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This is a supplementary document to the corresponding paper submitBidnetrika We 2
summarize the main results in Section 1 and present some preliminary preparation in Section
2. The proofs of Theorem 1, Corollary 1, and Theorem 2 are given in Sections 3, 4, and 5,
respectively. More simulation results are provided in Section 6.

1. MAIN RESULTS

THEOREM1. Suppose = nj/ng remains constant a8 — oo andp € (0,1). Under regu- =
larity conditions, as: goes to infinity,

n2(0 — 6))—N(0,%)

in distribution, whereX = J=! — p=(1 + p)?(1,1,0,0,0)*(1,1,0,0,0) and J = UV ~1UT.
The matriced/ andV are defined i(A4) of the main article.

COROLLARY 1. Letfys = (Bo,70,&0)" be the true value of; and letdy;, be the maximum
likelihood estimator ofl; based on logistic regression in the absence of auxiliary informatios.
Under the conditions of Theorelpwe have:

(a)if I = 1, the asymptotic variance af/2(6, — 6y;) is the same as that af'/2(0y;, — 0py);
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(b) if I > 1, the difference of the asymptotic covariance matricem]dfz(ég —6y2) and
nt/2(fy;, — 6y2) is non-positive-definite; and

(c) whenI > 1, the asymptotic covariance matrix of/ 2(92 — fp2) can not decrease if an
estimating equation i{¢) of the main article is dropped.

THEOREM 2. Under the conditions of Theorefln asn goes to infinity, the empirical likeli-
hood ratio statisticR(0)—x? in distribution if ¢ = 0.

2. PRELIMINARY PREPARATION
We need some notation. Lét= (X,Y, XY)T andZ; = (X;,Y;, X;Y;)". Then

5(X,Y;0) =exp(a” +652).

For the auxiliary information, recall that(X,Y;60) = {g1(X,Y;0),...,9/(X,Y;0)} . Fur-
ther,

Bo{d(X,Y30) =1} = 0, Eo{g(X,Y:0)} = 0.

Here Ey(-) means taking the expectation undér,y | D = 0), the joint distribution of X, Y)
under the control group. Similarlyy; () means taking the expectation undér:,y | D = 1),
the joint distribution of( X, Y') under the case group.

With the notation introduced above, the profile likeliha@é) can be written

00) = Di(a* +05Z;) — Y _log[l + M8(X;,Yi; 0) — 1} +t"g( Xy, Vi 0)]
i=1 i=1

with the Lagrange multipliera andt¢ being determined by

E”: §(X;,Y5;0) — 1
1+ Mo(X3,Y550) — 1} +tTg(X;,Y5;0)

=1

=0,

n

The true values ok andt are\o = n1/n and0, respectively.
We note that the profile likelihoof(#) can be written ag(¢) = inf;  1(,t, A) with

10,6,0) => Dy +05Z;) = > log[l + M(X;, Vi 0) — 1} + t7g(X;, Y33 0)).
=1 =1

Equivalently, () = 1(6,t,\) with ¢ and A being the solution todl(6,t,\)/0t =0 and
ol(0,t,\)/oX = 0.

To investigate the asymptotic propertiesfofwe need its approximation, which can be ob-
tained via the second-order Taylor expansiori(@nt, \).



2-1. First derivatives of (6, ¢, \) 50
We first calculate the first derivatives &, ¢, \), which are as follows:

O, t,7) _ _z”: t709(Xi, Yi: 0) /0 )
an L+ Mo(Xi, Y3 0) — 1} +79(X5, Y530)
e D I~ "L N(XG, Y5 0) +tT0g(Xy, Y5 0) /0ot

Z Z 1+ Mo(X;,Y5:0) — 1} +t7g(X;,Y5;0)’ @

10,t,)) < N(X;,Yi;0)Z; + {097 (X, Y3 0) /002 }t
602 ZDZ Z 1+)\{6 X;,Yi;:0) — 1} +t7g(X;,Yi;0)’ @)
)\ =1+ Mo(Xi, Y5 0) — 1} +7g(X;, Yis0)

(0, t,\) _ _Z": 9(X;,Y;;0) (5)
ot — 1+ Mo(X;,Y50) — 1} +t7g(X;,Y5;0)

Setting (1)—(2) and (4)—(5) equal to O #=46, t=14, and A=\ and noting that
d9(X,Y;0)/0n = —0g(X,Y;0)/0a*, we get

j\Inl/n:)\o. (6)
Recall thatp = ni/ng, w = (07,t")", andwy = (6§, 0)" is the true value ofv. Let §; =
6(Xu Y 90) andA; =1+ pdz Then 55
dl(60,0,\
(0877 0) 0
81(90707)‘0) _ % _ Sn2 7
Hw - 0l(00,0,M\0) - S'n,3 ( )
905
91(00,0,\0) Sna
ot
with
5 § "~ 0, 7; "~ g(X;,Yi; 6p)
2 =N P;Ai 3 ; P; A 1= +P)i:1—Ai
Further, let
Sn = (SnQ, 5'237 ng;)T‘ (8)

2-2. Second derivatives &, t, \)

We next calculate the second derivatives(6f ¢, ) with respect t@ and¢. Sincel = ), in
the following derivation we set to ). After some calculation, it can be verified that the second
derivatives of (0, ¢, \g) atw = wy are

9%1(60,0,00) 8%1(60,0,00) 821(60,0,A0) 821(60,0,A0)

on? Inda* nooT OnotT
321(90,0,)\0) 82l(90,0,)\0) 82l(90,0 )\()) 62l(90,0,)\0)
82l(90707 )\0) . Onda* A(a*)? 0a* 00} da*otT (9)
OwdwT | 9%1(60,0,X0) 9%1(80,0,M0) 931(6o,0, )\0) 9%1(60,0,)0)
Onob, da* 05 96200 00,0t T

9%1(60,0,A0) 9%1(60,0,X0) 321(90,0)\0) 921(60,0,X0)
ot da* ot ooy ototT
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with

021(6p,0, \o)
on? ’
021(6o,0, o)
onda*
9%1(60,0, \o)
onooy
&1(60,0,20) i (1+p)9g"(Xi,Yi;60)/0n
8n8tT Az ’

=0,

=0,

=1
81(«90,0 Ao B Z
A?’

8[(00,0,)\0 . pZ i
dar003 Z 2

9%1(6, 0, Ao) " 99" (X4, Yi;00)/0n "~ 0,97 (X, Yi; 0o)
Z ) 1 g e T n 7))
oo = (L+p) ; A, +p(1+p) Zl AT
0%1(60,0,00) z": p8; Z; ZF
90,003 2

9%1(60,0, \o) " 99" (Xi,Yi;00) /002 "~ 629" (X4, Yi; 00)
SIS ( —l—p); A + +p>; A, :
9%1(60,0,20) _ 2 "~ g(X;,Y;;00)g *(Xi, i3 60)
ototT (L+p ; A2

2-3.  Some useful technical lemmas

When deriving the asymptotic distribution 6f we need to us& % and the ex-

s pectation and variance &f, defined in (8). We need the following lemma to simplify our calcu-
lation.

LEMMA 1. Leth(Z) be an arbitrary function ofZ. Further, letéy = §(X,Y;6p) and Ay =
1+ pdp. Then we have

E{H(Z)} = Eo{doH(Z)}

)

Proof. Let z = (z,y,xy)". Then

and

Eo {Aoh(2)} .

B {H(Z)} = / h()dFy(z, y).



With dF (z,y) = §(z,y; 0p)dFo(z,y), we have that

Ev{H(Z)} = / 5.y 00)h(2)dFy(z,y) = E{foh(Z)}.

This completes the proof of the first part.
For the second part, we have

E {Z h(ZZ-)} = n1 B {(Z)} + noEo{h(2)} = n1 E{60h(Z)} + noEo{h(Z)}.
=1

Further,p = n;/ng implies thatng = n/(1 + p) andn; = np/(1 + p). Therefore,

n
1+p

E {Z h(Zi)} = " Eo{(pdo + Dh(Z)} = Eo {Aoh(2)}.
i=1

1+p

This completes the proof of the second part.

With the help of Lemma 1, we find {%} in the next lemma.

LEMMA 2. WithE {M} defined in(9), we have

Owow™

1
—-F
n

0216, 0, \o) _ 0 —Agy —Agz —Ayy
Owow™

with
p do
Ay =—L_Ey (%),
27 1+ D<A0>

do 2"
A23:A§2: ppEO<D )a

8gT(X7 Y7 00)
on ’

1+ Ao
A24:AIz=—Eo{W}+EO{9T(XA—EW},
Asz = 1i Ey <5OiOZT> )
Ass = AT, = Ep {%‘9590)} _p{5oZgT(ii’Y;90)}7
Ay = (14 p)Ey {g(X,Y; HO)AQZ(X’Y; fo) } )

Proof. We verify only that

1 [ 8%1(6o,0, \o) g™ (X,Y;6p) gT(X,Y;60)
pld 22 Ay, =Ry 2PN p L A 0 7D
n { Oa*ot™ } > 0 { on } 0 { Ap

For the other parts, the procedure and idea are similar and are omitted.

b

(10)
(11)
(12)
(13)
(14)
(15)

(16)

17)

70
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Recall that
9%1(0o,0, \o) = g™ (Xi,Yi;00)/0n 69" (Xi,Yi; 6o)
— T (1 1 —_—.
Then
9%1(0o,0, \o) "~ 09" (X;,Y;;00)/0n "~ 69" (X;, Y5 00)
E{—— 5 =(1 E 1 E —_ .
(18)
Applying Lemma 1 to the two terms on the right-hand side of (18), we have
— 99" (X;, Yi;60) /0 | _ 99" (X,Y;6o)
(1+p)E {; A, = nE o (19)
and
"~ 0,97 (X5, Yisbo) | d0g™ (X,Y;6p)
p(1+p)E {; A? = npEy Ag . (20)
Recall thatAy = 1 + pdg. Then
8o = Ao—1
P
and
S0g(X,Y;600) 1 , g(X,Y500) ] 1 g(X,Y;6p)
Eo{ A = Ey{9(X,Y;00)} — Eo A = ,oEO A
(21)
The last step in (21) follows from the fact thag {g(X,Y;6p)} = 0.
Substituting (21) into (20) gives
"~ 0,97 (X, Yy;00) g (X, Y;60)
1 E — > = —nky{—m= . 22
p(1+p) {; A2 nEo | A (22)

Combining (18), (19), and (22), we verify that (17) is correct. This completes the proof of
Lemma 2. O

The final lemma presents the expectation and varian®g of
LEMMA 3. With S,, defined in(8), we have
E(S,) =0

Agp Asz 0 2 Ag Ag B
1 1+
EV&I‘(S»,L) = A32 A33 0 — ( p) A32 A32 .
0 0 Ay P Ago + A Ago + A

and
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Proof. For E(S,), we show only thatE(S,3) = 0. The other parts,F(S,2) =0 and
E(Sp4) = 0, can be verified using Lemma 1 directly. Recall that

Sn3 = ZDiZi —PZ A,
=1 i—1

Applying Lemma 1 and noting that; = np/(1 + p), we have that

np np np
E(S =n1F(Z2) — FE(6gZ) = Eo(0gZ) — ——FE(60Z) = 0.
(n3) nll()1+p(0) 1+p0(0)1—|—p(0)
Forn~lvar(S,), we verify only that -
n(l + p)?
var(Spa) = nAay — M(Au + Ag1)(Aga + Apn)". (23)

The other parts, again, can be similarly checked.

Recall that
_ - g(XZa}/:MQO)
Spy = (1+p);—Ai .
Then
X,Y:0 X,Y:0
var(Sns) = ma(1 + p)Pvary {%} T o1+ p)varg {%} )
0 0

wherevar; (-) andvarg(-) mean that the variances are calculated unfler,y | D = 1) and
f(z,y | D =0), respectively.

Applying Lemma 1, we have %
var g(X,Y;60)
1 —Ao
- E g(X7Y700)gT(X7Y,90) _E g(X7Y700) E gT(vaaGO)
1 A% 1 AO 1 AO
_ g J909(X Yi00)9" (X, Y500) | [009(X,Y500) | [ [ 09" (X, Y5 60)
0 A2 0 A 0 A
o 609(X7Y790)9T(X7Y790) 1 g(X7Y700) gT(X7Ya 90)
— EO{ A2 — —Ey A Ey A , (25)

where we have used the result in (21).
Similarly, we get

g(X,Y;00) 9(X,Y;00)g" (X, Y;60) 9(X,Y;60) 9" (X,Y;6)
Varo{ Ag }_EO{ Af }_EO{ Ag }EO{ Ag }
(26)

Combining (24)—(26), we obtain

(n160 4 no) (1 + p)2g(X,Y;00)g" (X, Y; 60) }
A

var(Sns) = Eo {
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Sincen; = np/(1+ p), no = n/(1+ p), andAg = 1 + pdy, we can simplifyvar(.S,,4) to

X7Y79 T X,Y,e
var(Sps) = n(1 + p)Ey {9( o)Ag2( 0)}
0

_n( :P)QEO {Q(X,Ai; fo) } E, {QT(XAE/; 0o) } '

From (10)—(16), we notice that

X, Y:00)¢"(X,Y;0
n(1+ p)Eo {g( 0)A92 ( 0) } =nAy
0
and
X, Y6
Ey {%} = Apn + Ago.
0

Hence,

n(1+ p)?

var(Spa) = nAa — M(Au + Ag2)(Ag1 + Ag2)"

as claimed in (23). This completes the proof of Lemma 3. O

3. PROOF OFTHEOREM1

Using a similar argument to that used in the proofs of Lemma 1 and Theorem 1 of Qin &
Lawless (1994), we have that= 6, + O,(n~'/2) andf = O,(n~'/2). Next we investigate the
asymptotic approximation @f R

The maximum likelihood estimatdrof § and the associated Lagrange multipfienust satisfy

ouo.i,2) _
Ow e
Recall that\ = ). Then
Ow -

Applying a first-order expansion t@% gives

0= 8[({90, 0, )\0) + 82l(907 0, )‘0)
N Ow OwdwT
The law of large numbers implies that

82l(00707A0) . 82l(00707/\0)
Owlw™ E { Owdw™ } +op(n)- (28)

Combining (27) and (28), we get

a2l(90707 )‘U) ~ . 8l(60707)\0) 1/2

(& — wo) + op(n'/?). (27)
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Using the forms ofE {%

spectively, we have

00 0\ Ay 0
0—Ag —Asz | (0 —00) — | Agg |Et=-n"1| Sna | + Op(n71/2)7 (30)
0 —A32 —A33 A34 Sn3

} andw provided in Lemma 2 and Equation (7), re-

— (A41, A42, A43) (é — 90) + A44£ = —n_lSn4 + op(n_1/2). (31)
From (31), we have 105
it = Al (Ag1, Agz, Agz) (0 — 00) — AL (071 Sna) + 0,(n71/2). (32)
Substituting (32) into (30) gives
A ALt An AAgl A Ay Al Ass R
Agg A Agy Agg Al Ago + Agg Agg Al Az + Az | (6 — 6p)
Asg Al Agy Asg Ayl Ago + Asp Agg ALl Az + Asz

00 AjuA}
= (10 AyAy! | (n71S,) +op(n1/?). (33)
0 Ig A34AI41

Herel; denotes th@ x 3 identity matrix.

Recall that
0 0 Ay Ago Asz 0
U= A22 A23 A24 andV = A32 A33 0 . (34)
Az Agz Aszg 0 0 Ay
After some algebra, it can be verified that the coefficient matriceg fot, andn 15, in (33)
areJ = UV~'UT andUV !, respectively. Then (33) simplifies to 110
J(6 —6y) = UV (n_15n> + 0p(n"1/2). (35)
Therefore,

n2(0 —6y) = J'Uv! (n_1/25n> +0p(1).
Via Lemma 3 and the central limit theorem, we conclude that
n/2(f — 90)—>N<0, 2)
in distribution with
S = {JUV M var(n VS, H{V T lUT T (36)

In the last step, we simplify the form &f. Let

Ago
c= Ass .
Ago + Apn

Thenvar(n~1/25,,) provided in Lemma 3 can be written in the following form: 1s

(1+p)

2
var(n"1/28,) =V — et (37)
p
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Together with (36), (37) implies that
(1+p)?

Y=gt glgvletviuTgl.
p

Further, note that

00 A14AZ41 A22 A14AZ41A41 + A14AZ41A42
UV ile= |10 AyAy A3z = | Aw A A + Aoy Ayl Ags + Ass |
013 Agq Ay, Ago + A Asg Ayl Agy + Asg Ayl Ags + Ago

which is the sum of the first two columns gf Hence,

1 0 1
0 1 1
Juvlte=1o|l+|o|l=]0
0 0 0
0 0 0
Therefore,
1 2
wogt= U270 60.0)7(1,1,0,0,0)

as claimed in Theorem 1.

4. PrROOF OFCOROLLARY 1

Part (a). Whenl = 1 or there is only one estimating equation for the auxiliary information,
becomes a square matrix. Then (35) implies that

U0 — 6p) = n~LS,, + op(n~Y?).

That is,
0 Agg Ass 17— "o S
0 Asp Asz | [ 6" —af | =n" [ Sus | +0p(n"1/?).
Ay Ago Asg 0y — oy Sha
Therefore,

Ago Aoz (&" —ap ) _ 1 ( Sn2 ~1/2
<A32 A33) <02—902 = S Fop(n ).
With (7), we further get that
e ~1 / 81(69,0,)0)
Q" —og\ _ [ A A e ~1/2
<é2—902> =n <A32 A33> <al(9§+002’)‘0)> +0p(n ) (38)

Let (&%, 0%,)" be the maximum likelihood estimator ¢f*,63)" based on the logistic re-

gression model. Qin & Zhang (1997) showed th@t — o, égL — 052)" has the same approxi-
mation as in (38):

o) * —1 / 8l(6p,0,)
O21, — Oo2 Asy Ass azwgég,xo) p :
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Hence, the asymptotic variancesidf2 (6, — ) andn!/2(f,;, — 6ys) are the same.

Parts (b, ¢). Fol < r < I, letU,, V,, J., ¥, denote the correspondirlg, V, J, andX
matrices obtained by using only the firsestimating equations @f( X, Y'; 6). With the result in
Part (a), to finish the proof of Parts (b) and (c), it suffices to show that

Z'r < Er—l
or equivalently 125
JT Z Jr—1~ (39)

From (34), we notice thal/, has one more column thd®._;. Let this column be.,.. Then
U, = (Uy—1,u,). Further, using the arguments in the proof of Corollary 1 of Qin & Lawless

(1994; p. 318), we get
_ vzilo
LN r—1 )
vz ()

Therefore,

-1
Jr = Urv;_lU;r > (Ur—laur) <V;11 0

0 0> (Ur—1,ur)” = Upa VAU = oy,

as required by (39). This completes the proof of Corollary 1.

5. PROOF OFTHEOREM?Z2

Recall trlaiﬁ is the maximum empirical likelihood estimator étinder the null hypothesis of
¢ = 0, and\ andt are the corresponding Lagrange multipliers. Note that andf must satisfy

Al(By, T, \) 0 Al(By, T, ) 0 Al(By, T, )

on ’ oo ’ ot
Via the method used to derivein (6), we similarly have
A== o
n

Hence, in the following derivation we satto ).

We now investigate the approximationiéf, t, \o) whend andt are inn~'/2 neighbourhoods
of 8y and0, respectively, which will help us to find an asymptotic approximation of the profile
likelihood ¢(9).

Applying a second-order Taylor expansion (@, ¢, \o) gives

T 8l(007 Oa )\0)
Oow

821(907 07 )\0>

Oww™

l(@,t, )\0) = l(@o,o, )\0) + (w — w())

+ 1(w —wo)'E {

: oo, @

where we have used the result in (29) to simplify the second derivatives. Setting the derivative of
1(0,t, \o) with respect tad equal to zero and using a similar technique to derive (32), we get

t = Ayl (Ag1, Asz, Agz) (0 — 00) — AL (n71S0a) + 0,(n71/2). (41)



135

140

145

12 J. QN, H. ZHANG, P. LI, D. ALBANES, AND K. YU
Substituting (41) into (40), we get an approximation of the profile likelihood,

0(6) = 1(89,0, \o) + (6 — 6)*UV LS, — g(e — 00)"J (0 — ) + 0p(1). (42)

To investigate the limiting distribution of the empirical likelihood ratio test for teshiiag & =
0, we further profile out* = (n, o*, 3,)" and obtain the profile likelihood & only. Denote
the true value ob* by ¢;. Let

v, =UVLS, = <“”1> (43)

Un2

with v,,; consisting of the first four elements of andwv,» being the last element af,. We
partition J accordingly as
Ji1 Ji2
J = )
<J21 J22>

Then the profile likelihood in (42) becomes
£(0) = 1(60,0, Ao) + (6" — 05) "vn1 + (§ — So)vmz — 3(9* —05)" Ju (6" — 6p)
(6" — 05)"12(§ — &0) = 5T (€ — €0)* + 0y(1). (44)
Setting the derivative of(#) with respect t@* equal to zero, we get
0 — 05 = n~ I o — J e (€ — &) + op(n~ ). (45)
Substituting (45) into (44), we obtain an approximation of the profile likelihoog of

n

E*(f) = l(e(), 0, )\0) + 51);1;1J1_111)n1 + (f — 50)(1)”2 — JQlJl_llvnl)
n _
—5 (6 = €)*(J22 = 15y 12) + 0p(1).
Then the empirical likelihood ratio test for testiffy : £ = &, =0 is

} _ (Un2 - J21<]1711f0nl)2
n(Jog — JorJy;' Ji2)

R(0) = 2{ wup () = £10)

+0,(1).

To show that the limiting distribution ak(0) is x?, we need to argue that

Un2 — Jo1 11 V1 .
{n(Jog — Jo1 Jyi  Ji) /2
in distribution. Using (35) and (43), we note that
Y2 (vpa — Jor I ont) = (= Jar J 5 DUV (n7Y28,,) = (= Jar Jiit, 1) T (6 — 6o) + 0p(1).

N(0,1) (46)

By Theorem 1, we have
02 (v — ngjﬂlvnl)—d\f(o, (—Jon I, 1) TSI (= I Ji, 1)T)
in distribution. Therefore, to prove that (46) is correct, we need to verify that

(—=JorJ s D) IST (= I i 1) = Jag — Jar I io. (47)
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Recall the form o® in Theorem 1. We have
(=Jo1 J 3 D) IS8T (= I I )T
r (1+p)?
P

= (= Jor i V)T (—Jar i 1) {(—=Jo1 34, 1)J(1,1,0,0,0)"}2.  (48)

Note that
(—=Jor it 1) = (0, Jag — Jon J;y J12).
Hence, for the two terms in (48), we have

(—JorJt DI (= I I 1) = (0, Jag — Jor J;3 Ji2) (—Jar J g 1) = Jag — Jor Jyi Jhe
(49)
and

{(=Ja1J 7+, 1)J(1,1,0,0,0)"}2 = {(0, Jog — Jo1 17 J12)(1,1,0,0,0)*}2 = 0. (50)
Combining (48)—(50), we verify that (47) is correct. This completes the proof of Theorem 2.

6. MORE SIMULATION RESULTS 150
6:1. Sensitivity with biased auxiliary information

We assess the sensitivity of the proposed fgt) through simulations under the nutly :
¢ = 0 using misspecified disease prevalence. Supp¢se 1, a;) = ké(ai_1,a;),i=1,...,1,
instead of the true prevalence, is used in the test. We consigef-90, 0-95,1-05, or 1-10.
The other parameters are the same as those used in scenario 1 in the main article. Fas each
K, the type | error ofR(0) at the nominal level @5 is estimated using 1000 replications of
the simulation, each with 2000 cases and 2000 controls. The results are summarized in Table 1
below, suggesting that our test cannot control the type | error properly if the disease prevalence
is incorrectly specified. This is expected,; it is equivalent to the model misspecification problem
in full parametric inference. 160

Table 1.Typel error (%) of R(0) when we use
biased prevalence(a;_1, a;) = kp(a;—1,a;),

i1 =1,...,1 rather than the true prevalence
¢(ai_1, ai), 1= 1, cee ,I
K 090 095 105 110
Type | error 84 59 7.3 114

6-2. Simulation in the setting of genetic association
We evaluate the performance of our method in the setting of genetic associatioK. et
the continuous environmental risk factor with auxiliary information, ahdhe genotype at a
binary genetic marker. We codé as 0, 1, or 2, representing the number of minor alleles in the
genotype. We set the minor allele frequency #. We assume the following risk model:

o {pr(DZ 1]z,y)
pr(D=0|x,y)

}:a+ﬁx+’yy+€wy-
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In the simulation, we generafé from N (0, 1). The main effects oK andY are set tg? = 1-00

and~ = 0-08, respectively. Note that the odds ratio for having one more copy of the minor allele

is about 108, which is typical in genetic studies of complex diseases. The effect of interaction

is set to¢ = 0-08 under the alternative. The disease prevalence is assumed to be knavirfor

four intervals(—oo, —0-67], (—0-67, 0], (0,0-67], and(0-67, 4+00). In this setting, the interaction

effect explains about-0% of the variance of the disease status (Nagelkerke, 1991), while the
main effect ofY and the interaction effect together explain abow®%0. The chosen level of
variation explained by individual genetic markers is very typical in the genetic study of complex
trait, such as various common cancers. The odds ratio for having one more copy of higher risk
allele is rarely over b in cancers. It is commonly accepted that risks for most complex diseases
are jointly affected by many genetic loci, with each having a very minimal effect. For example,
for breast cancer and prostate cancer, the averaged variation explained by a single genetic marker
is about 025% (Park et al., 2010). We expect that the interaction effect is even weaker, as there
are very few interactions, either gene by gene, or gene by environment, that have been detected
so far.

We consider the following three scenarios: (1) the true prevalence is known without uncer-
tainty, called scenario S1; (2) the prevalence is estimated through a cohort study from which the
case-control study is sampled, called scenario S2; (3) the prevalence is estimated from a separate
cohort study, called scenario S3. We estimated the scale parameter in thexgcdistiibution
using the proposed bootstrap procedure viith= 500 in scenarios S2 and S3. The type | errors
and powers of our test and the likelihood ratio test based on the logistic regression model are
summarized in Table 2. In Table 3, we provide the estimated bias and standard deviation for each
of the scenarios. The simulation results suggest that our test can maintain the type | error prop-
erly and is more powerful than the likelihood ratio test based on the logistic regression model.
Further, the use of auxiliary information can improve the estimated efficiengyaaflé, but the
improvement ofy is limited.

Table 2.Typel error (%) and power(%) comparison in

three scenarios in the setting of genetic association: The

results for each scenario are based @000 simulated

datasets, each consisting 2000cases an@000controls,
with (3,~) = (1-00,0-08)

Type | error (%) Power (%)
£€=0 £=1008
Scenario Logistic  Proposed Logistic  Proposed
S1 47 51 266 835
S2 57 54 287 767
S3 56 55 261 771
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Table 3. Bias and standard deviation (in parentheses)

comparison in three scenarios in the setting of genetic as-

sociation: The results for each scenario aré00x the

actual values and are based di®00simulated datasets,
each consisting 02000cases an®000controls

Scenario B=100 ~=008 ¢&=0-08
s1 Logistic 0(70) —1(64) 1 (60)
Proposed 4 (28) 0 (60) —4(25)
S2 Logistic 0(74) 1(66) 1(59)
Proposed 0(33) 3(63) —1(29)
s3 Logistic 8(72) 3(65) —4(59)
Proposed 1(32) 4(62) —2(29)
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