function that displays these two measures of variate importance.
varImpPlot(fb.rf)
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Which suggests that Impressions are (not surprisingly) far and away the most important variate.
The randomForest package also offers the possibility of using k-fold cross-validation to determine the APSE
as a function of the number of variates used in the trees.
# Need separate response and explanatory variate data frames
trainy <- log(fb[,"All.interactions"]+ 1)
trainx <- fb[, get.explanatory_varnames(fb.rf)]
# Five fold cross-validataion
fb.rfcv <- rfcv(trainx = trainx, trainy = trainy, cv.fold = 5)
# We can plot the results
with(fb.rfcv, plot(n.var, error.cv, pch = 19, type="b", col="blue"))
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which seems to suggest using only four variates in the fit. Choosing based on RSS, we might choose to use
Impressions, Page.likes, Category, and Post.Hour.
fb.rfcv.4 <- randomForest(log(All.interactions +1) ~

Impressions + Page.likes + Category + Post.Hour,
data = fb,
importance = TRUE)

trainx <- fb[, get.explanatory_varnames(fb.rfcv.4)]
# Five fold cross-validataion
fb.rfcv <- rfcv(trainx = trainx, trainy = trainy, cv.fold = 5)
# We can plot the results
with(fb.rfcv, plot(n.var, error.cv, pch = 19, type="b", col="blue"))
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which again suggests these four variates.
Note As remarked earlier, a more sensible modelling exercise would consider how All.Interactions might
depend on just those explanatory variates that were under the control of the cosmetic company itself.
This suggests the following summary analysis:
fb.rfe <- randomForest(log(All.interactions +1) ~

Paid + Post.Hour +
Post.Weekday + Post.Month +
Type + Category,

data = fb,
importance = TRUE)

# Note the default values used above plus the entire data set
varImpPlot(fb.rfe)
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trainx <- fb[, get.explanatory_varnames(fb.rfe)]
# Five fold cross-validataion
fb.rfcv <- rfcv(trainx = trainx, trainy = trainy, cv.fold = 5)
# We can plot the results
with(fb.rfcv, plot(n.var, error.cv, pch = 19, type="b", col="blue"))
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This is at least suggesting that Type and whether advertising was Paid or not are the least important. For
predictive purposes, Category seems to be the most important. The cross-validation suggests all six variates
remain in the model.
Even with these tools, much has been lost in interpretability compared to a single tree.

4.3 Boosting

So far we have constructed a forest of trees (via bootstrap samples and some random selection of the variates
to consider at each split) and then aggregated the tree predictions by averaging.
Rather than simple averages, we might consider some other linear combination (or weighting) of the predic-
tions of a number of trees. That is, suppose we have B different prediction functions µ̂m(x) for b = 0, 1, . . . , M .
Then we might construct a combined prediction estimate:

µ̂(x) =
M∑

m=0
βmµ̂m(x)

where the coefficients β0, β1, . . . , βM are parameters of our choice. Random forests (including bagging) are
a special case where βm = 1

B for all m and B = M + 1.
Combining prediction estimates in this way is sometimes called boosting, the idea being that any individual
prediction estimate µ̂m(x) may not be that great but that together they “boost” one another’s performance.
(In machine learning, the functions µ̂m(x) are sometimes thought of as “weak learners” that are “boosted”
when combined.)
The most natural way to think of the “boost” metaphor is to imagine that the final estimate is constructed
sequentially. Imagine that we have an initial estimate β0µ̂0(x) and a sequence of “steps” or “boosts”
{βmµ̂m(x)}M

m=1. Each βmµ̂m(x) is a “boost” added to the previous estimates where βmµ̂m(x) can be con-
structed after looking at any or all of the preceding estimates. The final estimate is additive in the “boosts”;
it is the sum of all the “boosts”.
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The simplest sort of boosts are those where βm is some constant λ. In this case, boosting can be made
reminiscent to shrinkage smoothers when applied to regression trees. The idea is simply that if µ̂m(x) is a
regression tree estimator, then we “shrink” its effect by scaling it by λ << 1.
We can put this together in an algorithm as follows. First some notation. Suppose our training data is
written as {yi, xi}i∈S where S is the training sample. We also suppose that our prediction function µ̂m(x)
is a regression tree estimate having say d splits (d + 1 leaves) and fitted to some data set.

1. Initialization: Set µ̂(x) = 0 and r̂i = yi − 0 for all i ∈ S
2. Boost: For m = 1, 2, . . . , M , repeat:

a. Fit µ̂m(x) to training data {r̂i, xi}i∈S
b. Update µ̂(x) by adding a small “boost”

µ̂(x)← µ̂(x) + λµ̂m(x)

c. Update the residuals (i.e. the training data):

r̂i ← r̂i − λµ̂m(x)

3. Return the “boosted” prediction function

µ̂(x) =
M∑

m=1
λµ̂m(x).

It’s not a lot of work to code this up.
boostTree <- function(formula, data,

lam=0.01, M = 10,
control=rpart.control(), ...) {

# Break the formula into pieces
formula.sides <- strsplit(formula, "~")[[1]]
response.string <- formula.sides[1]
rhs.formula <- formula.sides[2]
# Construct the boost formula
bformula <- paste("resid", rhs.formula, sep=" ~ ")

# Initialize the resid and explanatory variates
resid <- get.response(formula, data)
xvars <- get.newdata(formula, data)

# Calculate the boostings
Trees <- Map(
function(i) {

# update data frame with current resid
rdata <- data.frame(resid=resid, xvars)

# Fit the tree
tree <- rpart(bformula, data = rdata, control=control, ...)

# Update the residuals
# (Note the <<- assignment to escape this closure)
resid <<- resid - lam * predict(tree)

# Return the tree
tree }

, 1:M)
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# Return the boosted function
function(newdata){
if (missing(newdata)) {
predictions <- Map(function(tree) {

# Boost piece
lam * predict(tree)

}, Trees)
} else {
predictions <- Map(function(tree){

# New data needs to be a list
if (is.data.frame(newdata)) {
newdata.tree <- get.newdata(tree, newdata)

} else {
newdata.tree <- newdata

}
# Boost piece
lam * predict(tree, newdata=newdata.tree)

}, Trees)
}
# Gather the results together
Reduce(`+`, predictions)

}
}

Note that the above could easily be adapted to pretty much any other predictor (not just trees).
Let’s see how well this works. It’s as straightforward as
# Get some test and training sets
N <- nrow(facebook)
N_train <- round(0.8 * N)
N_test <- N - N_train
# Select the two sample units
id.train <- sample(1:N, N_train, replace=FALSE)
id.test <- setdiff(1:N, id.train)
# Split the data into training and test sets.
fb.train <- facebook[id.train,]
fb.test <- facebook[id.test,]

# Get the boosted function
predict.boostedTree <- boostTree(formula, data=fb.train, M=100, lam = 0.01)
# and use it to predict
pred <- predict.boostedTree(fb.test)
# results:
head(pred)

## 1 2 3 4 5 6
## 2.988956 3.340890 3.542262 3.306485 2.551246 3.139519

Let’s see how the predictions fare for a variety of M values.
actual.test <- get.response(formula, fb.test)
# Now do it for varying M
for (M in c(10, 100, 500, 1000)) {

# Get the boosted tree
predict.boostedTree <- boostTree(formula, data=fb.train, M=M, lam = 0.01)
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# Use it to predict
pred <- predict.boostedTree(fb.test)
# Now see how well it does
lims <- extendrange(c(actual.test, pred))
plot(get.response(formula, fb.test), pred, pch=19,

col = adjustcolor("grey10", 0.3),
xlim=lims, ylim=lims, xlab="actual", ylab="predicted",
main = paste("Boosted tree fit on test set for M =", M),
sub = paste("APSE =", round(mean((actual.test - pred)^2), 4) )
)

}
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There are several choices to be made here, M , d, and λ. Typically, people take λ ≈ 0.01 as above. As the
plots show, the predictions improve as M increases but beyond some point there is diminishing returns.
Boosted trees are sometimes made intentionally simple (small d). We can adust this using the control
parameter.
# Now do it for varying depth
for (max.depth in c(1, 2)) {

# Get the boosted tree
predict.boostedTree <- boostTree(formula, data = fb.train,

M = 1000, lam = 0.01,
control = rpart.control(maxdepth = max.depth))

# Use it to predict
pred <- predict.boostedTree(fb.test)
# Now see how well it does
lims <- extendrange(c(actual.test, pred))
plot(get.response(formula, fb.test), pred, pch=19,

col = adjustcolor("grey10", 0.3),
xlim=lims, ylim=lims, xlab="actual", ylab="predicted",
main = paste("Boosted tree fit on test set for M =", M,

"depth =", max.depth),
sub = paste("APSE =", round(mean((actual.test - pred)^2), 4) )
)

}
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As the plots show, the predictions can be very good for some really small trees (even maximum depth of 1!).
Boosting takes a lot of very poor predictors and puts them together to get a good predictor.
We could use cross-validation to estimate any of these parameters.

4.3.1 Gradient Boosting

The regression trees are minimizing the RSS. More generally, as with M-estimates we could imagine choosing
a prediction tree µ̂(x) that minimized

ρ(µ) =
N∑

i=1
ρ(yi, µ(xi)).

Suppose that we had an estimate µ̂m−1(x), how might we improve it? If we think of
∑N

i=1 ρ(yi, µ(xi)) as a
function of µ(x), we might want to move our estimate “downhill”, that is in the direction of steepest descent.
The gradient at µ̂m−1(x) is the vector of partial derivatives

gm = [gim] =

[(
∂ρ(µ)

∂µi

)∣∣∣∣
µ=µ̂m−1

]

and points in the direction of greatest increase in the function from the point µ̂m.
To decrease the function, we want to move away from µ̂m−1(x) in the direction of gm by some amount

µ̂m(x) = µ̂m−1(x)− λm gm
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where λm is to be chosen. A reasonable choice for λm would be that which minimizes ρ(µm−1 − λm gm).
The negative gradient −gm defines the direction of steepest descent and finding the minimizing λm is
called a line search along that direction.
Making these improvements for M iterations from an initial estimate µ̂0(x) suggests a different boosting
estimate:

µ̂(x) =
M∑

m=0
hm(x)

where h0(x) = µ̂0(x), the initial estimate, and hm(x) = −λmgm(x) for m = 1, . . . , M .
Now rather than hm(x) being exactly the same as −λmgm(x), we would like it to be of a particular form.
Namely, we want our estimate to be of the form

µ̂(x) =
M∑

m=0
βmµ̂m(x)

where each µ̂m(x) is a regression tree of some fixed complexity (N.B. this argument is entirely general and
need not be restricted to a regression tree). This can be achieved by simply replacing −gm(x) by a regression
tree, but which regression tree?
Since a regression tree is a function with parameters (i.e. the splits defining the fixed number of regions), so
we can simply fit a regression tree (of the desired complexity) to pseudo-responses

zi = −gm(xi) for i ∈ S.

We can now put this all to gether into a general algorithm called gradient boosting (by J. Friedman
(1999)):

1. Initialize µ̂0(x)← arg minµ

∑
i∈S ρ(yi, µ)

2. Boosting: For m = 1, . . . , M :
a. Get pseudo-responses: zi ← −

[
∂

∂µi
ρ(yi, µ(xi))

∣∣∣
µ(x)=µ̂(x)m−1

]
for i ∈ S

b. Fit a regression function h to zis (parameterized by some vector θ ):
θm ← arg minβ,θ

∑
i∈S (zi − βh(xi, θ))2

c. Perform the line search for λ:
λm ← arg minλ

∑
i∈S ρ(yi, µ̂m−1(xi) + λ h(xi, θm))

d. Update the estimate: µ̂m(x)← µ̂m−1(x) + λm h(xi, θm))
3. Return: µ̂M (x)

This is a general algorithm. For regression least-squares regression problems (e.g. our regression trees), we
take

ρ(y, µ(x)) = 1
2

(y − µ(xi))2

giving µ̂(x) = y, and pseudo-responses
zi = yi − µ̂m−1(xi)

are the current estimated residuals. For regression trees, we just use a regression tree estimator of some
complexity as our function h(x, θ) that we fit to the current residual (here θ represents the splits that
determine the regions of x which define the tree).

4.3.2 Regularization

Note that gradient boosting, like tree fitting itself, is designed to add the best improvement to the prediction
as possible at each step (for the given type of estimator, here trees). The worry in such cases is that we
overfit the data.
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One way that we avoid this is my limiting the number of boosts, that is by restricting the size of M . The
gradient boost does this. However, if we also handicap the estimator at each step we might also avoid
overfitting. As with the first example of boosting, one possibility is to effect this handicap by “shrinking”
the estimate at every step. That is, in the gradient boost algorithm described above, we replace step (d) in
each boosting iteration by

d∗. µ̂m(x)← µ̂m−1(x) + α × λm h(xi, θm))

where α ∈ (0, 1] is a shrinkage parameter. If α = 1, the gradient boost is applied without shrinkage. A
value of α << 1 will handicap each prediction. The shrinkage parameter α > 0 is sometimes called the
learning rate or, more plainly, the step size parameter.

4.3.3 Application

The R package gbm implements gradient boosting for a variety of regression models, including trees. The main
method is gbm(...)$ which takes as arguments theformula(as a formula object, or expression),
thedata, ashrinkageparameter (i.e. $\alpha \in (0,1]$), andn.trees‘ or M , amongst numerous
others.
We can try this out on the facebook data.
library(gbm)

fb.boost <- gbm(as.formula(formula), data=facebook, shrinkage = 1, n.trees = 100)

## Distribution not specified, assuming gaussian ...
# which prints as
fb.boost

## gbm(formula = as.formula(formula), data = facebook, n.trees = 100,
## shrinkage = 1)
## A gradient boosted model with gaussian loss function.
## 100 iterations were performed.
## There were 8 predictors of which 8 had non-zero influence.

Note that it says it assumed a “gaussian” model. This is equivalent to our least-squares objective function
(i.e. maximizing log-likelihood of a Gaussian model). This is controlled by the parameter distribution.
Other distributions will produce fits for other problems (e.g. “bernoulli” for a binary response); hence the
package is called “generalized boosted regression models”.
Two other arguments of possible immediate interest are interaction.depth and n.minobsinnode. The
latter is the minimum number of observations in a terminal node or leaf of any tree. The former refers to
the depth of the tree in terms of its capacity to generate interactions. For example an interaction.depth
= 1 will split on a single explanatory variate and so no “interaction” between it and another explanatory
variate can occur in fitting the response. The resulting model will be additive in the explanatory variates.
An interaction.depth=2 ensures that there are at most two-way interactions in the model, et cetera. That
is the model that we end up fitting may also be written more familiarly as

µ̂(x) =
∑

j

hj(xj) +
∑
j,k

hjk(xj , xk) +
∑
j,k,l

hjkl(xj , xk, xl) + · · ·

This now looks something like we have had on many other occasions. The first sum are the “main effects”,
the second the “two-way interaction effect”, the third the “three-way interaction effects”, and so on. The
argument interaction.depth specifies how deep the trees will be an hence how many way interactions the
models might have.
A summary of the fit is had by summary(...) which is implemented by the summary.gbm(...) method
and so has many arguments peculiar to gradient boost fitted objects. The summary determines the relative
influence of each variate to the overall fit.
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As discussed earlier with random forests, we can build up a measure of the importance of the jth variate in
a single tree T by considering only those non-terminal nodes in the tree T which split on the jth variate,
denoting this set of nodes by Nj(T ) (to emphasize its dependence on the tree T and variate j). Suppose
at the kth such node, the change in RSS is denoted ∆RSSk(T, j) (or ∆ρ more generally). Then we might
define the (squared) importance of the variate j to be

I2
j (T ) =

∑
k∈Nj(T )

∆RSSk(T, j).

For a collection of M trees T1, . . . , TM obtained via boosting, the corresponding (squared) importance of
variate j would be the average

I2
j = 1

M

M∑
m=1

I2
j (Tm).

The relative importance of the jth variate amongst all p explanatory variates could be obtained as the
proportion of I2

j in the sum
∑p

j=1 I2
j .

In gbm, this is called the relative.influence and a function of that name will calculate it. It takes an
argument n.trees which defaults to the total number of trees used in the boosting.
relative.influence(fb.boost)

## n.trees not given. Using 100 trees.

## Page.likes Paid Post.Hour Impressions Post.Weekday
## 86.501924 15.871373 43.176402 380.966509 9.251147
## Post.Month Type Category
## 2.734523 29.653367 43.966410
## Can also scale this
## NOTE the dot in the argument names :-{
relative.influence(fb.boost, scale. = TRUE, sort. = TRUE)

## n.trees not given. Using 100 trees.

## Impressions Page.likes Category Post.Hour Type
## 1.000000000 0.227059130 0.115407546 0.113333853 0.077837203
## Paid Post.Weekday Post.Month
## 0.041660810 0.024283359 0.007177857
## Or, express it as a percent of total
rel.inf <- relative.influence(fb.boost, scale. = TRUE, sort. = TRUE)

## n.trees not given. Using 100 trees.
rel.inf <- rel.inf/sum(rel.inf)
round(100 * rel.inf, 2)

## Impressions Page.likes Category Post.Hour Type
## 62.24 14.13 7.18 7.05 4.84
## Paid Post.Weekday Post.Month
## 2.59 1.51 0.45

In gbm, the summary(...) function calculates this last relative influence and by default (plotit = TRUE)
plots the the values as a bar plot. For our fitted model, we get
summary(fb.boost, main = "Gradient boost, shrinkage = 1")
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## var rel.inf
## Impressions Impressions 62.2370578
## Page.likes Page.likes 14.1314922
## Category Category 7.1826261
## Post.Hour Post.Hour 7.0535656
## Type Type 4.8443585
## Paid Paid 2.5928462
## Post.Weekday Post.Weekday 1.5113248
## Post.Month Post.Month 0.4467287

Note that there is another argument to gbm(...) that adds more randomness to the set of trees that are
used in the gradient boosting algorithm. That argument is bag.fraction. If bag.fraction < 1, then only
a fraction of the (training) data will be selected at random to use on the next tree in the boost. The default
is bag.fraction = 0.5 so only half of the data at any time will be used to fit a tree.
This means, for example, that re-running the previous gbm(...) will produce slightly different results. We
can see this as follows:
savePar <- par(mfrow=c(1,2))

fb.boost2 <- gbm(as.formula(formula), data=facebook,
shrinkage = 1, n.trees = 100)

## Distribution not specified, assuming gaussian ...
fit2summary <- summary(fb.boost2,

main = "Gradient boost, shrinkage = 1",
sub = "Fit #2")

fb.boost3 <- gbm(as.formula(formula), data=facebook,
shrinkage = 1, n.trees = 100)

## Distribution not specified, assuming gaussian ...
fit3summary <- summary(fb.boost3,

main = "Gradient boost, shrinkage = 1",
sub = "Fit #3")
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par(savePar)
results <- round(cbind(fit2summary, fit3summary)[,c(2,4)], 1)
names(results) <- c("Fit #2", "Fit #3")
knitr::kable(results)

Fit #2 Fit #3
Impressions 70.2 71.5
Page.likes 14.1 12.7
Post.Hour 6.0 4.6
Category 4.9 3.8
Post.Weekday 2.8 3.7
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Fit #2 Fit #3
Type 1.9 2.9
Paid 0.0 0.7
Post.Month 0.0 0.0

We can remove the randomness by forcing bag.fraction = 1.
savePar <- par(mfrow=c(1,2))

fb.boost4 <- gbm(as.formula(formula), data=facebook,
shrinkage = 1, n.trees = 100,
bag.fraction = 1)

## Distribution not specified, assuming gaussian ...
fit4summary <- summary(fb.boost4,

main = "shrinkage = 1, bag.fraction = 1",
sub = "Fit #4")

fb.boost5 <- gbm(as.formula(formula), data=facebook,
shrinkage = 1, n.trees = 100,
bag.fraction = 1)

## Distribution not specified, assuming gaussian ...
fit5summary <- summary(fb.boost5,

main = "shrinkage = 1, bag.fraction = 1",
sub = "Fit #5")
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par(savePar)
results <- round(cbind(fit4summary, fit5summary)[,c(2,4)], 1)
names(results) <- c("Fit #4", "Fit #5")
knitr::kable(results)

Fit #4 Fit #5
Impressions 80.2 80.2
Category 9.4 9.4
Page.likes 4.5 4.5
Type 2.8 2.8
Post.Hour 1.5 1.5
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Fit #4 Fit #5
Post.Weekday 1.0 1.0
Post.Month 0.4 0.4
Paid 0.0 0.0

The above fits, have no shrinkage and no randomness in which observations are to be used in the fitting. It
is closest to the original gradient descent boosting algorithm we described.
We will now look at getting cross-validated errors.
NOTE that the gbm(...) function’s cross validation will fail on our model and data. There are a few
problems with gbm(...)

First: The authors of gbm(...) were anticipating that the response would only have a simple function like
log applied to a single variate name All.interactions. Passing All.interactions + 1 to the log function
causes the failure of gbm(...). (The actual failure occurs in the function gbmCrossValPredictions(...).)
To circumvent this failure, we can change our data frame to facebook2 to have the “+1” built in, and then
change the formula string to match.
facebook2 <- facebook
facebook2[, "All.interactions"] <- facebook2[, "All.interactions"] + 1
# And we will rebuild our formula string to suit
# Break the formula into pieces
formula.sides <- strsplit(formula, "~")[[1]]
rhs.formula <- formula.sides[2]
formula2 <- paste("log(All.interactions) ~", rhs.formula)

Second: There are a few other errors predict.gbm(...) and in gbmCrossValPredictions(...). In the
latter, the problem involves the same line with the first problem above.
To fix these, you can use the “fudged” versions of these that can be found on the course website. If you load
that file (“fudgegbm.R”), then the following will work.
# Assuming the file is in the current working directory:
source("Rcode/fudgegbm.R")
#
alpha <- 0.01
M <- 500
set.seed(12345)
fb.boost.shrink.fudge <- fudge.gbm(as.formula(formula2),

data=facebook2,
distribution = "gaussian",
shrinkage = alpha, n.trees = M,
bag.fraction = 1,
cv.folds = 5

)

Which gives us the cross-validated error for each tree in fb.boost.shrink.fudge$cv.error. The last one
will be our minimum: fb.boost.shrink.fudge$cv.error[M] = 0.557045.
Alternatively, we can use gbm(...) provide the data frame we use contains only those explanatory variates
which appear in the formula. This involves changing our data frame again.
facebook3 <- facebook2[,

c("All.interactions",
get.explanatory_varnames(formula2))
]
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Now we can try to use gbm(...) directly.
alpha <- 0.01
M <- 500
set.seed(12345)
fb.boost.shrink <- gbm(as.formula(formula2),

data=facebook3,
distribution = "gaussian",
shrinkage = alpha, n.trees = M,
bag.fraction = 1,
cv.folds = 5
)

Which gives us the cross-validated error for each tree in fb.boost.shrink$cv.error. The last one will be
our minimum: fb.boost.shrink$cv.error[M] = 0.557045. These are the same as before because we
set.seed(12345) before each call. Otherwise, differences between these values and the previous ones would
be due to cross-validation (i.e. different folds).
NOTE It seems that gbm(...) likes to think that **all* variates in the data set are also available in the
model.
# Set up
M <- 500
k <- 5
set.seed(31853071)
# Shrinkage parameter values
alphas <- c(0.005, 0.01, 0.02, 0.03, 0.04,

0.05, 0.06, 0.07, 0.08, 0.09,
0.10, 0.20, 0.30, 0.40, 0.50,
0.60, 0.70, 0.80, 0.90, 1)

n_alphas <- length(alphas)
cverror <- numeric(length = n_alphas)
Mvals <- numeric(length = n_alphas)
fit <- list(length = n_alphas)

for (i in 1:n_alphas) {
fit[[i]] <- fb.boost.shrink <- gbm(as.formula(formula2),

data=facebook3,
distribution = "gaussian",
shrinkage = alphas[i],
n.trees = M,
bag.fraction = 1,
cv.folds = k
)

cverror[i] <- min(fit[[i]]$cv.error)
Mvals[i] <- which.min(fit[[i]]$cv.error)
}

plot(alphas, cverror, type = "b",
col = adjustcolor("firebrick", 0.7), pch=19, lwd=2,
main = "cross-validated error", xlab = "shrinkage", ylab="cv.error")
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which seems to suggest an α ≈ 0.05 to 0.07.
# Let's look at the best one of these
i <- which.min(cverror)
alpha <- alphas[i]
summary(fit[[i]])
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## var rel.inf
## Impressions Impressions 78.35124081
## Category Category 13.05284929
## Page.likes Page.likes 3.96765969
## Type Type 2.72283728
## Post.Hour Post.Hour 1.12793422
## Post.Weekday Post.Weekday 0.75661834
## Post.Month Post.Month 0.02086037
## Paid Paid 0.00000000

We might also investigate the values of M for a fixed alpha.
# Set up
alpha <- 0.07
k <- 5
set.seed(31853071)
# Shrinkage parameter values
Ms <- c(50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000)
n_Ms <- length(Ms)
cverror <- numeric(length = n_Ms)
Mvals <- numeric(length = n_Ms)
fit <- list(length = n_Ms)

for (i in 1:n_Ms) {
fit[[i]] <- fb.boost.shrink <- gbm(as.formula(formula2),

data=facebook3,
distribution = "gaussian",
shrinkage = alpha,
n.trees = Ms[i],
bag.fraction = 1,
cv.folds = k
)

cverror[i] <- min(fit[[i]]$cv.error)
}

plot(Ms, cverror, type = "b",
col = adjustcolor("firebrick", 0.7), pch=19, lwd=2,
main = "cross-validated error", xlab = "Number of trees", ylab="cv.error")
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which suggests diminishing returns beyond M = 300 trees.
You could repeat the above with bag.fraction = 0.5, say, (the default) as well. (Get about the same
values.)
Allowing deeper trees (interaction), with bag.fraction < 1
fb.boost.shrink <- gbm(as.formula(formula2), data=facebook3,

shrinkage = 0.01, n.trees = 300,
interaction.depth = 2)

## Distribution not specified, assuming gaussian ...
summary(fb.boost.shrink)
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## var rel.inf
## Impressions Impressions 82.0554323
## Category Category 12.3891845
## Page.likes Page.likes 3.0385108
## Type Type 1.5943494
## Post.Weekday Post.Weekday 0.3883711
## Post.Hour Post.Hour 0.3103564
## Post.Month Post.Month 0.2237955
## Paid Paid 0.0000000

which has allowed some of the other terms to increase their relative influence.

4.3.3.1 The more interesting model
Again,let’s try things on the more interesting model where all explanatory variates can be controlled.
facebook4 <- facebook3[,

c("All.interactions",
"Paid", "Post.Hour",
"Post.Weekday", "Post.Month",
"Type", "Category")
]

Using default bag.fraction but no shrinkage
fb.boost <- gbm(log(All.interactions) ~

Paid + Post.Hour +
Post.Weekday + Post.Month +
Type + Category,

data=facebook4,
distribution = "gaussian",
shrinkage = 1)

summary(fb.boost)
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## Post.Hour Post.Hour 37.189574
## Post.Weekday Post.Weekday 18.114772
## Category Category 17.096257
## Post.Month Post.Month 14.546673
## Type Type 8.621446
## Paid Paid 4.431279

And now using default shrinkage as well
fb.boost <- gbm(log(All.interactions) ~

Paid + Post.Hour +
Post.Weekday + Post.Month +
Type + Category,

data=facebook4,
distribution = "gaussian",
shrinkage = 0.07,
n.trees = 300,
interaction.depth = 1)

summary(fb.boost)
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## Category Category 25.281958
## Post.Hour Post.Hour 24.044706
## Post.Month Post.Month 23.929256
## Post.Weekday Post.Weekday 15.032074
## Type Type 6.533021
## Paid Paid 5.178985

And interaction
fb.boost <- gbm(log(All.interactions) ~

Paid + Post.Hour +
Post.Weekday + Post.Month +
Type + Category,

data=facebook4,
distribution = "gaussian",
shrinkage = 0.01,
n.trees = 500,
interaction.depth = 2)

summary(fb.boost)
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## Category Category 33.804202
## Post.Weekday Post.Weekday 21.025411
## Post.Month Post.Month 19.470825
## Post.Hour Post.Hour 16.528429
## Paid Paid 5.765735
## Type Type 3.405399

Choosing between the various possibilities will involve a lot of cross-validation exercises.

4.3.4 Partial dependence plots

After fitting µ̂(x), with the p × 1 vector of explanatory variates x, we might be interested in how this
prediction depends on any subset of x = {x1, . . . , xp}. Suppose that we are interested in a particular subset
of l variates denoted by zl = {z1, . . . , zl} . Let z\l be the remaining variates so that

zl ∪ z\l = x

The prediction function depends on variates from both sets, i.e. with some abuse of notation we can write

µ̂(x) = µ̂(zl, z\l)

and consider how this depends on the variates in zl conditional on those z\l

µ̂z\l
(zl) = µ̂(zl | z\l)

Unfortunately, this is going to depend on the values of the variates in z\l. We might instead consider the
marginal function

µ̂+(zl) = 1
N

N∑
i=1

µ̂(zi;l, zi;\l).

This is not too bad a summary in place of the more obvious µ̂z\l
(zl) provided the dependence of the latter

on z\l is not that great. If, for example, µ̂(x) is additive in the two variate sets, i.e.

µ̂(x) = µ̂l(zl) + µ̂\l(z\l)

then the relationship between µ̂+(zl) and the values of its argument xl is the same, relatively, as that of
µ̂(x) for any fixed z\l. That is, the values of zl and z\l cleanly separate in µ̂(x) and so µ̂+(zl) is a reasonable
substitute to explore that relationship.
The same is true for the of the relationship is multiplicative rather than additive. That is if

µ̂(x) = µ̂l(zl) × µ̂\l(z\l).

In either case, µ̂+(zl) is a reasonable substitute to explore the dependence of µ̂(x) on zl.
For our regression trees, each split is based on splitting a single variate at a time. This makes determining
the function µ̂+(zl) for any set of variates zl fairly straight forward. For a specific set of variates zl, a
weighted traversal of the tree is followed.
Start with an initial weight of 1. Beginning at the root of the tree, traverse the tree as follows. If at any
branch, the splitting variate is one of the set zl, then the weight is not changed and we follow whichever
branch, left or right applies to that variate. If, however, the splitting variate is not in zl but rather in z\l,
then both branches are followed each passing on the previous weight but now multiplied by the fraction of
training set observations at this split which go in each direction. The final estimate µ̂+(zl) is simply the
weighted average of the predictions of all terminal nodes visited.
If there is a forest of trees simply use the predictions for each tree and combine them as approporiate
(e.g. average for bagging; the corresponding weighted sum for boosting).
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If l is small, say 1, or 2, then we could look at plots of µ̂+(zl) versus the values of the variates of zl. We call
such a plot a partial dependence plot.
The plot(...) function has been specialized in the gbm package for objects which result from a call to
gbm(...). The key argument is i.var (default 1) which gives the indices of the variates to be plotted, that
is the indices of those in zl.
Before producing a plot, let’s get a new boosted estimate that is based on default parameters. Unlike the pre-
vious estimator, this will have only 100 as opposed to 500 trees to consider. We also use interaction.depth
=1 to ensure an additive model. We do that here just to have speedier calculations.
fb.boost <- gbm(log(All.interactions) ~

Paid + Post.Hour +
Post.Weekday + Post.Month +
Type + Category,

data=facebook4,
distribution = "gaussian",
shrinkage = 0.01,
n.trees = 100,
interaction.depth = 1)

summary(fb.boost)
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## Category Category 82.836027
## Post.Weekday Post.Weekday 9.212498
## Post.Hour Post.Hour 3.252196
## Paid Paid 1.787805
## Post.Month Post.Month 1.779483
## Type Type 1.131991

Now look at the dependence plots. First we look at one variate at a time. Think about how you would
interpret each one in turn.
formula.gbm <- formula(fb.boost)
formula.sides <- strsplit(formula, "~")[[1]]
response.string <- formula.sides[1]
varnames <- get.explanatory_varnames(formula.gbm)
nvars <- length(varnames)
for (i in 1:nvars){

plot(fb.boost, i.var = i, main = paste0("Partial dependence of ",
response.string, " on ",
varnames[i]),

col="steelblue")
}

120



0.0 0.2 0.4 0.6 0.8 1.0

4.
74

5
4.

75
0

4.
75

5
4.

76
0

Partial dependence of log(All.interactions +1)  on Paid

Paid

f(
P

ai
d)

121



5 10 15 20

4.
71

4.
72

4.
73

4.
74

4.
75

Partial dependence of log(All.interactions +1)  on Post.Hour

Post.Hour

f(
P

os
t.H

ou
r)

122



1 2 3 4 5 6 7

4.
70

4.
72

4.
74

4.
76

Partial dependence of log(All.interactions +1)  on Post.Weekday

Post.Weekday

f(
P

os
t.W

ee
kd

ay
)

123



2 4 6 8 10 12

4.
73

5
4.

74
0

4.
74

5
4.

75
0

Partial dependence of log(All.interactions +1)  on Post.Month

Post.Month

f(
P

os
t.M

on
th

)

124



Link Photo Status Video

4.
73

0
4.

73
5

4.
74

0
4.

74
5

Partial dependence of log(All.interactions +1)  on Type

Type

f(
Ty

pe
)

125



Action Inspiration Product

4.
5

4.
6

4.
7

4.
8

4.
9

Partial dependence of log(All.interactions +1)  on Category

Category

f(
C

at
eg

or
y)

What do you think? This is especially good if we have additive fits (i.e. no two-way or higher order
interactions).

4.3.4.1 Pairs of variates
We could also look at the partial dependence on two variates. plot(...) here is smart enough to try to
draw a plot that is appropriate for every combination! Take your time in interpreting these. Note, that in
practice, one might only be interested in a subset of these. Note also how plots differ based on the nature of
the variates.
library(PairViz) # PairViz package needed for sequences
all.pairs <- eseq(nvars) # sequence where all pairs appear beside each other
for (i in 1:(length(all.pairs)-1)){
indices <- all.pairs[i:(i+1)]
plot(fb.boost, i.var = indices,
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main = paste0("Partial dependence of ",
response.string, " on (",
varnames[indices[1]],
", " ,
varnames[indices[2]],
")" )

)
}
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Note that we can compare the effect of two variates at once on the same plot.

4.3.4.2 Triples of variates
We can even try this for 3 variates at once, say on indices 1, 5, and 6.
do3way <- function(indices){

plot(fb.boost, i.var = indices,
main = paste0(response.string, " on (",

varnames[indices[1]],
", " ,
varnames[indices[2]],
", " ,
varnames[indices[3]],
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")" )
)

}
do3way(c(1,5,6))

log(All.interactions +1)  on (Paid, Type, Category)

Paid

f(
P

ai
d,

Ty
pe

,C
at

eg
or

y)

4.5

4.6

4.7

4.8

4.9

0.0 0.2 0.4 0.6 0.8 1.0

Link
Action

Photo
Action

0.0 0.2 0.4 0.6 0.8 1.0

Status
Action

Video
Action

Link
Inspiration

Photo
Inspiration

Status
Inspiration

4.5

4.6

4.7

4.8

4.9

Video
Inspiration

4.5

4.6

4.7

4.8

4.9

Link
Product

0.0 0.2 0.4 0.6 0.8 1.0

Photo
Product

Status
Product

0.0 0.2 0.4 0.6 0.8 1.0

Video
Product

do3way(c(3,5,6))
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do3way(c(2,3,4))
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