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ABSTRACT

This is the supplementary material for the paper submitted to the Communications
in Statistics - Simulation and Computation. Section 1 presents more simulation
results. Section 2 includes the R function to implement the proposed methods.
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1. More simulation results

In this section, we present simulations to compare the performance of our methods
for controlling the IER and EER with the existing methods for both location and
dispersion models in 2° and 26 factorial experiments.

1.1. Additional Simulation Results for Location Model

Case I: aiz homogeneous
For the 2° experiment with five two-level factors, A, B, C, D, and E, we use the
model

yij ~ N(10 +0.254 4+ 0.258 4+ 0.25D + 0.2BD, 1).

For the 25 experiment with four two-level factors, A, B, C, D, E, and F, we use the
model

Yij ~ N(5+0.154 4+ 0.1568 + 0.15D + 0.12BD, 1).

We test the significance of the factorial effects of interest for each model at the 5% level
based on the above methods. The simulation is repeated N = 20,000 times for each
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model. We compute the percentage of rejection of the null hypothesis Hy : oy = 0,
I = 1,...,I. Throughout this section, I = 31 and 63 for the 2° and 2° designs,
respectively. The results are summarized in Tables 1 and 2. We present only the
results for the main effects and two-factor interaction effects because the results for
three-factor or higher-order interactions are similar to the results for the effects that
are not in the model.

Table 1. Percentage of rejection of the null hypothesis Ho : a; = 0 at the 5% level for model y;; ~ N(10 +
0.25A + 0.25B + 0.25D + 0.2BD, 1) in replicated 2° experiments.

Effectin =3n=4n=5n=6n=3n=4n=5n=6n=3n=4n=5n==06
Our method WH method Lenth’s method

A 1664 79.1 7.7 928[67.7 79.4 87.8 93.0[54.0 65.8 77.1 &4.5
B |65.8 79.6 87.9 928 |67.1 80.1 88.1 929|527 67.1 76.4 84.5
C 46 50 50 481|149 51 51 49133 32 36 37
D |65.7 79.3 88.3 92.8166.9 79.7 88.5 929 |53.1 66.6 77.1 &4.3
E 45 47 47 48 |48 48 48 49|32 32 34 37
AB | 47 46 46 4.7 |51 48 48 48133 33 36 37
AC | 46 46 47 501|149 48 47 50131 32 34 37
BC | 47 48 48 48 |51 49 49 49|34 34 33 38
AD | 48 48 48 50|51 50 49 50|31 33 37 39
BD |47.4 609 70.6 78.0|486 61.6 70.9 783|359 47.8 57.4 66.0
CD |47 48 51 49151 50 52 50|32 34 38 39
AE | 44 48 50 501 47 50 51 51|30 35 38 38
BE | 48 47 48 50|52 49 48 51133 32 35 39
CE |43 49 50 49|47 50 51 50130 32 36 37
DE | 45 48 50 50149 49 52 50|31 34 39 3.7

Table 2. Percentage of rejection of the null hypothesis Ho : a; = 0 at the 5% level for model y;; ~ N(5+
0.15A 4+ 0.15B +0.15D + 0.12BD, 1) in replicated 2% experiments.

Effectin =3n=4n=5n=6n=3n=4n=5n=6mh=3n=4n=5n==06
Our method WH method Lenth’s method
478 59.7 704 7
48.1 60.3 7
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From the results in Tables 1 and 2, we observe that both our method and the
WH method can tightly control the IER at the 5% nominal level when the aiz’s are
homogeneous. However, Lenth’s method is unable to tightly control the IER. In terms
of power, our method has almost the same power as the WH method in every case.



Case II: 022 heterogeneous
In this case, we use the model

Ui ~ N(10 +0.54 + 0.45B + 0.5D + 0.ABD, exp(1.2A + 1.2B + 1.2D + 0.6AD)>

for the 25 factorial experiment with five two-level factors, A, B, C, D, and E. For the
26 experiment with six two-level factors A, B, C, D, E, and F, we use the model

Ui ~ N(10 +0.4A + 0.3B + 04D + 0.3BD, exp(1.2A + 1.2B + 1.2D + 0.6AD)).

We also test the significance of the I factorial effects of interest at the 5% level based on
the above methods. For [ = 1,..., I, the percentage of rejection of the null hypothesis
Hy : ap = 0 at the 5% level by each method is calculated based on N = 20,000
repetitions. The results are summarized in Tables 3 and 4. Again, we present only the
results for the main effects and two-factor interaction effects because the results for
three-factor or higher-order interactions are similar to the results for the effects that
are not in the model.

Table 3. Percentage of rejection of the null hypothesis Ho : oy = 0 at the 5% level for model y;; ~ N(lO +
0.5A 4 0.45B + 0.5D + 0.4BD,exp(1.2A + 1.2B + 1.2D + 0.6AD)) in replicated 2° experiment.

Effectin=3n=4n=5n=6n=3n=4n=5n=6n=3n=4n=5n==6
Our method WH method Lenth’s method

A [28.0 37.8 482 56.8[37.0 442 53.2 605|265 33.7 39.6 45.7
B 235 31.8 40.3 484 |31.6 379 451 524|227 283 34.0 39.7
C 44 46 47 51|71 62 59 6.1 |25 26 26 26
D | 277 377 48.0 56.8|36.7 44.3 53.0 60.5]26.4 329 39.3 454
E 43 48 48 47|70 6.5 6.2 58|28 28 26 2.7
AB | 45 49 48 48|71 6.7 6.1 581169 70 65 6.5
AC | 43 43 48 51|71 60 6.1 61126 25 25 27
BC | 43 45 48 49|70 62 61 60|25 23 26 24
AD | 44 45 46 49 |70 63 59 5H8 |72 73 64 6.7
BD | 19.3 26.2 33.2 40.2|26.6 31.6 37.7 43.8|18.6 23.9 287 34.0
CD | 44 46 45 49169 64 59 61|25 26 25 26
AE | 43 46 46 45|68 65 59 56|26 26 26 26
BE | 43 45 49 48 |68 64 6.1 58|25 27 25 28
CE | 47 46 49 48 |73 64 6.1 58|27 27 24 26
DE | 44 47 48 48 169 64 61 59|26 26 25 27

From the simulated results in Tables 3 and 4, we see that only our method can
tightly control the IER in all cases for both models. Again, Lenth’s method is unable
to accurately control the IER in the location model. The results are quite consistent
with those for 2% and 2% experiments.

We now compare the performance of our method, the WH method, and Lenth’s
method for controlling the EER in the location model. We again consider two cases:
homogeneous JZ-Q’S and heterogeneous 022’5.
Case I: ai2 homogeneous

Here, we consider 2° and 26 factorial experiments. We use the model
yij ~ N(O, 1)

for the simulations for both factorial experiments. The simulated EER at the 5% level
for each method is calculated based on N = 20, 000 repetitions. The results are shown



Table 4. Percentage of rejection of the null hypothesis Ho : oy = 0 at the 5% level for model y;; ~ N(lO +
0.4A 4 0.3B + 0.4D + 0.3BD, exp(1.24 4+ 1.2B + 1.2D + 0.6 AD)) in replicated 2 experiment.

Effectin=3n=4n=5n=6n=3n=4n=5n=6n=3n=4n=5n=26
Our method WH method Lenth’s method

A [37.8 50.6 60.1 69.5]43.9 54.3 62.7 71.4137.5 47.3 53.9 61.6
B 227 31.8 379 455 |27.8 351 404 474|235 309 35.6 41.5
C 44 46 48 52 |62 56 56 5HK |38 37 39 4.0
D 374 506 60.2 69.4|43.6 545 62.7 71.1|37.3 46.8 53.3 61.6
E 45 47 46 49|62 58 5bH4 53|38 40 35 36
F 45 46 48 50|62 56 56 55|38 38 39 38
AB | 45 47 47 50|61 58 56 55163 65 6.5 64
AC | 46 46 48 52|61 56 56 5740 38 4.0 4.0
BC |46 46 50 5061 57 57 56|37 38 38 4.0
AD | 45 44 47 47163 54 54 53|66 63 63 59
BD | 22.7 31.4 37.6 45.5|27.5 34.7 40.1 4751|235 30.8 353 41.6
CD| 45 46 50 521162 56 58 57|40 39 38 4.0
AE | 45 46 45 48 |63 57 52 54139 39 37 36
BE | 45 4.7 47 45|64 58 54 51|40 40 37 3.5
CE | 45 48 46 48 |63 59 54 53|40 39 38 39
DE | 45 48 46 48 |61 58 54 53|38 39 37 38
AF | 44 45 46 48 | 6.1 56 54 55139 38 38 38
BF | 42 44 49 50|59 53 57 55|39 38 36 39
CF | 45 42 50 49|61 52 57 54139 36 40 4.0
DF | 43 46 51 50162 56 58 56|38 40 40 38
EF | 46 49 47 50|64 59 55 55|38 40 39 3.7

in Table 5. The table shows that all three methods can accurately control the EER at
the 5% level.

Table 5. Percentage of rejection of the null hypothesis Hp : a1 = ... = ay = 0 at the 5% level for model

yij ~ N(0, 1) in replicated 25 and 26 experiments.
Im=3n=4n=5n=6n=3n=4n=5n=6n=3n=4n=5n==56

Our method WH method Lenth’s method

31 41 44 49 48 [ 51 50 52 50|49 52 5249

63| 4.3 4.7 47 48 |51 50 49 50|49 55 5.1

Case II: aiz heterogeneous
Here, we use the models

Yij ~ N(O, exp(A+C+ D+ O.SCD))

and

Yij ~ N(o, exp(A+B+C+D+ 0.5AD))

for the 2° and 2% factorial experiments, respectively. For each method, the EER is
calculated based on 20,000 repetitions. The results are summarized in Table 6.

Table 6 shows that only our method can tightly control the EER at the 5% nominal
level in all cases. The results given by the WH method are anticonservative when n = 3
while those of Lenth’s method are slightly conservative.



Table 6. Percentage of rejection of the null hypothesis Hp : a1 = ... = ay = 0 at the 5% level for models

Yij ~ N(O,exp(A +C+ D+ O.5CD)) and y;; ~ N(O,exp(A +B+C+ D+ 0.5AD)) in replicated 2° and 26

experiments.
IIn=3n=4n=5n=6n=3n=4n=5n=6n=3n=4n=5n==06

Our method WH method Lenth’s method
31 46 47 46 47 |74 6.0 b1 46 | 42 43 44 41
63| 44 45 45 45169 56 48 42|39 38 39 37

1.2. Additional Simulation Results for Dispersion Model

We first compare the performance of our method, the WH method, the VCA method,
and Lenth’s method for controlling the IER in the dispersion model. In the simulation,
we considered 2° and 2% factorial experiments. For a 2° experiment, we generate the
data using the model

yij ~ N (0,exp(0.44 + 0.4B + 0.4C +0.34D)).

We test the significance of the I = 25 — 1 = 31 factorial effects of interest at the 5%
level based on the above procedures. For [ = 1,...,1, the percentage of rejection of
the null hypothesis Hy : v = 0 at the 5% level for each method is calculated based on
N = 20,000 repetitions. The results are summarized in Table 7.

For a 2% factorial experiment, we use the model

yij ~ N (0,exp(0.34 + 0.3B + 0.3C + 0.264D) ).

We test the significance of the I = 26 — 1 = 63 effects at the 5% level based on all
four methods. The simulation is repeated N = 20,000 times, and the percentage of
each factorial effect declared significant at the 5% level is recorded in Table 8. For
both Tables 7 and 8, we present only the results for the main effects and two-factor
interaction effects because the results for three-factor or higher-order interactions are
similar to the results for the effects that are not in the model.

Tables 7 and 8 show that our method achieves simulated IERs for the factorial effects
not in the models that are quite close to the 5% nominal level. The WH method inflates
the TER, especially for small n; it becomes better as n increases. Lenth’s method
is quite conservative whether n is large or small, and the VCA method is slightly
anticonservative. The performance is the same for all values of n considered.

We now compare the performance of our method, the WH method, and Lenth’s
method for controlling EER in the dispersion model. In the simulation, we consid-
ered 2° and 2° factorial experiments. For each experiment, the model under the null
hypothesis Hy: 71 =... =~ =01s

yij ~ ]V(O7 1)

We set the mean of the response to 0, since it does not affect the above three methods.
The simulated EER at the 5% level in the dispersion model is calculated based on
N = 20,000 repetitions. The results are presented in Table 9.

Table 9 shows that the values for the EER based on our method are around 5%.
This is evidence that our method can accurately control the EER in the dispersion
model. The WH method gives results that are well above the 5% nominal level, so this



Table 7. Percentage of rejection of the null hypothesis Ho : 7 = 0 at the 5% level for model y;; ~
N(O, exp(0.4A+0.4B +0.4C + O.3AD)) in replicated 2° experiments.

Effect | n=3 n=4 n=5 n=6|n=3 n=4 n=5 n==6
WH method Our method
A 59.5 75.6 86.7 92.7 42.2 65.1 80.8 89.7
B 59.5 75.6 86.6 93.0 42.5 65.0 80.8 90.1
C 60.1 75.5 86.2 92.7 42.5 64.8 80.4 89.9
D 12.3 9.5 8.6 7.4 4.8 4.8 5.2 4.9
E 12.6 10.0 8.6 7.6 5.0 5.1 5.1 5.0
AB 12.5 10.1 8.7 7.8 5.1 5.3 5.1 4.9
AC 13.1 9.8 8.6 7.8 5.3 5.0 5.2 5.2
BC 12.4 9.7 8.4 7.5 5.0 5.1 5.1 4.9
AD 41.6 53.9 64.8 74.3 25.8 42.0 56.1 67.7
BD 12.3 9.6 8.2 7.5 5.0 5.2 4.8 5.0
CD 12.4 9.7 8.2 77 5.1 5.1 5.0 5.2
AE 12.8 9.7 8.2 7.8 5.1 5.1 5.0 5.1
BE 12.6 9.5 8.4 7.8 4.9 4.8 5.0 5.2
CE 12.8 9.4 8.2 77 5.2 4.9 4.8 5.1
DE 12.7 9.8 8.3 77 5.2 5.1 4.9 5.2
Lenth’s method VCA method

A 324 50.4 66.5 78.6 41.9 64.4 79.9 89.3
B 32.4 50.8 66.1 78.8 41.9 64.0 79.7 89.7
C 32.5 50.2 65.9 78.4 42.2 63.9 79.4 89.4
D 2.9 2.9 3.4 3.5 5.3 5.5 5.8 5.5
E 2.9 3.2 3.5 3.5 5.7 5.6 5.7 5.5
AB 3.2 3.1 3.4 3.4 5.6 5.8 5.6 5.4
AC 3.2 3.0 3.5 3.5 5.9 5.7 5.7 5.7
BC 3.0 3.2 3.4 3.5 5.6 5.6 5.7 5.4
AD 18.8 30.7 42.7 54.1 26.1 41.4 55.6 67.4
BD 3.2 3.1 3.1 3.4 5.5 5.9 5.3 5.4
CD 3.2 3.0 3.2 3.6 5.6 5.5 5.5 5.7
AE 3.2 3.1 3.4 3.7 5.6 5.5 5.6 5.7
BE 3.2 3.1 3.2 3.5 5.6 5.5 5.3 5.8
CE 3.1 3.2 3.3 3.5 5.8 5.4 5.5 5.7
DE 3.3 3.0 3.4 3.5 5.6 5.6 5.4 5.7

method cannot control the EER. The EER based on Lenth’s method is quite close to
the nominal level, so Lenth’s method can also tightly control the EER.

2. R function rrtff()

We have written an R function rrff() to implement the proposed methods for the 2%
full factorial experiment. The input of rrtff() has four parts:

(1) ymat: a 2% x n numeric matrix with each row consisting of n replications of the
response;

(2) zmat: a 2% x k numeric matrix, which consists of all 2% combinations of the k
two-level factors (we use “-1” and “+1” to denote the two levels);

(3) level: the significance level, with the default value 0.05;

(4) type: type=location indicates the location model; type=dispersion indicates the
dispersion model.

If type=location, then the R function returns the &;’s (alp in the R output), t-type
statistics t;’s (tstat), Crgr (CIER), and Cggr (CEER). If type=dispersion, then it
returns the 4;’s (gam in the R output), z-type statistics z;’s (zstat), Crgpr (CIER), and
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Table 9. Percentage of rejection of the null hypothesis Ho : v1 = ... = 77 = 0 at the 5% level for model

yij ~ N(0, 1) in replicated 25 and 26 factorial experiments.
Im=3n=4n=5n=6n=3n=4n=5n=6nh=3n=4n=5n==6

WH method Our method Lenth’s method

311 33.0 208 157 133 55 b5 54 53|40 44 46 4.5

63/ 40.9 246 183 144 | 55 52 53 53 | 41 44 4.7 4.6

Crrr (CEER).
The R function rriff() is as follows.

library("MASS")
rrtff=function(ymat,xmat,level=0.05,type="1location")
{

xmat=as.matrix(data.frame(xmat))
ymat=as.matrix(data.frame(ymat))

m=nrow (ymat)

n=ncol (ymat)

ybar=as.numeric (apply(ymat,1,mean))
s2=as.numeric(apply(ymat,1,var))+1e-100
cnm=colnames (xmat)

1lns2=log(s2)

if (type=="location")

{

M=100000
exprl=paste("ybar~",paste(cnm,collapse="x"), sep="")
data=data.frame(cbind(ybar,xmat))

out.loc=1lm(eval (exprl) ,data=data,x=T)
alp=out.loc$coefficients[-1]
alp.se=sqrt(sum(s2)/(m"2%n))
tstat=(alp)/alp.se

rho=s2/sum(s2)
mx=out.loc$x
mx=as.matrix(mx) [,-1]

Amat=t (mx) %*%diag (rho) %*%mx
Unat=mvrnorm(M,rep(0,nrow(Amat)) ,Amat)
Vmat=matrix(rchisq(M*m,n-1),ncol=m)
tb=abs(Umat[,1])/sqrt( (Vmat¥%*¥%rho)/(n-1) )
tb=as.numeric(tb)

maxtb=apply(abs(Umat),1,max)/sqrt( (Vmatl*J%rho)/(n-1) )
maxtb=as.numeric (maxtb)

out=list(alp=alp,tstat=tstat,CIER=quantile(tb,1-level),
CEER=quantile(maxtb,1-level))
}



if (type=="dispersion")

{
expr2=paste("lns2”",paste(cnm,collapse="%"), sep="")
data=data.frame(cbind(1lns2,xmat))
out=1m(eval (expr2) ,data=data)
gam=out$coefficients[-1]

gam.se=sqrt (2/ (m*(n-1)))

zstat=gam/gam. se

fil=function(x)

{
log(x)*dchisq(x,df=n-1)
}

f2=function(x)

{

( log(x) )~2*xdchisq(x,df=n-1)
}

moml=integrate(f1,0,Inf)
mom2=integrate(£f2,0,Inf)
an.var=mom2$value-momi$value~2

an=sqrt(an.var/(2/(n-1)))
Teff=length(zstat)

out=list(gam=gam,zstat=zstat, CIER=an*qnorm(l-level/2),
CEER=an*qnorm(0.5+0.5%(1-1level) " (1/Ieff) ) )

}

out

}

The following is the R code that inputs the golf data used in Section 5 of the main
paper.

data=c(-1,-1,-1,-1,10,18,14,12.5,19.0,16.0,18.5,
+1,-1,-1,-1,0,16.5,4.5,17.5,20.5,17.5,33,
-1,+1,-1,-1,4,6,1,14.5,12,14,5,
+1,+1,-1,-1,0,10,34,11,25.5,21.5,0,
-1,-1,+1,-1,0,0,18.5,19.5,16,15,11,
+1,-1,+1,-1,5,20.5,18,20,29.5,19,10,
-1,+1,+1,-1,6.5,18.5,7.5,6,0,10,0,
+1,+1,+1,-1,16.5,4.5,0,23.5,8,8,8,
-1,-1,-1,+1,4.5,18,14.5,10,0,17.5,6,
+1,-1,-1,+1,19.5,18,16,5.5,10,7,36,
3
8.5

b

0
-1,+1,-1,+1,15,16,8.5,0,0.5,9
+1,+1,-1,+1,41.5,39,6.5,3.5,7,8.5,36,
-1,-1,+1,+1,8,4.5,6.5,10,13,41,14,
+1,-1,+1,+1,21.5,10.5,6.5,0,15.5,24,16,
-1,+1,+1,+1,0,0,0,4.5,1,4,6.5
+1,+1,+1,+1,18.5,5,7,10,32.5,18.5,8)



data=matrix(data,nrow=16,byrow=T)

xt=datal,1:4]

yt=datal[,-(1:4)]

We give below the R code and output for the analysis of the location model of the
golf data. If we control the IER at 5%, then the main effects A and B are seen to be
significant by comparing the t-type statistics and Cygp from the output. If we control
the EER at 5%, then only effect A is significant.

> rrtff(yt,xt,0.05,"location")

$alp
X1
2.8660714
X2:X3
-1.0089286
X1:X3:X4
-0.5892857

$tstat
X1
3.2581697
X2:X3
-1.1469569
X1:X3:X4
-0.6699041

$CIER
95%
1.994946

$CEER
95%
3.006521

X2 X3
-1.8571429 -1.1339286
X1:X4 X2:X4
0.9196429 0.7142857
X2:X3:X4 X1:X2:X3:X4
-0.5446429 0.9285714
X2 X3
-2.1112128 -1.2890578
X1:X4 X2:X4
1.0454563 0.8120049

X2:X3:X4 X1:X2:X3:X4

-0.6191537

1.0556064

X4
-0.1071429
X3:X4
-0.1160714

X4
-0.1218007
X3:X4
-0.1319508

X1:X2
1.4017857
X1:X2:X3
-0.2500000

X1:X2
1.5935596
X1:X2:X3
-0.2842017

X1:X3
-0.3214286
X1:X2:X4
1.0089286

X1:X3
-0.3654022
X1:X2:X4
1.1469569

We give below the R code and output for the analysis of the dispersion model of
the golf data. If we control the TER at 5%, then the effects A and BC are seen to be
significant by comparing the z-type statistics and Crgpr from the output. If we control
the EER at 5%, then only effect A is significant.

> rrtff(yt,xt,0.05,"dispersion")

$gam
X1

X2

X3

0.56085423 -0.07094417 -0.10816421

X2:X3

X1:X4

X2:X4

X4
0.12444623
X3:X4

-0.34700280 0.01005715 -0.16036735 -0.16803847
X2:X3:X4 X1:X2:X3:X4
0.17318467 -0.11905612 0.07103150

X1:X3:X4

$zstat
X1

X2

X3
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X4

X1:X2

X1:X3

0.27955487 -0.29552695

X1:X2:X3

X1:X2:X4

0.20423514 0.28474751

X1:X2

X1:X3



3.88571207 -0.49151559 -0.74938362 0.86218876 1.93681296 -2.04747076

X2:X3 X1:X4 X2:X4 X3:X4 X1:X2:X3 X1:X2:X4

-2.40410590 0.06967796 -1.11105760 -1.16420467 1.41498255 1.97278860
X1:X3:X4 X2:X3:X4 X1:X2:X3:X4
1.19985862 -0.82484501 0.49212069

$CIER
[1] 2.133394

$CEER
[1] 3.186868
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