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ABSTRACT

This is the supplementary material for the paper submitted to the Communications
in Statistics - Simulation and Computation. Section 1 presents more simulation
results. Section 2 includes the R function to implement the proposed methods.

KEYWORDS

Experimentwise error rate; Individual error rate; Jackknife method; Lenth’s
method

1. More simulation results

In this section, we present simulations to compare the performance of our methods
for controlling the IER and EER with the existing methods for both location and
dispersion models in 25 and 26 factorial experiments.

1.1. Additional Simulation Results for Location Model

Case I: σ2
i homogeneous

For the 25 experiment with five two-level factors, A, B, C, D, and E, we use the
model

yij ∼ N(10 + 0.25A + 0.25B + 0.25D + 0.2BD, 1).

For the 26 experiment with four two-level factors, A, B, C, D, E, and F , we use the
model

yij ∼ N(5 + 0.15A + 0.15B + 0.15D + 0.12BD, 1).

We test the significance of the factorial effects of interest for each model at the 5% level
based on the above methods. The simulation is repeated N = 20, 000 times for each

CONTACT Shengli Zhao. Email: zhaoshli758@126.com



model. We compute the percentage of rejection of the null hypothesis H0 : αl = 0,
l = 1, . . . , I. Throughout this section, I = 31 and 63 for the 25 and 26 designs,
respectively. The results are summarized in Tables 1 and 2. We present only the
results for the main effects and two-factor interaction effects because the results for
three-factor or higher-order interactions are similar to the results for the effects that
are not in the model.

Table 1. Percentage of rejection of the null hypothesis H0 : αl = 0 at the 5% level for model yij ∼ N(10 +
0.25A+ 0.25B + 0.25D + 0.2BD, 1) in replicated 25 experiments.

Effect n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Our method WH method Lenth’s method

A 66.4 79.1 87.7 92.8 67.7 79.4 87.8 93.0 54.0 65.8 77.1 84.5
B 65.8 79.6 87.9 92.8 67.1 80.1 88.1 92.9 52.7 67.1 76.4 84.5
C 4.6 5.0 5.0 4.8 4.9 5.1 5.1 4.9 3.3 3.2 3.6 3.7
D 65.7 79.3 88.3 92.8 66.9 79.7 88.5 92.9 53.1 66.6 77.1 84.3
E 4.5 4.7 4.7 4.8 4.8 4.8 4.8 4.9 3.2 3.2 3.4 3.7
AB 4.7 4.6 4.6 4.7 5.1 4.8 4.8 4.8 3.3 3.3 3.6 3.7
AC 4.6 4.6 4.7 5.0 4.9 4.8 4.7 5.0 3.1 3.2 3.4 3.7
BC 4.7 4.8 4.8 4.8 5.1 4.9 4.9 4.9 3.4 3.4 3.3 3.8
AD 4.8 4.8 4.8 5.0 5.1 5.0 4.9 5.0 3.1 3.3 3.7 3.9
BD 47.4 60.9 70.6 78.0 48.6 61.6 70.9 78.3 35.9 47.8 57.4 66.0
CD 4.7 4.8 5.1 4.9 5.1 5.0 5.2 5.0 3.2 3.4 3.8 3.9
AE 4.4 4.8 5.0 5.0 4.7 5.0 5.1 5.1 3.0 3.5 3.8 3.8
BE 4.8 4.7 4.8 5.0 5.2 4.9 4.8 5.1 3.3 3.2 3.5 3.9
CE 4.3 4.9 5.0 4.9 4.7 5.0 5.1 5.0 3.0 3.2 3.6 3.7
DE 4.5 4.8 5.0 5.0 4.9 4.9 5.2 5.0 3.1 3.4 3.9 3.7

Table 2. Percentage of rejection of the null hypothesis H0 : αl = 0 at the 5% level for model yij ∼ N(5 +
0.15A+ 0.15B + 0.15D + 0.12BD, 1) in replicated 26 experiments.

Effect n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Our method WH method Lenth’s method

A 53.3 66.4 76.6 83.8 54.0 66.7 76.8 83.9 47.8 59.7 70.4 78.8
B 53.5 67.0 76.2 83.2 54.3 67.3 76.3 83.2 48.1 60.3 70.3 78.1
C 4.7 5.2 5.1 4.9 4.9 5.3 5.2 4.9 4.1 4.2 4.2 4.0
D 53.1 66.8 75.8 83.1 53.8 67.0 75.9 83.2 47.7 60.0 69.7 77.7
E 5.1 5.2 4.9 5.1 5.3 5.3 5.0 5.1 4.2 4.2 4.2 4.5
F 4.9 5.1 4.9 4.8 5.2 5.2 4.9 4.9 4.3 4.2 4.0 4.3
AB 5.0 5.0 5.0 5.2 5.2 5.1 5.1 5.3 4.1 4.1 4.3 4.5
AC 4.8 5.1 5.0 5.4 5.0 5.2 5.0 5.5 4.0 4.0 4.2 4.6
BC 5.1 5.0 5.0 4.8 5.3 5.0 5.1 4.8 4.2 4.0 4.3 4.2
AD 4.6 5.1 5.1 4.9 4.9 5.1 5.1 5.0 3.8 4.1 4.3 4.3
BD 37.2 48.3 57.2 64.9 37.8 48.6 57.3 65.1 32.4 42.4 51.0 58.7
CD 4.7 4.9 5.1 5.0 5.0 5.0 5.1 5.0 3.9 4.1 4.2 4.2
AE 4.8 5.1 4.9 5.0 5.0 5.2 4.9 5.0 4.0 4.3 4.1 4.1
BE 4.8 5.2 5.0 5.1 5.0 5.3 5.0 5.2 4.1 4.3 4.2 4.4
CE 4.9 4.7 4.9 5.0 5.1 4.8 4.9 5.0 4.2 3.9 4.1 4.4
DE 4.8 5.0 5.2 4.6 5.0 5.1 5.2 4.6 4.2 4.0 4.2 4.0
AF 4.8 5.0 4.9 5.0 4.9 5.1 4.9 5.1 4.0 4.2 4.1 4.3
BF 4.9 5.0 5.0 5.0 5.1 5.0 5.1 5.0 4.1 4.2 4.2 4.2
CF 4.7 4.8 5.1 4.9 4.9 4.9 5.2 4.9 4.1 4.0 4.3 4.2
DF 4.8 4.8 4.8 5.1 5.0 4.9 4.8 5.1 4.2 3.8 4.0 4.3
EF 5.0 5.0 5.0 5.1 5.2 5.1 5.0 5.1 4.3 4.1 4.2 4.3

From the results in Tables 1 and 2, we observe that both our method and the
WH method can tightly control the IER at the 5% nominal level when the σ2

i ’s are
homogeneous. However, Lenth’s method is unable to tightly control the IER. In terms
of power, our method has almost the same power as the WH method in every case.
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Case II: σ2
i heterogeneous

In this case, we use the model

yij ∼ N
(

10 + 0.5A + 0.45B + 0.5D + 0.4BD, exp(1.2A + 1.2B + 1.2D + 0.6AD)
)

for the 25 factorial experiment with five two-level factors, A, B, C, D, and E. For the
26 experiment with six two-level factors A, B, C, D, E, and F , we use the model

yij ∼ N
(

10 + 0.4A + 0.3B + 0.4D + 0.3BD, exp(1.2A + 1.2B + 1.2D + 0.6AD)
)

.

We also test the significance of the I factorial effects of interest at the 5% level based on
the above methods. For l = 1, . . . , I, the percentage of rejection of the null hypothesis
H0 : αl = 0 at the 5% level by each method is calculated based on N = 20, 000
repetitions. The results are summarized in Tables 3 and 4. Again, we present only the
results for the main effects and two-factor interaction effects because the results for
three-factor or higher-order interactions are similar to the results for the effects that
are not in the model.

Table 3. Percentage of rejection of the null hypothesis H0 : αl = 0 at the 5% level for model yij ∼ N
(

10 +
0.5A+ 0.45B + 0.5D + 0.4BD, exp(1.2A+ 1.2B + 1.2D + 0.6AD)

)

in replicated 25 experiment.

Effect n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Our method WH method Lenth’s method

A 28.0 37.8 48.2 56.8 37.0 44.2 53.2 60.5 26.5 33.7 39.6 45.7
B 23.5 31.8 40.3 48.4 31.6 37.9 45.1 52.4 22.7 28.3 34.0 39.7
C 4.4 4.6 4.7 5.1 7.1 6.2 5.9 6.1 2.5 2.6 2.6 2.6
D 27.7 37.7 48.0 56.8 36.7 44.3 53.0 60.5 26.4 32.9 39.3 45.4
E 4.3 4.8 4.8 4.7 7.0 6.5 6.2 5.8 2.8 2.8 2.6 2.7
AB 4.5 4.9 4.8 4.8 7.1 6.7 6.1 5.8 6.9 7.0 6.5 6.5
AC 4.3 4.3 4.8 5.1 7.1 6.0 6.1 6.1 2.6 2.5 2.5 2.7
BC 4.3 4.5 4.8 4.9 7.0 6.2 6.1 6.0 2.5 2.3 2.6 2.4
AD 4.4 4.5 4.6 4.9 7.0 6.3 5.9 5.8 7.2 7.3 6.4 6.7
BD 19.3 26.2 33.2 40.2 26.6 31.6 37.7 43.8 18.6 23.9 28.7 34.0
CD 4.4 4.6 4.5 4.9 6.9 6.4 5.9 6.1 2.5 2.6 2.5 2.6
AE 4.3 4.6 4.6 4.5 6.8 6.5 5.9 5.6 2.6 2.6 2.6 2.6
BE 4.3 4.5 4.9 4.8 6.8 6.4 6.1 5.8 2.5 2.7 2.5 2.8
CE 4.7 4.6 4.9 4.8 7.3 6.4 6.1 5.8 2.7 2.7 2.4 2.6
DE 4.4 4.7 4.8 4.8 6.9 6.4 6.1 5.9 2.6 2.6 2.5 2.7

From the simulated results in Tables 3 and 4, we see that only our method can
tightly control the IER in all cases for both models. Again, Lenth’s method is unable
to accurately control the IER in the location model. The results are quite consistent
with those for 23 and 24 experiments.

We now compare the performance of our method, the WH method, and Lenth’s
method for controlling the EER in the location model. We again consider two cases:
homogeneous σ2

i ’s and heterogeneous σ2
i ’s.

Case I: σ2
i homogeneous

Here, we consider 25 and 26 factorial experiments. We use the model

yij ∼ N(0, 1)

for the simulations for both factorial experiments. The simulated EER at the 5% level
for each method is calculated based on N = 20, 000 repetitions. The results are shown
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Table 4. Percentage of rejection of the null hypothesis H0 : αl = 0 at the 5% level for model yij ∼ N
(

10 +
0.4A+ 0.3B + 0.4D + 0.3BD, exp(1.2A+ 1.2B + 1.2D + 0.6AD)

)

in replicated 26 experiment.

Effect n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Our method WH method Lenth’s method

A 37.8 50.6 60.1 69.5 43.9 54.3 62.7 71.4 37.5 47.3 53.9 61.6
B 22.7 31.8 37.9 45.5 27.8 35.1 40.4 47.4 23.5 30.9 35.6 41.5
C 4.4 4.6 4.8 5.2 6.2 5.6 5.6 5.8 3.8 3.7 3.9 4.0
D 37.4 50.6 60.2 69.4 43.6 54.5 62.7 71.1 37.3 46.8 53.3 61.6
E 4.5 4.7 4.6 4.9 6.2 5.8 5.4 5.3 3.8 4.0 3.5 3.6
F 4.5 4.6 4.8 5.0 6.2 5.6 5.6 5.5 3.8 3.8 3.9 3.8
AB 4.5 4.7 4.7 5.0 6.1 5.8 5.6 5.5 6.3 6.5 6.5 6.4
AC 4.6 4.6 4.8 5.2 6.1 5.6 5.6 5.7 4.0 3.8 4.0 4.0
BC 4.6 4.6 5.0 5.0 6.1 5.7 5.7 5.6 3.7 3.8 3.8 4.0
AD 4.5 4.4 4.7 4.7 6.3 5.4 5.4 5.3 6.6 6.3 6.3 5.9
BD 22.7 31.4 37.6 45.5 27.5 34.7 40.1 47.5 23.5 30.8 35.3 41.6
CD 4.5 4.6 5.0 5.2 6.2 5.6 5.8 5.7 4.0 3.9 3.8 4.0
AE 4.5 4.6 4.5 4.8 6.3 5.7 5.2 5.4 3.9 3.9 3.7 3.6
BE 4.5 4.7 4.7 4.5 6.4 5.8 5.4 5.1 4.0 4.0 3.7 3.5
CE 4.5 4.8 4.6 4.8 6.3 5.9 5.4 5.3 4.0 3.9 3.8 3.9
DE 4.5 4.8 4.6 4.8 6.1 5.8 5.4 5.3 3.8 3.9 3.7 3.8
AF 4.4 4.5 4.6 4.8 6.1 5.6 5.4 5.5 3.9 3.8 3.8 3.8
BF 4.2 4.4 4.9 5.0 5.9 5.3 5.7 5.5 3.9 3.8 3.6 3.9
CF 4.5 4.2 5.0 4.9 6.1 5.2 5.7 5.4 3.9 3.6 4.0 4.0
DF 4.3 4.6 5.1 5.0 6.2 5.6 5.8 5.6 3.8 4.0 4.0 3.8
EF 4.6 4.9 4.7 5.0 6.4 5.9 5.5 5.5 3.8 4.0 3.9 3.7

in Table 5. The table shows that all three methods can accurately control the EER at
the 5% level.

Table 5. Percentage of rejection of the null hypothesis H0 : α1 = . . . = αI = 0 at the 5% level for model
yij ∼ N(0, 1) in replicated 25 and 26 experiments.

I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Our method WH method Lenth’s method

31 4.1 4.4 4.9 4.8 5.1 5.0 5.2 5.0 4.9 5.2 5.2 4.9
63 4.3 4.7 4.7 4.8 5.1 5.0 4.9 5.0 4.9 5 5 5.1

Case II: σ2
i heterogeneous

Here, we use the models

yij ∼ N
(

0, exp(A+ C +D + 0.5CD)
)

and

yij ∼ N
(

0, exp(A+B +C +D + 0.5AD)
)

for the 25 and 26 factorial experiments, respectively. For each method, the EER is
calculated based on 20,000 repetitions. The results are summarized in Table 6.

Table 6 shows that only our method can tightly control the EER at the 5% nominal
level in all cases. The results given by the WH method are anticonservative when n = 3
while those of Lenth’s method are slightly conservative.
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Table 6. Percentage of rejection of the null hypothesis H0 : α1 = . . . = αI = 0 at the 5% level for models
yij ∼ N(0, exp

(

A+ C +D + 0.5CD)
)

and yij ∼ N
(

0, exp(A+ B + C +D + 0.5AD)
)

in replicated 25 and 26

experiments.

I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
Our method WH method Lenth’s method

31 4.6 4.7 4.6 4.7 7.4 6.0 5.1 4.6 4.2 4.3 4.4 4.1
63 4.4 4.5 4.5 4.5 6.9 5.6 4.8 4.2 3.9 3.8 3.9 3.7

1.2. Additional Simulation Results for Dispersion Model

We first compare the performance of our method, the WH method, the VCA method,
and Lenth’s method for controlling the IER in the dispersion model. In the simulation,
we considered 25 and 26 factorial experiments. For a 25 experiment, we generate the
data using the model

yij ∼ N
(

0, exp(0.4A + 0.4B + 0.4C + 0.3AD)
)

.

We test the significance of the I = 25 − 1 = 31 factorial effects of interest at the 5%
level based on the above procedures. For l = 1, . . . , I, the percentage of rejection of
the null hypothesis H0 : γl = 0 at the 5% level for each method is calculated based on
N = 20, 000 repetitions. The results are summarized in Table 7.

For a 26 factorial experiment, we use the model

yij ∼ N
(

0, exp(0.3A + 0.3B + 0.3C + 0.26AD)
)

.

We test the significance of the I = 26 − 1 = 63 effects at the 5% level based on all
four methods. The simulation is repeated N = 20, 000 times, and the percentage of
each factorial effect declared significant at the 5% level is recorded in Table 8. For
both Tables 7 and 8, we present only the results for the main effects and two-factor
interaction effects because the results for three-factor or higher-order interactions are
similar to the results for the effects that are not in the model.

Tables 7 and 8 show that our method achieves simulated IERs for the factorial effects
not in the models that are quite close to the 5% nominal level. TheWH method inflates
the IER, especially for small n; it becomes better as n increases. Lenth’s method
is quite conservative whether n is large or small, and the VCA method is slightly
anticonservative. The performance is the same for all values of n considered.

We now compare the performance of our method, the WH method, and Lenth’s
method for controlling EER in the dispersion model. In the simulation, we consid-
ered 25 and 26 factorial experiments. For each experiment, the model under the null
hypothesis H0 : γ1 = . . . = γI = 0 is

yij ∼ N(0, 1).

We set the mean of the response to 0, since it does not affect the above three methods.
The simulated EER at the 5% level in the dispersion model is calculated based on
N = 20, 000 repetitions. The results are presented in Table 9.

Table 9 shows that the values for the EER based on our method are around 5%.
This is evidence that our method can accurately control the EER in the dispersion
model. The WH method gives results that are well above the 5% nominal level, so this
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Table 7. Percentage of rejection of the null hypothesis H0 : γl = 0 at the 5% level for model yij ∼

N
(

0, exp(0.4A+ 0.4B + 0.4C + 0.3AD)
)

in replicated 25 experiments.

Effect n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
WH method Our method

A 59.5 75.6 86.7 92.7 42.2 65.1 80.8 89.7
B 59.5 75.6 86.6 93.0 42.5 65.0 80.8 90.1
C 60.1 75.5 86.2 92.7 42.5 64.8 80.4 89.9
D 12.3 9.5 8.6 7.4 4.8 4.8 5.2 4.9
E 12.6 10.0 8.6 7.6 5.0 5.1 5.1 5.0
AB 12.5 10.1 8.7 7.8 5.1 5.3 5.1 4.9
AC 13.1 9.8 8.6 7.8 5.3 5.0 5.2 5.2
BC 12.4 9.7 8.4 7.5 5.0 5.1 5.1 4.9
AD 41.6 53.9 64.8 74.3 25.8 42.0 56.1 67.7
BD 12.3 9.6 8.2 7.5 5.0 5.2 4.8 5.0
CD 12.4 9.7 8.2 7.7 5.1 5.1 5.0 5.2
AE 12.8 9.7 8.2 7.8 5.1 5.1 5.0 5.1
BE 12.6 9.5 8.4 7.8 4.9 4.8 5.0 5.2
CE 12.8 9.4 8.2 7.7 5.2 4.9 4.8 5.1
DE 12.7 9.8 8.3 7.7 5.2 5.1 4.9 5.2

Lenth’s method VCA method
A 32.4 50.4 66.5 78.6 41.9 64.4 79.9 89.3
B 32.4 50.8 66.1 78.8 41.9 64.0 79.7 89.7
C 32.5 50.2 65.9 78.4 42.2 63.9 79.4 89.4
D 2.9 2.9 3.4 3.5 5.3 5.5 5.8 5.5
E 2.9 3.2 3.5 3.5 5.7 5.6 5.7 5.5
AB 3.2 3.1 3.4 3.4 5.6 5.8 5.6 5.4
AC 3.2 3.0 3.5 3.5 5.9 5.7 5.7 5.7
BC 3.0 3.2 3.4 3.5 5.6 5.6 5.7 5.4
AD 18.8 30.7 42.7 54.1 26.1 41.4 55.6 67.4
BD 3.2 3.1 3.1 3.4 5.5 5.9 5.3 5.4
CD 3.2 3.0 3.2 3.6 5.6 5.5 5.5 5.7
AE 3.2 3.1 3.4 3.7 5.6 5.5 5.6 5.7
BE 3.2 3.1 3.2 3.5 5.6 5.5 5.3 5.8
CE 3.1 3.2 3.3 3.5 5.8 5.4 5.5 5.7
DE 3.3 3.0 3.4 3.5 5.6 5.6 5.4 5.7

method cannot control the EER. The EER based on Lenth’s method is quite close to
the nominal level, so Lenth’s method can also tightly control the EER.

2. R function rrtff()

We have written an R function rrtff() to implement the proposed methods for the 2k

full factorial experiment. The input of rrtff() has four parts:

(1) ymat: a 2k × n numeric matrix with each row consisting of n replications of the
response;

(2) xmat: a 2k × k numeric matrix, which consists of all 2k combinations of the k

two-level factors (we use “-1” and “+1” to denote the two levels);
(3) level: the significance level, with the default value 0.05;
(4) type: type=location indicates the location model; type=dispersion indicates the

dispersion model.

If type=location, then the R function returns the α̂l’s (alp in the R output), t-type
statistics tl’s (tstat), CIER (CIER), and CEER (CEER). If type=dispersion, then it
returns the γ̂l’s (gam in the R output), z-type statistics zl’s (zstat), CIER (CIER), and
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Table 8. Percentage of rejection of the null hypothesis H0 : γl = 0 at the 5% level for model yij ∼

N(0, exp(0.3A+ 0.3B + 0.3C + 0.25AD)) in replicated 26 experiments.

Effect n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
WH method Our method

A 63.5 79.6 89.5 95.2 46.2 70.0 84.8 93.1
B 63.9 79.6 89.5 95.3 46.6 69.6 84.7 93.1
C 64.3 79.5 89.5 95.0 47.3 69.8 84.8 92.8
D 12.8 9.6 8.3 7.7 5.2 4.9 4.9 4.9
E 12.7 10.1 8.5 7.8 5.0 5.2 5.1 4.9
F 12.6 10.1 8.4 7.4 5.1 5.0 5.1 4.8
AB 12.7 9.6 8.0 7.8 4.8 5.0 4.7 5.1
AC 12.5 9.8 8.5 7.7 5.1 5.0 5.1 5.1
BC 12.9 9.7 8.8 7.8 5.2 4.7 5.1 5.0
AD 53.9 69.0 80.4 88.7 36.6 57.9 73.3 84.5
BD 13.2 10.1 8.4 7.6 5.2 5.1 5.1 4.9
CD 12.7 9.8 8.2 7.7 5.1 5.2 4.7 4.9
AE 12.8 10.0 8.5 7.7 5.2 5.2 5.1 5.2
BE 12.7 9.8 8.2 7.4 5.1 5.1 4.8 4.9
CE 12.6 9.7 8.2 7.5 5.1 5.1 4.9 4.9
DE 12.7 10.1 8.5 7.7 4.9 5.1 5.1 5.1
AF 12.9 9.6 8.5 7.6 5.1 4.8 4.9 5.0
BF 12.6 9.9 8.7 7.8 5.1 5.1 5.3 5.1
CF 12.2 9.6 8.3 7.6 4.8 4.9 4.8 4.9
DF 12.4 9.7 8.2 7.4 4.9 4.9 5.0 4.7
EF 12.4 9.8 8.4 8.0 4.7 5.0 5.0 5.1

Lenth’s method VCA method
A 41.0 63.1 79.1 89.2 46.4 69.6 84.3 92.9
B 40.5 62.7 79.3 89.4 46.3 69.2 84.2 92.9
C 41.2 62.9 79.2 89.4 47.1 69.0 84.2 92.6
D 4.1 4.1 4.1 4.3 5.5 5.2 5.3 5.3
E 3.9 4.2 4.3 4.4 5.3 5.4 5.4 5.4
F 3.8 4.0 4.0 4.0 5.4 5.3 5.1 5.1
AB 3.8 4.1 4.1 4.4 5.2 5.3 4.8 5.5
AC 3.8 4.0 4.3 4.5 5.5 5.3 5.3 5.5
BC 4.1 3.7 4.2 4.3 5.4 5.0 5.5 5.4
AD 31.5 51.0 67.0 79.4 36.7 57.3 72.9 84.4
BD 4.1 4.1 4.1 4.3 5.5 5.6 5.4 5.4
CD 3.9 4.1 4.0 4.2 5.5 5.5 4.9 5.1
AE 3.9 4.1 4.3 4.5 5.5 5.4 5.4 5.4
BE 3.8 4.0 4.0 4.4 5.3 5.4 5.3 5.2
CE 3.8 4.0 4.1 4.2 5.3 5.3 5.1 5.3
DE 3.7 4.1 4.2 4.4 5.4 5.3 5.4 5.3
AF 3.9 3.9 4.3 4.5 5.5 5.1 5.2 5.3
BF 3.9 4.1 4.2 4.4 5.5 5.4 5.5 5.4
CF 3.8 4.0 4.0 4.3 5.3 5.2 5.2 5.2
DF 3.8 3.9 4.0 4.2 5.5 5.2 5.2 5.0
EF 3.8 3.9 4.1 4.6 5.1 5.1 5.3 5.5
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Table 9. Percentage of rejection of the null hypothesis H0 : γ1 = . . . = γI = 0 at the 5% level for model
yij ∼ N(0, 1) in replicated 25 and 26 factorial experiments.

I n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6 n = 3 n = 4 n = 5 n = 6
WH method Our method Lenth’s method

31 33.0 20.8 15.7 13.3 5.5 5.5 5.4 5.3 4.0 4.4 4.6 4.5
63 40.9 24.6 18.3 14.4 5.5 5.2 5.3 5.3 4.1 4.4 4.7 4.6

CEER (CEER).
The R function rrtff() is as follows.

library("MASS")

rrtff=function(ymat,xmat,level=0.05,type="location")

{

xmat=as.matrix(data.frame(xmat))

ymat=as.matrix(data.frame(ymat))

m=nrow(ymat)

n=ncol(ymat)

ybar=as.numeric(apply(ymat,1,mean))

s2=as.numeric(apply(ymat,1,var))+1e-100

cnm=colnames(xmat)

lns2=log(s2)

if(type=="location")

{

M=100000

expr1=paste("ybar~",paste(cnm,collapse="*"),sep="")

data=data.frame(cbind(ybar,xmat))

out.loc=lm(eval(expr1),data=data,x=T)

alp=out.loc$coefficients[-1]

alp.se=sqrt(sum(s2)/(m^2*n))

tstat=(alp)/alp.se

rho=s2/sum(s2)

mx=out.loc$x

mx=as.matrix(mx)[,-1]

Amat=t(mx)%*%diag(rho)%*%mx

Umat=mvrnorm(M,rep(0,nrow(Amat)),Amat)

Vmat=matrix(rchisq(M*m,n-1),ncol=m)

tb=abs(Umat[,1])/sqrt( (Vmat%*%rho)/(n-1) )

tb=as.numeric(tb)

maxtb=apply(abs(Umat),1,max)/sqrt( (Vmat%*%rho)/(n-1) )

maxtb=as.numeric(maxtb)

out=list(alp=alp,tstat=tstat,CIER=quantile(tb,1-level),

CEER=quantile(maxtb,1-level))

}
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if(type=="dispersion")

{

expr2=paste("lns2~",paste(cnm,collapse="*"),sep="")

data=data.frame(cbind(lns2,xmat))

out=lm(eval(expr2),data=data)

gam=out$coefficients[-1]

gam.se=sqrt(2/(m*(n-1)))

zstat=gam/gam.se

f1=function(x)

{

log(x)*dchisq(x,df=n-1)

}

f2=function(x)

{

( log(x) )^2*dchisq(x,df=n-1)

}

mom1=integrate(f1,0,Inf)

mom2=integrate(f2,0,Inf)

an.var=mom2$value-mom1$value^2

an=sqrt(an.var/(2/(n-1)))

Ieff=length(zstat)

out=list(gam=gam,zstat=zstat, CIER=an*qnorm(1-level/2),

CEER=an*qnorm(0.5+0.5*(1-level)^(1/Ieff) ) )

}

out

}

The following is the R code that inputs the golf data used in Section 5 of the main
paper.

data=c(-1,-1,-1,-1,10,18,14,12.5,19.0,16.0,18.5,

+1,-1,-1,-1,0,16.5,4.5,17.5,20.5,17.5,33,

-1,+1,-1,-1,4,6,1,14.5,12,14,5,

+1,+1,-1,-1,0,10,34,11,25.5,21.5,0,

-1,-1,+1,-1,0,0,18.5,19.5,16,15,11,

+1,-1,+1,-1,5,20.5,18,20,29.5,19,10,

-1,+1,+1,-1,6.5,18.5,7.5,6,0,10,0,

+1,+1,+1,-1,16.5,4.5,0,23.5,8,8,8,

-1,-1,-1,+1,4.5,18,14.5,10,0,17.5,6,

+1,-1,-1,+1,19.5,18,16,5.5,10,7,36,

-1,+1,-1,+1,15,16,8.5,0,0.5,9,3,

+1,+1,-1,+1,41.5,39,6.5,3.5,7,8.5,36,

-1,-1,+1,+1,8,4.5,6.5,10,13,41,14,

+1,-1,+1,+1,21.5,10.5,6.5,0,15.5,24,16,

-1,+1,+1,+1,0,0,0,4.5,1,4,6.5,

+1,+1,+1,+1,18.5,5,7,10,32.5,18.5,8)
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data=matrix(data,nrow=16,byrow=T)

xt=data[,1:4]

yt=data[,-(1:4)]

We give below the R code and output for the analysis of the location model of the
golf data. If we control the IER at 5%, then the main effects A and B are seen to be
significant by comparing the t-type statistics and CIER from the output. If we control
the EER at 5%, then only effect A is significant.

> rrtff(yt,xt,0.05,"location")

$alp

X1 X2 X3 X4 X1:X2 X1:X3

2.8660714 -1.8571429 -1.1339286 -0.1071429 1.4017857 -0.3214286

X2:X3 X1:X4 X2:X4 X3:X4 X1:X2:X3 X1:X2:X4

-1.0089286 0.9196429 0.7142857 -0.1160714 -0.2500000 1.0089286

X1:X3:X4 X2:X3:X4 X1:X2:X3:X4

-0.5892857 -0.5446429 0.9285714

$tstat

X1 X2 X3 X4 X1:X2 X1:X3

3.2581697 -2.1112128 -1.2890578 -0.1218007 1.5935596 -0.3654022

X2:X3 X1:X4 X2:X4 X3:X4 X1:X2:X3 X1:X2:X4

-1.1469569 1.0454563 0.8120049 -0.1319508 -0.2842017 1.1469569

X1:X3:X4 X2:X3:X4 X1:X2:X3:X4

-0.6699041 -0.6191537 1.0556064

$CIER

95%

1.994946

$CEER

95%

3.006521

We give below the R code and output for the analysis of the dispersion model of
the golf data. If we control the IER at 5%, then the effects A and BC are seen to be
significant by comparing the z-type statistics and CIER from the output. If we control
the EER at 5%, then only effect A is significant.

> rrtff(yt,xt,0.05,"dispersion")

$gam

X1 X2 X3 X4 X1:X2 X1:X3

0.56085423 -0.07094417 -0.10816421 0.12444623 0.27955487 -0.29552695

X2:X3 X1:X4 X2:X4 X3:X4 X1:X2:X3 X1:X2:X4

-0.34700280 0.01005715 -0.16036735 -0.16803847 0.20423514 0.28474751

X1:X3:X4 X2:X3:X4 X1:X2:X3:X4

0.17318467 -0.11905612 0.07103150

$zstat

X1 X2 X3 X4 X1:X2 X1:X3
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3.88571207 -0.49151559 -0.74938362 0.86218876 1.93681296 -2.04747076

X2:X3 X1:X4 X2:X4 X3:X4 X1:X2:X3 X1:X2:X4

-2.40410590 0.06967796 -1.11105760 -1.16420467 1.41498255 1.97278860

X1:X3:X4 X2:X3:X4 X1:X2:X3:X4

1.19985862 -0.82484501 0.49212069

$CIER

[1] 2.133394

$CEER

[1] 3.186868
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