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This is a supplementary document to the corresponding paper submitted toBiometrika. We 20

summarize the main results in Section 1 and present some preliminary preparation in Section
2. The proofs of Theorem 1, Corollary 1, and Theorem 2 are given in Sections 3, 4, and 5,
respectively. More simulation results are provided in Section 6.

1. MAIN RESULTS

THEOREM 1. Supposeρ = n1/n0 remains constant asn → ∞ andρ ∈ (0, 1). Under regu- 25

larity conditions, asn goes to infinity,

n1/2(θ̂ − θ0)→N(0, Σ)

in distribution, whereΣ = J−1 − ρ−1(1 + ρ)2(1, 1, 0, 0, 0)T(1, 1, 0, 0, 0) and J = UV −1UT.
The matricesU andV are defined in(A4) of the main article.

COROLLARY 1. Let θ02 = (β0, γ0, ξ0)T be the true value ofθ2 and let θ̂2L be the maximum
likelihood estimator ofθ2 based on logistic regression in the absence of auxiliary information.30

Under the conditions of Theorem1, we have:

(a) if I = 1, the asymptotic variance ofn1/2(θ̂2 − θ02) is the same as that ofn1/2(θ̂2L − θ02);
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(b) if I > 1, the difference of the asymptotic covariance matrices ofn1/2(θ̂2 − θ02) and
n1/2(θ̂2L − θ02) is non-positive-definite; and
(c) whenI > 1, the asymptotic covariance matrix ofn1/2(θ̂2 − θ02) can not decrease if an35

estimating equation in(4) of the main article is dropped.

THEOREM 2. Under the conditions of Theorem1, asn goes to infinity, the empirical likeli-
hood ratio statisticR(0)→χ2

1 in distribution if ξ = 0.

2. PRELIMINARY PREPARATION

We need some notation. LetZ = (X,Y,XY )T andZi = (Xi, Yi, XiYi)T. Then

δ(X,Y ; θ) = exp(α∗ + θT
2 Z).

For the auxiliary information, recall thatg(X,Y ; θ) =
{
g1(X,Y ; θ), . . . , gI(X,Y ; θ)

}T
. Fur-40

ther,

E0{δ(X,Y ; θ) − 1} = 0, E0{g(X,Y ; θ)} = 0.

HereE0(∙) means taking the expectation underf(x, y | D = 0), the joint distribution of(X,Y )
under the control group. Similarly,E1(∙) means taking the expectation underf(x, y | D = 1),
the joint distribution of(X,Y ) under the case group.

With the notation introduced above, the profile likelihood`(θ) can be written

`(θ) =
n∑

i=1

Di(α
∗ + θT

2 Zi) −
n∑

i=1

log[1 + λ{δ(Xi, Yi; θ) − 1} + tTg(Xi, Yi; θ)]

with the Lagrange multipliersλ andt being determined by

n∑

i=1

δ(Xi, Yi; θ) − 1
1 + λ{δ(Xi, Yi; θ) − 1} + tTg(Xi, Yi; θ)

= 0,

n∑

i=1

g(Xi, Yi; θ)
1 + λ{δ(Xi, Yi; θ) − 1} + tTg(Xi, Yi; θ)

= 0.

The true values ofλ andt areλ0 = n1/n and0, respectively.45

We note that the profile likelihood̀(θ) can be written as̀(θ) = inf t,λ l(θ, t, λ) with

l(θ, t, λ) =
n∑

i=1

Di(α
∗ + θT

2 Zi) −
n∑

i=1

log[1 + λ{δ(Xi, Yi; θ) − 1} + tTg(Xi, Yi; θ)].

Equivalently, `(θ) = l(θ, t, λ) with t and λ being the solution to∂l(θ, t, λ)/∂t = 0 and
∂l(θ, t, λ)/∂λ = 0.

To investigate the asymptotic properties ofθ̂, we need its approximation, which can be ob-
tained via the second-order Taylor expansion onl(θ, t, λ).
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2∙1. First derivatives ofl(θ, t, λ) 50

We first calculate the first derivatives ofl(θ, t, λ), which are as follows:

∂l(θ, t, λ)
∂η

= −
n∑

i=1

tT∂g(Xi, Yi; θ)/∂η

1 + λ{δ(Xi, Yi; θ) − 1} + tTg(Xi, Yi; θ)
, (1)

∂l(θ, t, λ)
∂α∗ =

n∑

i=1

Di −
n∑

i=1

λδ(Xi, Yi; θ) + tT∂g(Xi, Yi; θ)/∂α∗

1 + λ{δ(Xi, Yi; θ) − 1} + tTg(Xi, Yi; θ)
, (2)

∂l(θ, t, λ)
∂θ2

=
n∑

i=1

DiZi −
n∑

i=1

λδ(Xi, Yi; θ)Zi + {∂gT(Xi, Yi; θ)/∂θ2}t
1 + λ{δ(Xi, Yi; θ) − 1} + tTg(Xi, Yi; θ)

, (3)

∂l(θ, t, λ)
∂λ

= −
n∑

i=1

δ(Xi, Yi; θ) − 1
1 + λ{δ(Xi, Yi; θ) − 1} + tTg(Xi, Yi; θ)

, (4)

∂l(θ, t, λ)
∂t

= −
n∑

i=1

g(Xi, Yi; θ)
1 + λ{δ(Xi, Yi; θ) − 1} + tTg(Xi, Yi; θ)

. (5)

Setting (1)–(2) and (4)–(5) equal to 0 atθ = θ̂, t = t̂, and λ = λ̂ and noting that
∂g(X,Y ; θ)/∂η = −∂g(X,Y ; θ)/∂α∗, we get

λ̂ = n1/n = λ0. (6)

Recall thatρ = n1/n0, ω = (θT, tT)T, andω0 = (θT
0 , 0)T is the true value ofω. Let δi =

δ(Xi, Yi; θ0) andΔi = 1 + ρδi. Then 55

∂l(θ0, 0, λ0)
∂ω

=








∂l(θ0,0,λ0)
∂η

∂l(θ0,0,λ0)
∂α∗

∂l(θ0,0,λ0)
∂θ2

∂l(θ0,0,λ0)
∂t








=







0
Sn2

Sn3

Sn4





 (7)

with

Sn2 = n1 − ρ
n∑

i=1

δi

Δi
, Sn3 =

n∑

i=1

DiZi − ρ
n∑

i=1

δiZi

Δi
, Sn4 = −(1 + ρ)

n∑

i=1

g(Xi, Yi; θ0)
Δi

.

Further, let

Sn = (Sn2, S
T
n3, S

T
n4)

T. (8)

2∙2. Second derivatives ofl(θ, t, λ)

We next calculate the second derivatives ofl(θ, t, λ) with respect toθ andt. Sinceλ̂ = λ0, in
the following derivation we setλ to λ0. After some calculation, it can be verified that the second60

derivatives ofl(θ, t, λ0) atω = ω0 are

∂2l(θ0, 0, λ0)
∂ω∂ωT

=











∂2l(θ0,0,λ0)
∂η2

∂2l(θ0,0,λ0)
∂η∂α∗

∂2l(θ0,0,λ0)

∂η∂θT
2

∂2l(θ0,0,λ0)
∂η∂tT

∂2l(θ0,0,λ0)
∂η∂α∗

∂2l(θ0,0,λ0)
∂(α∗)2

∂2l(θ0,0,λ0)

∂α∗∂θT
2

∂2l(θ0,0,λ0)
∂α∗∂tT

∂2l(θ0,0,λ0)
∂η∂θ2

∂2l(θ0,0,λ0)
∂α∗∂θ2

∂2l(θ0,0,λ0)

∂θ2∂θT
2

∂2l(θ0,0,λ0)
∂θ2∂tT

∂2l(θ0,0,λ0)
∂η∂t

∂2l(θ0,0,λ0)
∂α∗∂t

∂2l(θ0,0,λ0)

∂t∂θT
2

∂2l(θ0,0,λ0)
∂t∂tT











(9)
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with

∂2l(θ0, 0, λ0)
∂η2

= 0,

∂2l(θ0, 0, λ0)
∂η∂α∗ = 0,

∂2l(θ0, 0, λ0)
∂η∂θT

2

= 0,

∂2l(θ0, 0, λ0)
∂η∂tT

= −
n∑

i=1

(1 + ρ)∂gT(Xi, Yi; θ0)/∂η

Δi
,

∂2l(θ0, 0, λ0)
∂(α∗)2

= −
n∑

i=1

ρδi

Δ2
i

,

∂2l(θ0, 0, λ0)
∂α∗∂θT

2

= −
n∑

i=1

ρδiZ
T
i

Δ2
i

,

∂2l(θ0, 0, λ0)
∂α∗∂tT

= (1 + ρ)
n∑

i=1

∂gT(Xi, Yi; θ0)/∂η

Δi
+ ρ(1 + ρ)

n∑

i=1

δig
τ (Xi, Yi; θ0)

Δ2
i

,

∂2l(θ0, 0, λ0)
∂θ2∂θT

2

= −
n∑

i=1

ρδiZiZ
T
i

Δ2
i

,

∂2l(θ0, 0, λ0)
∂θ2∂tT

= −(1 + ρ)
n∑

i=1

∂gT(Xi, Yi; θ0)/∂θ2

Δi
+ ρ(1 + ρ)

n∑

i=1

δiZig
T(Xi, Yi; θ0)

Δi
,

∂2l(θ0, 0, λ0)
∂t∂tT

= (1 + ρ)2
n∑

i=1

g(Xi, Yi; θ0)gT(Xi, Yi; θ0)
Δ2

i

.

2∙3. Some useful technical lemmas

When deriving the asymptotic distribution ofθ̂, we need to useE
{

∂2l(θ0,0,λ0)
∂ω∂ωT

}
and the ex-

pectation and variance ofSn defined in (8). We need the following lemma to simplify our calcu-65

lation.

LEMMA 1. Let h(Z) be an arbitrary function ofZ. Further, letδ0 = δ(X,Y ; θ0) andΔ0 =
1 + ρδ0. Then we have

E1{H(Z)} = E0{δ0H(Z)}

and

E

{
n∑

i=1

h(Zi)

}

=
n

1 + ρ
E0 {Δ0h(Z)} .

Proof. Let z = (x, y, xy)T. Then

E1{H(Z)} =
∫

h(z)dF1(x, y).
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With dF1(x, y) = δ(x, y; θ0)dF0(x, y), we have that

E1{H(Z)} =
∫

δ(x, y; θ0)h(z)dF0(x, y) = E{δ0h(Z)}.

This completes the proof of the first part.
For the second part, we have

E

{
n∑

i=1

h(Zi)

}

= n1E1{h(Z)} + n0E0{h(Z)} = n1E{δ0h(Z)} + n0E0{h(Z)}.

Further,ρ = n1/n0 implies thatn0 = n/(1 + ρ) andn1 = nρ/(1 + ρ). Therefore,

E

{
n∑

i=1

h(Zi)

}

=
n

1 + ρ
E0{(ρδ0 + 1)h(Z)} =

n

1 + ρ
E0 {Δ0h(Z)} .

This completes the proof of the second part. �

With the help of Lemma 1, we findE
{

∂2l(θ0,0,λ0)
∂ω∂ωT

}
in the next lemma.

LEMMA 2. WithE
{

∂2l(θ0,0,λ0)
∂ω∂ωT

}
defined in(9), we have 70

1
n

E

{
∂2l(θ0, 0, λ0)

∂ω∂ωT

}

=







0 0 0 −A14

0 −A22 −A23 −A24

0 −A32 −A33 −A34

−A41 −A42 −A43 A44







with

A14 = AT
41 = E0

{
∂gT(X,Y ; θ0)

∂η

}

, (10)

A22 =
ρ

1 + ρ
E0

(
δ0

Δ0

)

, (11)

A23 = AT
32 =

ρ

1 + ρ
E0

(
δ0Z

T

Δ0

)

, (12)

A24 = AT
42 = −E0

{
∂gT(X,Y ; θ0)

∂η

}

+ E0

{
gT(X,Y ; θ0)

Δ0

}

, (13)

A33 =
ρ

1 + ρ
E0

(
δ0ZZT

Δ0

)

, (14)

A34 = AT
43 = E0

{
∂gT(X,Y ; θ0)

∂θ2

}

− ρ

{
δ0ZgT(X,Y ; θ0)

Δ0

}

, (15)

A44 = (1 + ρ)E0

{
g(X,Y ; θ0)gT(X,Y ; θ0)

Δ0

}

. (16)

Proof. We verify only that

1
n

E

{
∂2l(θ0, 0, λ0)

∂α∗∂tT

}

= −A24 = E0

{
∂gT(X,Y ; θ0)

∂η

}

− E0

{
gT(X,Y ; θ0)

Δ0

}

. (17)

For the other parts, the procedure and idea are similar and are omitted.
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Recall that

∂2l(θ0, 0, λ0)
∂α∗∂tT

= (1 + ρ)
n∑

i=1

∂gT(Xi, Yi; θ0)/∂η

Δi
+ ρ(1 + ρ)

n∑

i=1

δig
τ (Xi, Yi; θ0)

Δ2
i

.

Then

E

{
∂2l(θ0, 0, λ0)

∂α∗∂tT

}

= (1 + ρ)E

{
n∑

i=1

∂gT(Xi, Yi; θ0)/∂η

Δi

}

+ ρ(1 + ρ)E

{
n∑

i=1

δig
τ (Xi, Yi; θ0)

Δ2
i

}

.

(18)
Applying Lemma 1 to the two terms on the right-hand side of (18), we have75

(1 + ρ)E

{
n∑

i=1

∂gT(Xi, Yi; θ0)/∂η

Δi

}

= nE0

{
∂gT(X,Y ; θ0)

∂η

}

(19)

and

ρ(1 + ρ)E

{
n∑

i=1

δig
τ (Xi, Yi; θ0)

Δ2
i

}

= nρE0

{
δ0g

τ (X,Y ; θ0)
Δ0

}

. (20)

Recall thatΔ0 = 1 + ρδ0. Then

δ0 =
Δ0 − 1

ρ

and

E0

{
δ0g(X,Y ; θ0)

Δ0

}

=
1
ρ

[

E0 {g(X,Y ; θ0)} − E0

{
g(X,Y ; θ0)

Δ0

}]

= −
1
ρ
E0

{
g(X,Y ; θ0)

Δ0

}

.

(21)
The last step in (21) follows from the fact thatE0 {g(X,Y ; θ0)} = 0.

Substituting (21) into (20) gives80

ρ(1 + ρ)E

{
n∑

i=1

δig
τ (Xi, Yi; θ0)

Δ2
i

}

= −nE0

{
gT(X,Y ; θ0)

Δ0

}

. (22)

Combining (18), (19), and (22), we verify that (17) is correct. This completes the proof of
Lemma 2. �

The final lemma presents the expectation and variance ofSn.

LEMMA 3. WithSn defined in(8), we have

E(Sn) = 0

and

1
n

var(Sn) =




A22 A23 0
A32 A33 0
0 0 A44



−
(1 + ρ)2

ρ




A22

A32

A42 + A41








A22

A32

A42 + A41





T

.
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Proof. For E(Sn), we show only thatE(Sn3) = 0. The other parts,E(Sn2) = 0 and
E(Sn4) = 0, can be verified using Lemma 1 directly. Recall that

Sn3 =
n∑

i=1

DiZi − ρ
n∑

i=1

δiZi

Δi
.

Applying Lemma 1 and noting thatn1 = nρ/(1 + ρ), we have that

E(Sn3) = n1E1(Z) −
nρ

1 + ρ
E(δ0Z) =

nρ

1 + ρ
E0(δ0Z) −

nρ

1 + ρ
E(δ0Z) = 0.

Forn−1var(Sn), we verify only that 85

var(Sn4) = nA44 −
n(1 + ρ)2

ρ
(A42 + A41)(A42 + A41)

T. (23)

The other parts, again, can be similarly checked.
Recall that

Sn4 = −(1 + ρ)
n∑

i=1

g(Xi, Yi; θ0)
Δi

.

Then

var(Sn4) = n1(1 + ρ)2var1

{
g(X,Y ; θ0)

Δ0

}

+ n0(1 + ρ)2var0

{
g(X,Y ; θ0)

Δ0

}

, (24)

wherevar1(∙) and var0(∙) mean that the variances are calculated underf(x, y | D = 1) and
f(x, y | D = 0), respectively.

Applying Lemma 1, we have 90

var1

{
g(X,Y ; θ0)

Δ0

}

= E1

{
g(X,Y ; θ0)gT(X,Y ; θ0)

Δ2
0

}

− E1

{
g(X,Y ; θ0)

Δ0

}

E1

{
gT(X,Y ; θ0)

Δ0

}

= E0

{
δ0g(X,Y ; θ0)gT(X,Y ; θ0)

Δ2
0

}

− E0

{
δ0g(X,Y ; θ0)

Δ0

}

E0

{
δ0g

T(X,Y ; θ0)
Δ0

}

= E0

{
δ0g(X,Y ; θ0)gT(X,Y ; θ0)

Δ2
0

}

−
1
ρ2

E0

{
g(X,Y ; θ0)

Δ0

}

E0

{
gT(X,Y ; θ0)

Δ0

}

, (25)

where we have used the result in (21).
Similarly, we get

var0

{
g(X,Y ; θ0)

Δ0

}

= E0

{
g(X,Y ; θ0)gT(X,Y ; θ0)

Δ2
0

}

− E0

{
g(X,Y ; θ0)

Δ0

}

E0

{
gT(X,Y ; θ0)

Δ0

}

.

(26)
Combining (24)–(26), we obtain

var(Sn4) = E0

{
(n1δ0 + n0)(1 + ρ)2g(X,Y ; θ0)gT(X,Y ; θ0)

Δ2
0

}

−(n1/ρ2 + n0)(1 + ρ)2E0

{
g(X,Y ; θ0)

Δ0

}

E0

{
gT(X,Y ; θ0)

Δ0

}

.
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Sincen1 = nρ/(1 + ρ), n0 = n/(1 + ρ), andΔ0 = 1 + ρδ0, we can simplifyvar(Sn4) to

var(Sn4) = n(1 + ρ)E0

{
g(X,Y ; θ0)gT(X,Y ; θ0)

Δ2
0

}

−
n(1 + ρ)2

ρ
E0

{
g(X,Y ; θ0)

Δ0

}

E0

{
gT(X,Y ; θ0)

Δ0

}

.

From (10)–(16), we notice that

n(1 + ρ)E0

{
g(X,Y ; θ0)gT(X,Y ; θ0)

Δ2
0

}

= nA44

and

E0

{
g(X,Y ; θ0)

Δ0

}

= A41 + A42.

Hence,

var(Sn4) = nA44 −
n(1 + ρ)2

ρ
(A41 + A42)(A41 + A42)

T

as claimed in (23). This completes the proof of Lemma 3. �95

3. PROOF OFTHEOREM 1

Using a similar argument to that used in the proofs of Lemma 1 and Theorem 1 of Qin &
Lawless (1994), we have thatθ̂ = θ0 + Op(n−1/2) andt̂ = Op(n−1/2). Next we investigate the
asymptotic approximation of̂θ.

The maximum likelihood estimator̂θ of θ and the associated Lagrange multipliert̂ must satisfy

∂l(θ̂, t̂, λ̂)
∂ω

= 0.

Recall that̂λ = λ0. Then

∂l(θ̂, t̂, λ0)
∂ω

= 0.

Applying a first-order expansion to∂l(θ̂,t̂,λ0)
∂ω gives100

0 =
∂l(θ0, 0, λ0)

∂ω
+

∂2l(θ0, 0, λ0)
∂ω∂ωT

(ω̂ − ω0) + op(n
1/2). (27)

The law of large numbers implies that

∂2l(θ0, 0, λ0)
∂ω∂ωT

= E

{
∂2l(θ0, 0, λ0)

∂ω∂ωT

}

+ op(n). (28)

Combining (27) and (28), we get

E

{
∂2l(θ0, 0, λ0)

∂ω∂ωT

}

(ω̂ − ω0) = −
∂l(θ0, 0, λ0)

∂ω
+ op(n

1/2). (29)
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Using the forms ofE
{

∂2l(θ0,0,λ0)
∂ω∂ωT

}
and ∂l(θ0,0,λ0)

∂ω provided in Lemma 2 and Equation (7), re-

spectively, we have



0 0 0
0 −A22 −A23

0 −A32 −A33



 (θ̂ − θ0) −




A14

A24

A34



 t̂ = −n−1




0

Sn2

Sn3



+ op(n
−1/2), (30)

− (A41, A42, A43) (θ̂ − θ0) + A44t̂ = −n−1Sn4 + op(n
−1/2). (31)

From (31), we have 105

t̂ = A−1
44 (A41, A42, A43) (θ̂ − θ0) − A−1

44 (n−1Sn4) + op(n
−1/2). (32)

Substituting (32) into (30) gives



A14A

−1
44 A41 A14A

−1
44 A42 A14A

−1
44 A43

A24A
−1
44 A41 A24A

−1
44 A42 + A22 A24A

−1
44 A43 + A23

A34A
−1
44 A41 A34A

−1
44 A42 + A32 A34A

−1
44 A43 + A33



 (θ̂ − θ0)

=




0 0 A14A

−1
44

1 0 A24A
−1
44

0 I3 A34A
−1
44




(
n−1Sn

)
+ op(n

−1/2). (33)

HereI3 denotes the3 × 3 identity matrix.
Recall that

U =




0 0 A14

A22 A23 A24

A32 A33 A34



 andV =




A22 A23 0
A32 A33 0
0 0 A44



 . (34)

After some algebra, it can be verified that the coefficient matrices forθ̂ − θ0 andn−1Sn in (33)
areJ = UV −1UT andUV −1, respectively. Then (33) simplifies to 110

J(θ̂ − θ0) = UV −1
(
n−1Sn

)
+ op(n

−1/2). (35)

Therefore,

n1/2(θ̂ − θ0) = J−1UV −1
(
n−1/2Sn

)
+ op(1).

Via Lemma 3 and the central limit theorem, we conclude that

n1/2(θ̂ − θ0)→N
(
0, Σ

)

in distribution with

Σ = {J−1UV −1}{var(n−1/2Sn)}{V −1UTJ−1}. (36)

In the last step, we simplify the form ofΣ. Let

c =




A22

A32

A42 + A41



 .

Thenvar(n−1/2Sn) provided in Lemma 3 can be written in the following form: 115

var(n−1/2Sn) = V −
(1 + ρ)2

ρ
ccT. (37)
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Together with (36), (37) implies that

Σ = J−1 −
(1 + ρ)2

ρ
J−1UV −1ccTV −1UTJ−1.

Further, note that

UV −1c =




0 0 A14A

−1
44

1 0 A24A
−1
44

0 I3 A34A
−1
44








A22

A32

A42 + A41



 =




A14A

−1
44 A41 + A14A

−1
44 A42

A24A
−1
44 A41 + A24A

−1
44 A42 + A22

A34A
−1
44 A41 + A34A

−1
44 A42 + A32



 ,

which is the sum of the first two columns ofJ . Hence,

J−1UV −1c =









1
0
0
0
0









+









0
1
0
0
0









=









1
1
0
0
0









.

Therefore,

Σ = J−1 −
(1 + ρ)2

ρ
(1, 1, 0, 0, 0)T(1, 1, 0, 0, 0)

as claimed in Theorem 1.

4. PROOF OFCOROLLARY 1

Part (a). WhenI = 1 or there is only one estimating equation for the auxiliary information,U
becomes a square matrix. Then (35) implies that

UT(θ̂ − θ0) = n−1Sn + op(n
−1/2).

That is,



0 A22 A23

0 A32 A33

A41 A42 A43








η̂ − η0

α̂∗ − α∗
0

θ̂2 − θ02



 = n−1




Sn2

Sn3

Sn4



+ op(n
−1/2).

Therefore,
(

A22 A23

A32 A33

)(
α̂∗ − α∗

0

θ̂2 − θ02

)

= n−1

(
Sn2

Sn3

)

+ op(n
−1/2).

With (7), we further get that120

(
α̂∗ − α∗

0

θ̂2 − θ02

)

= n−1

(
A22 A23

A32 A33

)−1
(

∂l(θ0,0,λ0)
∂α∗

∂l(θ0,0,λ0)
∂θ2

)

+ op(n
−1/2). (38)

Let (α̂∗
L, θ̂T

2L)T be the maximum likelihood estimator of(α∗, θT
2 )T based on the logistic re-

gression model. Qin & Zhang (1997) showed that(α̂∗
L − α∗

0, θ̂
T
2L − θT

02)
T has the same approxi-

mation as in (38):
(

α̂∗
L − α∗

0

θ̂2L − θ02

)

= n−1

(
A22 A23

A32 A33

)−1
(

∂l(θ0,0,λ0)
∂α∗

∂l(θ0,0,λ0)
∂θ2

)

+ op(n
−1/2).
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Hence, the asymptotic variances ofn1/2(θ̂2 − θ02) andn1/2(θ̂2L − θ02) are the same.
Parts (b, c). For1 < r ≤ I, let Ur, Vr, Jr, Σr denote the correspondingU , V , J , andΣ

matrices obtained by using only the firstr estimating equations ofg(X,Y ; θ). With the result in
Part (a), to finish the proof of Parts (b) and (c), it suffices to show that

Σr ≤ Σr−1

or equivalently 125

Jr ≥ Jr−1. (39)

From (34), we notice thatUr has one more column thanUr−1. Let this column beur. Then
Ur = (Ur−1, ur). Further, using the arguments in the proof of Corollary 1 of Qin & Lawless
(1994; p. 318), we get

V −1
r ≥

(
V −1

r−1 0
0 0

)

.

Therefore,

Jr = UrV
−1
r U τ

r ≥ (Ur−1, ur)

(
V −1

r−1 0
0 0

)

(Ur−1, ur)
τ = Ur−1V

−1
r−1U

τ
r−1 = Jr−1,

as required by (39). This completes the proof of Corollary 1.

5. PROOF OFTHEOREM 2

Recall that̃θ is the maximum empirical likelihood estimator ofθ under the null hypothesis of
ξ = 0, andλ̃ andt̃ are the corresponding Lagrange multipliers. Note thatθ̃, λ̃, andt̃ must satisfy

∂l(θ̃0, t̃, λ̃)
∂η

= 0,
∂l(θ̃0, t̃, λ̃)

∂α∗ = 0,
∂l(θ̃0, t̃, λ̃)

∂t
= 0.

Via the method used to derivêλ in (6), we similarly have

λ̃ = λ̂ =
n1

n
= λ0.

Hence, in the following derivation we setλ to λ0.
We now investigate the approximation ofl(θ, t, λ0) whenθ andt are inn−1/2 neighbourhoods

of θ0 and0, respectively, which will help us to find an asymptotic approximation of the profile130

likelihood `(θ).
Applying a second-order Taylor expansion tol(θ, t, λ0) gives

l(θ, t, λ0) = l(θ0, 0, λ0) + (ω − ω0)
T ∂l(θ0, 0, λ0)

∂ω

+
1
2
(ω − ω0)

TE

{
∂2l(θ0, 0, λ0)

∂ωωT

}

(ω − ω0) + op(1), (40)

where we have used the result in (29) to simplify the second derivatives. Setting the derivative of
l(θ, t, λ0) with respect tot equal to zero and using a similar technique to derive (32), we get

t = A−1
44 (A41, A42, A43) (θ − θ0) − A−1

44 (n−1Sn4) + op(n
−1/2). (41)



12 J. QIN, H. ZHANG, P. LI , D. ALBANES, AND K. Y U

Substituting (41) into (40), we get an approximation of the profile likelihood,135

`(θ) = l(θ0, 0, λ0) + (θ − θ0)TUV −1Sn −
n

2
(θ − θ0)TJ(θ − θ0) + op(1). (42)

To investigate the limiting distribution of the empirical likelihood ratio test for testingH0 : ξ =
0, we further profile outθ∗ = (η, α∗, β, γ)T and obtain the profile likelihood ofξ only. Denote
the true value ofθ∗ by θ∗0. Let

vn = UV −1Sn =

(
vn1

vn2

)

(43)

with vn1 consisting of the first four elements ofvn andvn2 being the last element ofvn. We
partitionJ accordingly as

J =

(
J11 J12

J21 J22

)

.

Then the profile likelihood in (42) becomes

`(θ) = l(θ0, 0, λ0) + (θ∗ − θ∗0)
Tvn1 + (ξ − ξ0)vn2 −

n

2
(θ∗ − θ∗0)

TJ11(θ
∗ − θ∗0)

−n(θ∗ − θ∗0)
TJ12(ξ − ξ0) −

n

2
J22(ξ − ξ0)

2 + op(1). (44)

Setting the derivative of̀(θ) with respect toθ∗ equal to zero, we get140

θ∗ − θ∗0 = n−1J−1
11 vn1 − J−1

11 J12(ξ − ξ0) + op(n
−1/2). (45)

Substituting (45) into (44), we obtain an approximation of the profile likelihood ofξ,

`∗(ξ) = l(θ0, 0, λ0) +
n

2
vT
n1J

−1
11 vn1 + (ξ − ξ0)(vn2 − J21J

−1
11 vn1)

−
n

2
(ξ − ξ0)

2(J22 − J21J
−1
11 J12) + op(1).

Then the empirical likelihood ratio test for testingH0 : ξ = ξ0 = 0 is

R(0) = 2

{

sup
ξ

`∗(ξ) − `∗(0)

}

=
(vn2 − J21J

−1
11 vn1)2

n(J22 − J21J
−1
11 J12)

+ op(1).

To show that the limiting distribution ofR(0) is χ2
1, we need to argue that

vn2 − J21J
−1
11 vn1

{n(J22 − J21J
−1
11 J12)}1/2

→N(0, 1) (46)

in distribution. Using (35) and (43), we note that

n−1/2(vn2 − J21J
−1
11 vn1) = (−J21J

−1
11 , 1)UV −1(n−1/2Sn) = (−J21J

−1
11 , 1)J(θ̂ − θ0) + op(1).

By Theorem 1, we have

n−1/2(vn2 − J21J
−1
11 vn1)→N

(
0, (−J21J

−1
11 , 1)JΣJ(−J21J

−1
11 , 1)T

)

in distribution. Therefore, to prove that (46) is correct, we need to verify that145

(−J21J
−1
11 , 1)JΣJ(−J21J

−1
11 , 1)T = J22 − J21J

−1
11 J12. (47)
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Recall the form ofΣ in Theorem 1. We have

(−J21J
−1
11 , 1)JΣJ(−J21J

−1
11 , 1)T

= (−J21J
−1
11 , 1)J(−J21J

−1
11 , 1)T −

(1 + ρ)2

ρ
{(−J21J

−1
11 , 1)J(1, 1, 0, 0, 0)T}2. (48)

Note that

(−J21J
−1
11 , 1)J = (0, J22 − J21J

−1
11 J12).

Hence, for the two terms in (48), we have

(−J21J
−1
11 , 1)J(−J21J

−1
11 , 1)T = (0, J22 − J21J

−1
11 J12)(−J21J

−1
11 , 1)T = J22 − J21J

−1
11 J12

(49)
and

{(−J21J
−1
11 , 1)J(1, 1, 0, 0, 0)T}2 = {(0, J22 − J21J

−1
11 J12)(1, 1, 0, 0, 0)T}2 = 0. (50)

Combining (48)–(50), we verify that (47) is correct. This completes the proof of Theorem 2.

6. MORE SIMULATION RESULTS 150

6∙1. Sensitivity with biased auxiliary information
We assess the sensitivity of the proposed testR(0) through simulations under the nullH0 :

ξ = 0 using misspecified disease prevalence. Supposeφ̃(ai−1, ai) = κφ(ai−1, ai), i = 1, . . . , I ,
instead of the true prevalence, is used in the test. We considerκ = 0∙90, 0∙95, 1∙05, or 1∙10.
The other parameters are the same as those used in scenario 1 in the main article. For each155

κ, the type I error ofR(0) at the nominal level 0∙05 is estimated using 1000 replications of
the simulation, each with 2000 cases and 2000 controls. The results are summarized in Table 1
below, suggesting that our test cannot control the type I error properly if the disease prevalence
is incorrectly specified. This is expected; it is equivalent to the model misspecification problem
in full parametric inference. 160

Table 1.TypeI error (%) of R(0) when we use
biased prevalencẽφ(ai−1, ai) = κφ(ai−1, ai),
i = 1, . . . , I rather than the true prevalence

φ(ai−1, ai), i = 1, . . . , I

κ 0∙90 0∙95 1∙05 1∙10
Type I error 8∙4 5∙9 7∙ 3 11∙4

6∙2. Simulation in the setting of genetic association
We evaluate the performance of our method in the setting of genetic association. LetX be

the continuous environmental risk factor with auxiliary information, andY the genotype at a
binary genetic marker. We codeY as 0, 1, or 2, representing the number of minor alleles in the
genotype. We set the minor allele frequency to 0∙4. We assume the following risk model:

log

{
pr(D = 1 | x, y)
pr(D = 0 | x, y)

}

= α + βx + γy + ξxy.
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In the simulation, we generateX from N(0, 1). The main effects ofX andY are set toβ = 1∙00
andγ = 0∙08, respectively. Note that the odds ratio for having one more copy of the minor allele
is about 1∙08, which is typical in genetic studies of complex diseases. The effect of interaction
is set toξ = 0∙08 under the alternative. The disease prevalence is assumed to be known forX in165

four intervals(−∞,−0∙67], (−0∙67, 0], (0, 0∙67], and(0∙67, +∞). In this setting, the interaction
effect explains about 0∙1% of the variance of the disease status (Nagelkerke, 1991), while the
main effect ofY and the interaction effect together explain about 0∙3%. The chosen level of
variation explained by individual genetic markers is very typical in the genetic study of complex
trait, such as various common cancers. The odds ratio for having one more copy of higher risk170

allele is rarely over 1∙5 in cancers. It is commonly accepted that risks for most complex diseases
are jointly affected by many genetic loci, with each having a very minimal effect. For example,
for breast cancer and prostate cancer, the averaged variation explained by a single genetic marker
is about 0∙25% (Park et al., 2010). We expect that the interaction effect is even weaker, as there
are very few interactions, either gene by gene, or gene by environment, that have been detected175

so far.
We consider the following three scenarios: (1) the true prevalence is known without uncer-

tainty, called scenario S1; (2) the prevalence is estimated through a cohort study from which the
case-control study is sampled, called scenario S2; (3) the prevalence is estimated from a separate
cohort study, called scenario S3. We estimated the scale parameter in the scaledχ2

1 distribution180

using the proposed bootstrap procedure withB = 500 in scenarios S2 and S3. The type I errors
and powers of our test and the likelihood ratio test based on the logistic regression model are
summarized in Table 2. In Table 3, we provide the estimated bias and standard deviation for each
of the scenarios. The simulation results suggest that our test can maintain the type I error prop-
erly and is more powerful than the likelihood ratio test based on the logistic regression model.185

Further, the use of auxiliary information can improve the estimated efficiency ofβ andξ, but the
improvement ofγ is limited.

Table 2.Type I error (%) and power(%) comparison in
three scenarios in the setting of genetic association: The
results for each scenario are based on1000 simulated
datasets, each consisting of2000cases and2000controls,

with (β, γ) = (1∙00, 0∙08)
Type I error (%) Power (%)

ξ = 0 ξ = 0∙08
Scenario Logistic Proposed Logistic Proposed

S1 4∙7 5∙1 26∙6 83∙5
S2 5∙7 5∙4 28∙7 76∙7
S3 5∙6 5∙5 26∙1 77∙1
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