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1. INTRODUCTION

This is a supplementary document to the corresponding paper submitted to Biometrika. It has

eight sections. §2 and §3 restate the regularity conditions and theorems given in the main article.

§4 gives the details of the technical proofs, and §5 describes some details of the numerical imple-

mentation of our method. §6 presents an alternative method suggested by an anonymous referee 20

and a numerical comparisons of this method and our method. §7 compares the performance of

the receiver operating characteristic curve estimates based on our method, the empirical cumu-

lative distribution function, the tilde estimates, and the f and g estimates given in §6. §8 gives

more discussion based on all the simulation results in §5 of the main paper.

2. TECHNICAL CONDITIONS 25

We restate Conditions 1–4 given in the main article, which are needed in our technical deriva-

tions. They are not necessarily the weakest. Note that f0(x), g0(x), θ0(x), and ψ0(x) are the true

values of f(x), g(x), θ(x), and ψ(x).

Condition 1. In the kernel estimates f̃n(x) and g̃m(x), the kernel K(·) has bounded support

and is continuous in R. 30

Note: Under this condition, ψ̂n,m(x) has bounded support and is continuous in x ∈ R. Without

loss of generality, we assume that the support is [an, bn].

Condition 2. Assume that f̃n(x) and g̃m(x) satisfy
∫
R |f̃n(x)− f0(x)|dx = O(αn),∫

R |g̃m(x)− g0(x)|dx = O(αn) almost surely, with αn → 0 as n→ ∞.
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Condition 3. For some a < b, f̃n(x) and g̃m(x) satisfy supx∈[a,b] |f̃n(x)− f0(x)| = o(1),35

supx∈[a,b] |f̃
′
n(x)− f ′0(x)| = o(1), supx∈[a,b] |g̃m(x)− g0(x)| = o(1), and supx∈[a,b] |g̃

′
m(x)−

g′0(x)| = o(1) almost surely, as n→ ∞.

Condition 4. Assume that f0(x), g0(x), f
′
0(x), and g′0(x) are all bounded on [a, b]. Further-

more, there exists a constant δ > 0 such that infx∈[a,b] θ
′
0(x) > δ and infx∈[a,b] ψ0(x) > δ.

In Conditions 2 and 3, we have assumed the asymptotic properties of f̃n(x) and g̃m(x). The-40

oretical developments of these properties based on different regularity conditions are widely

available in the literature. We list below one set of these conditions; they may not be the weakest

possible.

Based on Theorem 4.25 in Eggermont & LaRiccia (2001), Condition 2 is satisfied with αn =
n−2/5 if45

(i) K(x) is a bounded density and symmetric about 0, K ′(x) exists, and K ′ ∈ L1(R),
where Lp(R) =

{
h(x) :

∫
R |h(x)|pdx <∞

}
;

(ii) h ∝ n−1/5;

(iii) f0(x) and g0(x) are both second-order differentiable and satisfy f0, g0, f
′′
0 , g

′′
0 ∈ L1(R),∫

R |x|pf0(x)dx <∞, and
∫
R |x|pg0(x)dx <∞ for some p > 1.50

Based on Theorems A and C in Silverman (1978), Condition 3 is satisfied if

(i) for every x ∈ R, the derivative of the kernel function K ′(x) exists and is Lips-

chitz continuous. Further,
∫∞
−∞ |K ′(x)|dx <∞,

∫∞
−∞

∣∣x log |x|
∣∣1/2|dK(x)| <∞, and

∫∞
−∞

∣∣x log |x|
∣∣1/2|dK ′(x)| <∞. The Fourier transform of K(x) is not identically one

in any neighbourhood of zero;55

(ii) h→ 0 and n−1h−3 log 1/h → 0 as n→ ∞;

(iii) f ′0(x) and g′0(x) exist and are uniformly continuous.

3. THEOREMS AND COROLLARIES

Recall that we have the following constraint conditions for densities f(·) and g(·):

f(x) ≥ 0, g(x) ≥ 0,

∫

R
f(x)dx =

∫

R
g(x) = 1, (1)

f(x)/g(x) is nondecreasing in x. (2)

We have also used the following definitions of θ(·) and ψ(·):60

θ(x) =
λf(x)

λf(x) + (1− λ)g(x)
, ψ(x) = λf(x) + (1− λ)g(x), (3)

which gives

f(x) = θ(x)ψ(x)/λ, g(x) = {1− θ(x)}ψ(x)/(1 − λ). (4)

Furthermore, we have the following Proposition in the main article.

PROPOSITION 1. With the reparameterization in (3), f(·) and g(·) satisfy constraints (1) and

(2) if and only if θ(·) and ψ(·) satisfy

(a) ψ(x) ≥ 0 and
∫
R ψ(x)dx = 1;65
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(b) θ(x) ∈ [0, 1] and θ(x) is a nondecreasing function of x;

(c)
∫
R ψ(x)θ(x)dx = λ.

THEOREM 1. Assume Condition 1. Let

{θ̂n,m(x), ψ̂n,m(x)} = argmax
θ, ψ

ln,m(θ, ψ),

subject to (a) and (b) in Proposition 1. We have

(a) ψ̂n,m(x) = λf̃n(x) + (1− λ)g̃m(x); 70

(b) θ̂n,m(x) = argminθ
∫
R

{
θ̃n,m(x)− θ(x)

}2
ψ̂n,m(x)dx subject to (b) in Proposition 1,

where

θ̃n,m(x) =
λf̃(x)

λf̃(x) + (1− λ)g̃(x)
;

(c) ψ̂n,m(x) and θ̂n,m(x) satisfy (c) in Proposition 1.

Let θ̃(x), w(x) > 0 be functions defined on [a, b], and let θ̂ be the solution of the weighted

continuous isotonic regression, represented by

θ̂(x) = argmin
θ∈F

∫ b

a
{θ̃(x)− θ(x)}2w(x)dx, (5)

where F denotes the set of nondecreasing functions defined on [a, b].

THEOREM 2. Consider θ̂(x), θ̃(x), and w(x) defined above. Assume that both θ̃(x) and w(x) 75

are continuous functions defined on [a, b], and w(x) > 0 for every x ∈ [a, b]. Let H(t) > 0 be

a convex function defined on (−∞,∞), and let η(·) be an arbitrary nondecreasing function on

[a, b]. Then we have

∫ b

a
H{θ̂(x)− η(x)}w(x)dx ≤

∫ b

a
H{θ̃(x)− η(x)}w(x)dx. (6)

Let θ0(x) = λf0(x)/{λf0(x) + (1− λ)g0(x)} be the true value of θ(x), where f0(x) and

g0(x) are the true values of f(x) and g(x). We assume f0(x)/g0(x) is a nondecreasing function 80

of x, and so is θ0(x). The following corollary results from an application of Theorem 2.

COROLLARY 1. Assume Condition 1. Consider θ̂n,m(x) and ψ̂n,m(x) given in §2 of the main

article. Then for any p ≥ 1,
∫

R
|θ̂n,m(x)− θ0(x)|

pψ̂n,m(x)dx ≤

∫

R
|θ̃n,m(x)− θ0(x)|

pψ̂n,m(x)dx. (7)

THEOREM 3. Assume Conditions 1 and 2. Let f0(x) and g0(x) be the true values of f(x) and

g(x). We have 85

∫

R
|f̂n,m(x)− f0(x)|dx = O(αn), (8)

∫

R
|ĝn,m(x)− g0(x)|dx = O(αn), (9)

almost surely, where αn is the almost sure convergence rate of the integrated L1 error of f̃n(x)
and g̃m(x) assumed in Condition 2.
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THEOREM 4. Assume Conditions 1, 3, and 4. Let [a, b] ⊂ R be any interval satisfying Condi-

tions 3 and 4. Then (Chow & Teicher, 1997),

pr
{
θ̂n,m(x) 6= θ̃n,m(x) for some x ∈ (a, b), infinitely often

}
= 0. (10)

COROLLARY 2. Under Conditions 1, 3, and 4,90

pr
{
f̂n,m(x) 6= f̃n(x) for some x ∈ (a, b), infinitely often

}
= 0, (11)

pr
{
ĝn,m(x) 6= g̃m(x) for some x ∈ (a, b), infinitely often

}
= 0. (12)

THEOREM 5. Assume Conditions 1 and 2. For any t ∈ (0, 1), we have

R̂(t)−R0(t) = O(αn),

almost surely, where αn is given in Condition 2, and R0(t) is the true value of R(t).

4. TECHNICAL DETAILS

Proof of Theorem 1

Substituting (8) into (5) in the main article, we immediately have95

ln,m(θ, ψ) = ln,m,1(θ) + ln,m,2(ψ) + constant,

where

ln,m,1(θ) =

∫

R
λf̃n(x) log θ(x)dx+

∫

R
(1− λ)g̃m(x) log{1− θ(x)}dx, (13)

ln,m,2(ψ) =

∫

R
{λf̃n(x) + (1− λ)g̃m(x)} logψ(x)dx.

Note that ln,m,1(θ) depends only on θ; likewise, ln,m,2(ψ) depends only on ψ. Therefore,

θ̂n,m(x) = argmax
θ(x)

ln,m,1(θ) (14)

subject to Part (b) in Proposition 1; and

ψ̂n,m(x) = argmax
ψ(x)

ln,m,2(ψ) (15)

subject to Part (a) in Proposition 1. We consider the optimization problems in (14) and (15)

separately. The solution of (15) is available in the literature; see Eggermont & LaRiccia (2001),100

page 122. It is uniquely given by

ψ̂n,m(x) = λf̃n(x) + (1− λ)g̃m(x),

which proves the claim of Part (a).

For (14), based on Condition 1, we can rewrite ln,m,1(θ) in (13) as

ln,m,1(θ) =

∫ bn

an

[
λf̃n(x)

ψ̂n,m(x)
log θ(x) +

(1− λ)g̃m(x)

ψ̂n,m(x)
log{1− θ(x)}

]
ψ̂n,m(x)dx.
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By Example 2 in Groeneboom & Jongbloed (2010), the solution of the optimization problem

(14) is equivalent to the minimizer of 105

∫ bn

an

{
λf̃n(x)

ψ̂n,m(x)
− θ(x)

}2

ψ̂n,m(x)dx =

∫

R

{
θ̃(x)− θ(x)

}2
ψ̂n,m(x)dx

subject to Part (b) in Proposition 1. Noting that θ̃(x) = λf̃n(x)/ψ̂n,m(x), we obtain Part (b).

Finally, we show Part (c). Based on Part (b) and Equation (6) of Groeneboom & Jongbloed

(2010), we immediately have

∫ bn

an

{
θ̂n,m(x)− θ̃n,m(x)

}
ψ̂n,m(x)dx = 0,

which implies that
∫

R
θ̂n,m(x)ψ̂n,m(x)dx =

∫

R
λf̃n(t)dt = λ,

giving Part (c).

Proof of Theorem 2

We need the following lemma in our proof of Theorem 2. It is essentially based on the results 110

in Groeneboom & Jongbloed (2010).

LEMMA 1. Assume the conditions in Theorem 2.

(a) For any nondecreasing function τ(x) on [a, b] such that
∫ b
a τ

2(x)w(x)dx <∞, we have

∫ b

a
{θ̃(x)− θ̂(x)}τ(x)w(x)dx ≤ 0. (16)

(b) Let Lc = {x : θ̂(x) = c} be the level set. If Lc is nonempty, then Lc is either a singleton in

which θ̂(x) = θ̃(x), or a closed interval with a positive length, namely the level interval. The 115

number of level intervals with a positive length is at most countable. Furthermore,
∫

Lc

{
θ̃(x)− c

}
w(x)dx = 0. (17)

Proof : To show Part (a), let L{θ̃(x), θ(x)} =
∫ b
a {θ̃(x)− θ(x)}2w(x)dx. Referring to the

definition of θ̂(x) in (5), we have

L{θ̃(x), θ̂(x)} − L{θ̃(x), θ̂(x) + tτ(x)}

t
≤ 0, (18)

for an arbitrary t ≥ 0. On the other hand,

L{θ̃(x), θ̂(x)} − L{θ̃(x), θ̂(x) + tτ(x)}

t
= 2

∫ b

a
{θ̃(x)− θ̂(x)}τ(x)w(x)dx

−t

∫ b

a
τ2(x)w(x)dx. (19)

Combining (18) and (19) leads to (16) by making t→ 0+. 120

Part (b) and the proof are adapted from Lemma 2 in Groeneboom & Jongbloed (2010).
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We now move to the proof of Theorem 2. Since H(·) is convex,

H(v) ≥ H(u) + (v − u)h(u),

where h(·) is any determination of the derivative of H(·). Setting v = θ̃(x)− η(x) and u =

θ̂(x)− η(x), we obtain

∫ b

a
H{θ̃(x)− η(x)}w(x)dx ≥

∫ b

a
H{θ̂(x)− η(x)}w(x)dx

+

∫ b

a
{θ̃(x)− θ̂(x)}h

{
θ̂(x)− η(x)

}
w(x)dx.

To prove (6), it suffices to show that125

∫ b

a
{θ̃(x)− θ̂(x)}h

{
θ̂(x)− η(x)

}
w(x)dx ≥ 0. (20)

Based on Part (b) of Lemma 1, there exist at most a countable number of intervals [lk, uk]

and constants ck, k = 1, 2, . . ., such that θ̂(x) = ck when x ∈ [lk, uk]; θ̂(x) = θ̃(x) otherwise.

Therefore,

∫ b

a
{θ̃(x)− θ̂(x)}h

{
θ̂(x)− η(x)

}
w(x)dx =

∞∑

k=1

∫ uk

lk

{θ̃(x)− θ̂(x)}h
{
ck − η(x)

}
w(x)dx.

(21)

Next, we verify that for each k,

∫ uk

lk

{θ̃(x)− θ̂(x)}h
{
ck − η(x)

}
w(x)dx ≥ 0. (22)

Define130

τk(x) =





−h
{
ck − η(lk)

}
, x < lk

−h
{
ck − η(x)

}
, x ∈ [lk, uk]

−h
{
ck − η(uk)

}
, x > uk

. (23)

Clearly, since both h(·) and η(·) are nondecreasing functions, so is τk(x). Furthermore, it is easy

to verify that
∫ b
a τ

2
k (x)w(x) <∞. Applying Part (a) of Lemma 1, we have

∫ b

a
{θ̃(x)− θ̂(x)}τk(x)w(x)dx ≤ 0.

Let

J1k = h{ck − η(lk)}

∫ lk

a
{θ̃(x)− θ̂(x)}w(x)dx,

J2k = h{ck − η(uk)}

∫ b

uk

{θ̃(x)− θ̂(x)}w(x)dx,

J3k =

∫ uk

lk

{θ̃(x)− θ̂(x)}h{ck − η(x)}w(x)dx. (24)
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With the definition of τk(x) in (23), we get

∫ b

a
{θ̃(x)− θ̂(x)}τk(x)w(x)dx = −(J1k + J2k + J3k) ≤ 0,

which implies that

J1k + J2k + J3k ≥ 0. (25)

For J1k ,

J1k = h{ck − η(lk)}

∫ lk

a
{θ̃(x)− θ̂(x)}w(x)dx (26)

= h{ck − η(lk)}
∑

{j:uj≤lk}

∫ uj

lj

{θ̃(x)− cj}w(x)dx (27)

= 0, (28)

where from (26) to (27) we have applied Part (b) of Lemma 1; from (27) to (28) we have used

(17). Following the same procedure, we have 135

J2k = 0. (29)

(25), (28), and (29) lead to J3k ≥ 0, which with the definition of J3k in (24) leads to (22). This

together with (21) implies (20) and consequently the claim of this theorem.

Proof of Corollary 1

Based on Part (b) of Theorem 1 and Condition 1, we have

θ̂n,m(x) = argmin
θ

∫

R

{
θ̃n,m(x)− θ(x)

}2
ψ̂n,m(x)dx

= argmin
θ

∫ bn

an

{
θ̃n,m(x)− θ(x)

}2
ψ̂n,m(x)dx

subject to (b) in Proposition 1. Applying Theorem 4, we immediately have 140

∫ bn

an

|θ̂n,m(x)− θ0(x)|
pψ̂n,m(x)dx ≤

∫ bn

an

|θ̃n,m(x)− θ0(x)|
pψ̂n,m(x)dx,

which is equivalent to (7) with Condition 1.

Proof of Theorem 3

Applying Corollary 1 by setting p = 1, we have

∫

R
|θ̂n,m(x)− θ0(x)|ψ̂n,m(x)dx ≤

∫

R
|θ̃n,m(x)− θ0(x)|ψ̂n,m(x)dx. (30)
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Since θ̂n,m(x) = λf̂n,m(x)/ψ̂n,m(x) and θ0(x) = λf0(x)/ψ0(x), we have
∫

R
|θ̂n,m(x)− θ0(x)|ψ̂n,m(x)dx ≥ λ

∫

R
|f̂m,n(x)− f0(x)|dx

−λ

∫

R
|ψ̂n,m(x)/ψ0(x)− 1|f0(x)dx,

∫

R
|θ̃n,m(x)− θ0(x)|ψ̂n,m(x)dx ≤ λ

∫

R
|f̃n(x)− f0(x)|dx

+λ

∫

R
|ψ̂n,m(x)/ψ0(x)− 1|f0(x)dx. (31)

Combining (30) and (31) leads to145

∫

R
|f̂m,n(x)− f0(x)|dx ≤

∫

R
|f̃n(x)− f0(x)|dx + 2

∫

R
|ψ̂n,m(x)/ψ0(x)− 1|f0(x)dx

=

∫

R
|f̃n(x)− f0(x)|dx + 2

∫

R
|ψ̂n,m(x)− ψ0(x)|θ0(x)/λdx

≤

∫

R
|f̃n(x)− f0(x)|dx +

2

λ

∫

R
|ψ̂n,m(x)− ψ0(x)|dx

= O(αn),

giving (8).

It remains to show (9). Given the definition of g0(·) and ĝn,m(x) in (4) and (9) in the main

article,
∫

R
|ĝn,m(x)− g0(x)|dx

=

∫

R

∣∣∣{1− θ̂n,m(x)}ψ̂n,m(x)/(1 − λ)− {1− θ0(x)}ψ0(x)/(1 − λ)
∣∣∣dx

≤
1

1− λ

∫

R
|ψ̂n,m(x)− ψ0(x)|dx+

1

1− λ

∫

R
|f̂n,m(x)− f0(x)|dx = O(αn).

Proof of Theorem 4

We need the following lemma in the proof of Theorem 4.150

LEMMA 2. Let θ1(x) and θ2(x) be arbitrary functions defined on x ∈ R. Further, θ1(x) is

continuous and θ2(x) is nondecreasing. For any arbitrary (a, b) ⊂ R, if

∫ b

a
|θ1(x)− θ2(x)| = 0 (32)

then θ1(x) = θ2(x) for every x ∈ (a, b).

Proof : If there exists an x0 ∈ (a, b) such that θ1(x0) 6= θ2(x0), without loss of generality,

we assume θ1(x0) > θ2(x0). Let c0 = θ1(x0)− θ2(x0) > 0. By the continuity of θ1(x), there155

exists a δ1 ∈ (0, x0 − a) such that θ1(x) > θ2(x0) + c0/2 for any x ∈ [x0 − δ1, x0]. Because

θ2(x) is nondecreasing, we immediately have θ1(x) > θ2(x) + c0/2 for any x ∈ [x0 − δ1, x0].
As a consequence, we have

∫ b

a
|θ1(x)− θ2(x)|dx ≥

∫ x0

x0−δ1

|θ1(x)− θ2(x)| ≥ δ1c0/2 > 0,
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which contradicts (32). This completes our proof of this lemma.

We now move to the proof of Theorem 4. Using Conditions 3 and 4, it is straightforward to 160

verify that

sup
x∈[a,b]

∣∣∣f̃ ′n(x)g̃m(x)− f̃n(x)g̃
′
m(x)− f ′0(x)g0(x) + f0(x)g

′
0(x)

∣∣∣ = o(1), (33)

almost surely as n→ ∞. On the other hand, based on Condition 4, we have

inf
x∈[a,b]

{
f ′0(x)g0(x)− f0(x)g

′
0(x)

}
= inf

x∈[a,b]
θ′0(x)ψ

2
0(x)/{λ(1 − λ)} > δ1, (34)

where δ1 = δ3/{λ(1 − λ)} > 0. Combining (33) and (34), we have

inf
x∈[a,b]

{
f̃ ′n(x)g̃m(x)− f̃n(x)g̃

′
m(x)

}
≥ δ1/2,

almost surely as n→ ∞. Therefore,

inf
x∈[a,b]

θ̃′n,m(x) = inf
x∈[a,b]

f̃ ′n(x)g̃m(x)− f̃n(x)g̃
′
m(x)

ψ̂2
n,m(x)

≥ 0,

almost surely as n→ ∞, indicating that θ̃n,m(x) is nondecreasing, which together with Theorem 165

2 leads to
∫ b

a
|θ̂n,m(x)− θ̃n,m(x)|ψ̂n,m(x)dx ≤ 0, (35)

almost surely as n→ ∞. Furthermore, by Condition 3, supx∈[a,b] |ψ̂n,m(x)− ψ0(x)| < δ/2
almost surely as n→ ∞. Hence, since from Condition 4 infx∈[a,b] ψ0(x) > δ, we have

infx∈[a,b] ψ̂n,m(x) > δ/2 almost surely as n→ ∞. This combined with (35) implies

∫ b

a
|θ̂n,m(x)− θ̃n,m(x)|dx ≤ 0,

almost surely as n→ ∞. This together with the continuity of θ̃n,m(x), the monotonicity of 170

θ̂n,m(x), and Lemma 2 leads to (10).

Proof of Corollary 2

Based on Condition 1, for any x ∈ (a, b), we have ψ̂n,m(x) 6= 0. Since θ̂n,m(x) =

λf̂n,m(x)/ψ̂n,m(x) and θ̃n,m(x) = λf̃n(x)/ψ̂n,m(x), we get f̂n,m(x) = f̃n(x) if and only if

θ̂n,m(x) = θ̃n,m(x). Hence, 175

pr
{
f̂n,m(x) 6= f̃n(x) for some x ∈ (a, b), infinitely often

}

= pr
{
θ̂n,m(x) 6= θ̃n,m(x) for some x ∈ (a, b), infinitely often

}
= 0,

giving (11). Similarly, we can show (12).

Proof of Theorem 5

Let F0(x) and G0(x) be the true values of F (x) and G(x). Note that

sup
x

|F̂ (x)− F0(x)| ≤

∫

R
|f̂n,m(t)− f0(t)|dt = O(αn),
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where the final equality comes from Theorem 3. Similarly, we have

sup
x

|Ĝ(x)−G0(x)| = O(αn).

With a proof similar to that of Part (b) of Theorem 2 in Chen et al. (2016), we have that for any

t ∈ (0, 1),

R̂(t)−R0(t) = O(αn).

This completes the proof.180

5. IMPLEMENTATION

In this section, we describe some implementation details. First, throughout our numerical stud-

ies, we set K(·) to be the Epanechnikov kernel, which leads to the minimum asymptotic mean

integrated squared error over all kernel densities; see Epanechnikov (1969). In principle, other

kernels can be used; it is well known that the choice of the kernel function has little impact on185

kernel density estimation.

Second, we propose the following procedure for choosing h1 and h2.

Step 1. We choose h
(0)
1 based on using sample 1 to estimate the classical kernel density f̃n(x),

and similarly for h
(0)
2 , so that h

(0)
i , i = 1, 2 are the best bandwidths if we use f̃n(x) and g̃m(x)

as our density estimates. Note that methods for choosing a bandwidth for kernel density es-190

timation are readily available in the literature. In our implementation, we have used function

dpik() in the R package KernSmooth implemented by Wand and Ripley, publicly available

at http://CRAN.R-project.org/package=KernSmooth, to choose the bandwidth

h
(0)
i , i = 1, 2, for sample i. This package essentially implements the kernel methods in Wand &

Jones (1995).195

Step 2. For t = 1, 2, . . ., we compute {θ̂(t−1)(X1), . . . , θ̂
(t−1)(Xn), θ̂

(t−1)(Y1), θ̂
(t−1)(Ym)},

using the method given at the end of this section and bandwidth h
(t−1)
i , i = 1, 2.

Step 3. Let S(t) = {X1, . . . ,Xn} ∪ {Yj : θ̂
(t−1)(Yj) ≥ λ}, and S

(t)
= {Y1, . . . , Ym} ∪ {Xi :

θ̂(t−1)(Xi) < λ}. We choose h
(t)
1 by treating the observations in S(t) as if they are sampled from

f(x); and similarly for h
(t)
2 .200

Step 4. We repeat Steps 2 and 3 until h
(t−1)
i , i = 1, 2, converges.

The philosophy of the above bandwidth selection algorithm is as follows. Note that θ̂(t−1)(x)
is essentially the estimate of the posterior probability that given X = x, the corresponding ob-

servation belongs to sample 1. Therefore, S(t) collects the observations that act as if they are

from sample 1; and in the estimation, these observations may have a significant impact on the205

estimation of f(x). We use these observations to select the bandwidth for f(x).

Third, we consider the evaluation of θ̂n,m(x) in Theorem 1. By Theorem 1 in Groene-

boom & Jongbloed (2010), θ̂n,m(x) is the first derivative of the greatest convex minorant of∫ x
−∞ λf̃n(t)dt subject to the weight

∫ x
−∞ ψ̂n,m(t)dt. This can be directly evaluated by the func-

tion gcmlcm() in the R package fdrtool implemented by Klaus and Strimmer, publicly210

available at http://CRAN.R-project.org/package=fdrtool.
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6. COMPARISON WITH AN ALTERNATIVE METHOD

An anonymous referee suggests an alternative way to formulate the problem. Let

{Z1, . . . , ZN} denote the set of pooled observations from samples 1 and 2, where N = n+m.

Let ∆i = I{Zi ∈ (X1, . . . ,Xn)}, where I{·} is the indicator function. With the definition of 215

θ(·) and ψ(·) given by (2), the classical likelihood can be formulated as

l̃n,m(f, g) =

n∑

i=1

log f(Xi) +

m∑

j=1

log g(Yj)

=
N∑

i=1

∆i log θ(Zi) +
N∑

i=1

(1−∆i) log {1− θ(Zi)}+
N∑

i=1

logψ(Zi)

= l̃n,m,1(θ) + l̃n,m,2(ψ),

where

l̃n,m,1(θ) =

N∑

i=1

∆i log θ(Zi) +

N∑

i=1

(1−∆i) log {1− θ(Zi)} , l̃n,m,2(ψ) =

N∑

i=1

logψ(Zi).

Therefore, we can define

θ̂alt(x) = argmax
θ(x)

l̃n,m,1(θ) (36)

subject to Part (b) in Proposition 1; and ψ(x) can be estimated by some other method, for ex-

ample, we can use ψ̂n,m(x) = λf̃n(x) + (1− λ)g̃m(x). Note that the optimization problem (36) 220

can be readily solved by the classical pool-adjacent-violation-algorithm (Ayer et al., 1955) and

active set methods (de Leeuw et al., 2009).

As a consequence, f(x) and g(x) are estimated by

f̂alt(x) = θ̂alt(x)ψ̂n,m(x)/λ, ĝalt(x) = {1− θ̂alt(x)}ψ̂n,m(x)/(1 − λ).

In this section, we compare the numerical performance of our hat estimates with those of this

alternative method. Figure 1 and Table 1 compare the estimates of f(x), g(x), and θ(x) from 225

the two methods. The simulation setups are the same as those of Fig. 1 and Table 1 in the main

article.

Clearly, the alternative method does not need smoothing techniques in the estimation of θ(x).
On the one hand, it is faster than our method, since it does not need to tune a smoothing pa-

rameter. On the other hand, ignoring the smoothness condition on the functions may lead to 230

less accurate estimates when these functions are truly smooth. This is well illustrated by Fig. 1

and Table 1, where our method performs better than the alternative. Furthermore, the asymp-

totic properties of the estimates based on this method have not been derived. We conjecture that

these properties can be established using techniques that are popular in the isotonic regression

community; we leave this interesting and important topic for future research. 235

7. NUMERICAL COMPARISON OF THE RECEIVER OPERATING CHARACTERISTIC CURVE

ESTIMATES

In this section, we compare the performance of the receiver operating characteristic curve es-

timates from the different methods. The receiver operating characteristic curve estimates include

that based on our method, i.e., R̂(t), that based on the empirical cumulative distribution function, 240
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Fig. 1. Density estimation for example 2 with C1 = −1, C2 = 1. Panels (a)–(c): f(x), g(x), and θ(x).
In each panel: solid lines: true curves; dotted lines: 2.5%, mean, and 97.5% percentiles of the alternative

estimates over 1000 repetitions; dashed lines: those of the hat estimates over 1000 repetitions.

Table 1. Medians of RIL1(hat, alternative) over 1000 replications (percentages of values of

RIL1(hat, alternative) > 0 over 1000 replications )

n \m m = 50 m = 100 m = 150 m = 400
n = 50 f 0.20 (88) 0.26 (91) 0.28 (92) 0.31 (96)

g 0.20 (85) 0.13 (80) 0.09 (76) 0.02 (64)

θ 0.33 (90) 0.35 (88) 0.38 (89) 0.43 (85)

n = 100 f 0.11 (80) 0.17 (84) 0.20 (90) 0.25 (93)

g 0.25 (90) 0.16 (86) 0.13 (82) 0.04 (70)

θ 0.30 (87) 0.32 (89) 0.33 (88) 0.38 (84)

n = 150 f 0.08 (76) 0.12 (81) 0.16 (88) 0.21 (92)

g 0.27 (92) 0.21 (90) 0.15 (84) 0.06 (72)

θ 0.27 (85) 0.30 (88) 0.33 (91) 0.37 (88)

n = 400 f 0.02 (61) 0.03 (64) 0.05 (71) 0.11 (84)

g 0.28 (95) 0.25 (93) 0.21 (91) 0.13 (83)

θ 0.24 (77) 0.25 (77) 0.26 (80) 0.29 (89)

i.e., R̂e(t), that based on the tilde estimates, i.e., R̃(t), and that based on the alternative f and g

estimates, i.e., R̂alt(t). Here,

R̃(t) = 1− F̃{G̃−1(1− t)},

R̂e(t) = 1− F̂e{Ĝ
−1
e (1− t)},

R̂alt(t) = 1− F̂alt{Ĝ
−1

alt
(1− t)},

where F̃ (x) =
∫ x
−∞ f̃n(t)dt, G̃(x) =

∫ x
−∞ g̃m(t)dt, F̂e(x) = n−1

∑n
i=1 I(Xi ≤ x), Ĝe(x) =

m−1
∑m

i=1 I(Yi ≤ x), F̂alt(x) =
∫ x
−∞ f̂alt(t)dt, and Ĝalt(x) =

∫ x
−∞ ĝalt(t)dt.

For the simulation examples given in the paper, we establish the receiver operating char-245

acteristic curves and compute the medians of RIL1(R̂, R̃
∗) and the percentages of values of
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RIL1(R̂, R̃
∗) > 0 over 1000 replications. Here R̃∗(t) denotes R̂e(t), R̃(t), or R̂alt(t). We ob-

serve that in our numerical studies, all the medians of the RIL1(R̂, R̃
∗)’s are greater than 0, and

the percentages are all greater than 50%, with some close to 100%. These observations indicate

that our method leads to more accurate receiver operating characteristic curve estimates than the 250

other methods. To avoid lengthy output, in Table 2, we display only the results for example 2

with C1 = −1 and C2 = 1; the results for the other settings are similar and are omitted.

Table 2. Medians of RIL1(R̂, R̃
∗) over 1000 replications (percentages of values of

RIL1(R̂, R̃
∗) > 0 over 1000 replications). Here R̂(t) is the receiver operating characteristic

estimate based on our method; R̃∗(t) denotes R̂e(t), R̃(t), or R̂alt(t).

n \m m = 50 m = 100 m = 150 m = 400

n = 50 RIL1(R̂, R̂e) 0.71 (96) 0.74 (97) 0.75 (98) 0.78 (99)

RIL1(R̂, R̃) 0.22 (66) 0.17 (62) 0.17 (61) 0.18 (58)

RIL1(R̂, R̂alt) 0.60 (92) 0.59 (93) 0.56 (91) 0.53 (92)

n = 100 RIL1(R̂, R̂e) 0.74 (98) 0.75 (98) 0.76 (98) 0.80 (100)

RIL1(R̂, R̃) 0.20 (64) 0.24 (66) 0.21 (65) 0.18 (60)

RIL1(R̂, R̂alt) 0.57 (93) 0.56 (92) 0.55 (90) 0.50 (88)

n = 150 RIL1(R̂, R̂e) 0.75 (99) 0.76 (99) 0.78 (99) 0.81 (100)

RIL1(R̂, R̃) 0.13 (61) 0.16 (64) 0.15 (63) 0.14 (59)

RIL1(R̂, R̂alt) 0.56 (92) 0.55 (90) 0.54 (90) 0.51 (90)

n = 400 RIL1(R̂, R̂e) 0.78 (100) 0.81 (100) 0.82 (100) 0.85 (100)

RIL1(R̂, R̃) 0.10 (56) 0.13 (61) 0.15 (61) 0.12 (60)

RIL1(R̂, R̂alt) 0.50 (91) 0.51 (90) 0.50 (90) 0.47 (87)

8. MORE DISCUSSION OF THE SIMULATION STUDIES

We constructed similar plots and tables for the simulated data under all the settings in §5 of

the main article. From these plots and tables, we have the following observations. 255

When both n and m are small, the hat estimates give better accuracy. When both n and m
are large, the difference between the hat and tilde estimates is smaller. This complies with our

asymptotic theory in §3 of the main article showing that the hat estimates have essentially the

same rate of convergence as the tilde estimates.

Density estimates for small samples benefit more from our method than those for larger sam- 260

ples. For example, in Table 1 of the main article, for n = 100, when m increases from 50 to 400,

both the medians of RIL1(f̂n,m, f̃n) and the corresponding percentages, displayed in parentheses

in the table increase. In contrast, the medians for RIL1(ĝn,m, g̃m) decrease.

For the estimates of θ(x), by comparing the rightmost panel of Fig. 1 in the main article with

the corresponding results obtained by replacing the flat area of θ(x), [−1, 1], with [0, 2], we 265

observe that the efficiency gain of θ̂n,m(x) over θ̃n,m(x) is greater in flat areas than in strictly

monotonic areas. Furthermore, the improvement of θ̂n,m(x) over θ̃n,m(x) is much greater in

areas where either f(x) or g(x) is small; see for example |x| ≥ 2 against |x| < 2 in the right

panels of Fig. 1. We conjecture that this is because when f(x) or g(x) is small, a sample has
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a limited number of observations, so the information from that sample is limited. Therefore,270

appropriately accounting for the monotonicity information greatly benefits estimation of θ(x).
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