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This is a supplementary document to the corresponding paper submitted to Biometrika. §1 15

reviews the results in the main paper. §2 presents some preliminary preparation. §3 contains

the proofs of Theorems 1-2, Corollaries 1-2, the consistency of σ̂2 and σ̂2
s , the semiparametric

efficiency of N̂ , and the consistency of f̂w(x). §4 discusses the numerical implementation of

the empirical-likelihood-based methods. §5 provides some additional simulation results. §6 pro-

poses a bootstrap procedure to improve the performance of the empirical-likelihood-ratio-based 20

confidence interval.

1. MAIN RESULTS IN THE MAIN PAPER

1·1. General case

Recall that we model the probability of capture on occasion j (j = 1, . . . , k) by the logistic

regression model gj(x) = g(x, βj), where 25

g(x, βj) =
exp{βT

j q(x)}

1 + exp{βT

j q(x)}
. (1)

We show that the profile empirical log-likelihood of (N,β, α) is, up to a constant not dependent

on the unknown parameters,

ℓ(N,β, α) = log

{

Γ(N + 1)

Γ(N − n+ 1)

}

+ (N − n) log α−
n
∑

i=1

log[1 + λ{φ(xi, β) − α}]

+

n
∑

i=1

k
∑

j=1

[dij log g(xi, βj) + (1− dij) log{1 − g(xi, βj)}] , (2)
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where λ is the solution of
n
∑

i=1

φ(xi, β)− α

1 + λ{φ(xi, β)− α}
= 0 (3)

and φ(x, β) =
∏k

j=1{1 − g(x, βj)}.

The maximum empirical likelihood estimators (N̂ , β̂, α̂) of (N,β, α) are defined to be30

(N̂ , β̂, α̂) = arg max
N,β,α

ℓ(N,β, α). (4)

The empirical likelihood ratio functions of (N,β, α) and N are

R(N,β, α) = 2{ℓ(N̂ , β̂, α̂)− ℓ(N,β, α)}, (5)

R′(N) = 2{ℓ(N̂ , β̂, α̂)− ℓ(N, β̂N , α̂N )}, (6)

where (β̂N , α̂N ) = argmaxβ,α ℓ(N,β, α) given N .

Let N0, β0 = (βT

10, . . . , β
T

k0)
T, and α0 be the true values of N , β, and α, respectively. Denote

G1(x) =
{

g(x, β10), . . . , g(x, βk0)
}

T

, G2(x) = diag{G1(x)}, φ∗ = E
[

{1− φ(X,β0)}
−1
]

.

We use ⊗ to denote the Kronecker product operator. Define

V =









V11 0 V13 0
0 V22 V23 V24

V31 V32 V33 V34

0 V42 V43 V44









, (7)

W ≡ (Wij)1≤i,j≤3 =





−V11 0 −V13

0 −V22 + V24V
−1
44 V42 −V23 + V24V

−1
44 V43

−V31 −V32 + V34V
−1
44 V42 −V33 + V34V

−1
44 V43



 , (8)

where

V11 = 1− α−1
0 , V13 = α−1

0 ,

V22 = E

[{

φ(X,β0)

1− φ(X,β0)
G1(X)GT

1 (X) +G2
2(X)−G2(X)

}

⊗ {q(X)q(X)T}

]

,

V23 = V T

32 = E

{

φ(X,β0)

1− φ(X,β0)
G1(X)⊗ q(X)

}

, V24 = V T

42 = (1− α0)
2V23,

V33 = φ∗ − α−1
0 , V34 = V43 = (1− α0)

2φ∗, V44 = (1− α0)
4φ∗ − (1− α0)

3.

With the above preparation, we have the following theorems.35

THEOREM 1. Assume that the support of X is compact, the capture probability function is

gj(x) = g(x, βj) as defined in (1) and the vector-valued function q(x) is b-variate with linearly

independent components. Let (N0, β0, α0) be the true value of (N,β, α) with α0 ∈ (0, 1). If W
defined in (8) is nonsingular, then as N0 goes to infinity, we have

(a) N0
1/2{log(N̂/N0), β̂

T − βT

0 , α̂− α0}
T → N(0,W−1) in distribution;40

(b) R(N0, β0, α0) → χ2
bk+2 in distribution and R′(N0) → χ2

1 in distribution, where k is the num-

ber of capture occasions.

Denote by ℓc(β) = logLc(β) the conditional log-likelihood given the observed data, where

Lc(β) defined in (3) in the main paper is the conditional likelihood. The maximum conditional
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likelihood estimator of N is defined as 45

Ñ =
n
∑

i=1

1

1− φ(xi, β̃)
,

where β̃ = argmaxβ ℓc(β).

THEOREM 2. Under the assumptions in Theorem 1, as N0 goes to infinity, we have

(a) N̂ − Ñ = Op(1);

(b) (N̂ −N0)/N
1/2
0 , (Ñ −N0)/N

1/2
0 , N

1/2
0 log(N̂/N0), and N

1/2
0 log(Ñ/N0) all converge in

distribution to N(0, σ2), where σ2 = φ∗ − 1− V32V
−1
22 V23. 50

Based on the form of σ2 in Theorem 2, an estimator of σ2 can be constructed as follows:

σ̂2 = φ̂∗ − 1− V̂32V̂
−1
22 V̂23, (9)

where φ̂∗ = Ñ−1
∑n

i=1{1− φ(xi, β̃)}
−2 and

V̂23 = V̂ T

32 = Ñ−1
n
∑

i=1

φ(xi, β̃)

{1− φ(xi, β̃)}2
G1(xi, β̃)⊗ q(xi),

V̂22 = −Ñ−1
n
∑

i=1

[{

di −
G1(xi, β̃)

1− φ(xi, β̃)

}{

di −
G1(xi, β̃)

1− φ(xi, β̃)

}

T
]

⊗ {q(xi)q(xi)
T}.

1·2. Special case

When the βj’s are all equal, φ(x, β) reduces to φs(x, βs) = {1− g(x, βs)}
k, where βs denotes

the common value of the βj’s. In this situation, the profile empirical log-likelihood ℓs(N,βs, α) 55

can be directly obtained from the profile empirical log-likelihood in (2):

ℓs(N,βs, α) = log

{

Γ(N + 1)

Γ(N − n+ 1)

}

+ (N − n) log α−
n
∑

i=1

log[1 + λ{φs(xi, βs)− α}]

+

n
∑

i=1

[di+ log g(xi, βs) + (k − di+) log{1− g(xi, βs)}] ,

where λ is the solution to
n
∑

i=1

φs(xi, βs)− α

1 + λ{φs(xi, βs)− α}
= 0.

With the profile empirical log-likelihood ℓs(N,βs, α), we define the maximum empirical

likelihood estimators (N̂s, β̂s, α̂s) of (N,βs, α), the empirical likelihood ratio Rs(N,βs, α)
for (N,βs, α) and the empirical likelihood ratio R′

s(N) for N similarly to the definitions of 60

(N̂ , β̂, α̂), R(N,β, α), and R′(N) in (4), (5), and (6). To present the asymptotics, we de-

fine a new W matrix, namely Ws, which is W with φ∗, V23, V24, and V22 in (8) replaced by

φs∗ = E[{1− φs(X,βs0)}
−1] and

V23s = E

{

φs(X,βs0)

1− φs(X,βs0)
kg(X,βs0)q(X)

}

, V24s = (1− α0)
2V23s,

V22s = E

[{

φs(X,βs0)

1− φs(X,βs0)
k2g2(X,β0) + kg2(X,β0)− kg(X,β0)

}

q(X)q(X)T
]

.
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Here (N0, βs0, α0) is the true value of (N,βs, α).

COROLLARY 1. Assume that the support of X is compact, the capture probability function is65

gj(x) = g(x, βs) with q(x) as in Theorem 1. Let (N0, βs0, α0) be the true value of (N,βs, α). If

Ws defined above is nonsingular, then as N0 goes to infinity, we have

(a) N0
1/2{log(N̂s/N0), β̂

T

s − βT

s0, α̂s − α0}
T → N(0,W−1

s ) in distribution;

(b) Rs(N0, βs0, α0) → χ2
b+2 in distribution and R′

s(N0) → χ2
1 in distribution.

Given the observations, the conditional log-likelihood is70

ℓcs(βs) =
n
∑

i=1

[di+ log g(xi, βs) + (k − di+) log{1− g(xi, βs)}] −
n
∑

i=1

log{1− φs(xi, βs)}.

Similarly to Huggins (1989) and Alho (1990), we define the maximum conditional likelihood

estimator of N as

Ñs =

n
∑

i=1

1

1− φs(xi, β̃s)
,

where β̃s = argmaxβs ℓcs(βs). The following corollary is equivalent to Theorem 2 when the

βj’s are all equal.

COROLLARY 2. Under the assumptions in Corollary 1, as N0 goes to infinity, we have75

(a) N̂s − Ñs = Op(1);

(b) (N̂s −N0)/N
1/2
0 , (Ñs −N0)/N

1/2
0 , N0

1/2 log(N̂s/N0), and N0
1/2 log(Ñs/N0) all converge

in distribution to N(0, σ2
s ), where σ2

s = φs∗ − 1− V32sV
−1
22sV23s.

Similarly to σ̂2 in (9), a consistent estimator of σ2
s can be constructed as

σ̂2
s = φ̂s∗ − 1− V̂32sV̂

−1
22s V̂

T

32s, (10)

where φ̂s∗ = Ñ−1
s

∑n
i=1{1− φs(xi, β̃s)}

−2 and80

V̂23s = V̂ T

32s = Ñ−1
s

n
∑

i=1

φs(xi, β̃s)

{1− φs(xi, β̃s)}2
kg(xi, β̃s)q(xi),

V̂22s = −Ñ−1
s

n
∑

i=1

{

di+ −
kg(xi, β̃s)

1− φs(xi, β̃s)

}2

q(xi)q(xi)
T.

It can be shown that σ̂2
s is a root-N0 consistent estimator of σ2

s .

2. PREPARATION

2·1. Reexpression

It can be verified that

ℓ(N,β, α) = h(N,β, α, λN,β,α),



Maximum empirical likelihood estimation for abundance 5

where

h(N,β, α, λ) = log

{

Γ(N + 1)

Γ(N − n+ 1)

}

+ (N − n) logα−
n
∑

i=1

log[1 + λ{φ(xi, β)− α}] 85

+

n
∑

i=1

k
∑

j=1

[dij log g(xi, βj) + (1− dij) log{1− g(xi, βj)}] ,

and λN,β,α is the solution to ∂h/∂λ = 0.

Let λ̂ be the solution to (3) with (β̂, α̂) in place of (β, α). We first discuss some asymptotic

properties of λ̂. It can be verified that (N̂ , β̂, α̂, λ̂) satisfy

∂h(N,β, α, λ)

∂N
= 0,

∂h(N,β, α, λ)

∂β
= 0,

∂h(N,β, α, λ)

∂α
= 0,

∂h(N,β, α, λ)

∂λ
= 0.

Note that

∂h(N,β, α, λ)

∂λ
= −

n
∑

i=1

φ(xi, β)− α

1 + λ{φ(xi, β)− α}
= 0,

∂h(N,β, α, λ)

∂α
=

N − n

α
+

n
∑

i=1

λ

1 + λ{φ(xi, β)− α}
= 0,

together imply that (N̂ , β̂, α̂, λ̂) satisfy

λ = −
1− n/N

(n/N)α
. (11)

By the fact that n ∼ B(N0, 1− α0) and the law of large numbers, the right-hand side of (11) at

the true values of (N,β, α) converges to a constant (denoted by λ0) in probability. That is,

−
1− n/N

(n/N)α
→ λ0 = −1/(1− α0)

in probability. When (N̂ , β̂, α̂) is consistent, we can further verify that

λ̂ = −
1− n/N̂

(n/N̂)α̂
→ λ0

in probability. 90

Next, we define more notation. Let

γT = (γ1, γ
T

2 , γ3, γ4) = N
1/2
0 {(N/N0)− 1, (β − β0)

T, α− α0, λ− λ0},

and define

γ̂T = (γ̂1, γ̂
T

2 , γ̂3, γ̂4) = N
1/2
0 {(N̂/N0)− 1, (β̂ − β0)

T, α̂ − α0, λ̂− λ0}.

Define

H(γ) = h(N,β, α, λ) = h(N0 +N
1/2
0 γ1, β0 +N

−1/2
0 γ2, α0 +N

−1/2
0 γ3, λ0 +N

−1/2
0 γ4).

It can be verified that γ̂ is the solution to ∂H(γ)/∂γ = 0.

To investigate the asymptotic properties of (N̂ , β̂, α̂, λ̂), we need their approximations, which 95

can be obtained via the second-order Taylor expansion of H(γ) around γ = 0. In this subsection,

we derive the forms of ∂H(0)/∂γ and ∂2H(0)/(∂γ∂γT) and study their properties.
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2·2. First and second derivatives of H(γ) at γ = 0

Recall that G1(x) = {g(x, β10), . . . , g(x, βk0)}
T. After some calculus, we have

∂H(0)/∂γ1 = N
1/2
0 {S1(N0, n) + log α0},100

∂H(0)/∂γ2 = N
−1/2
0

n
∑

i=1

{

di −
G1(xi)

1− φ(xi, β0)

}

⊗ q(xi),

∂H(0)/∂γ3 = N
−1/2
0

[

N0

α0
−

n
∑

i=1

{

1

1− φ(xi, β0)
+

1

α0

}

]

,

∂H(0)/∂γ4 = −(1− α0)N
−1/2
0

n
∑

i=1

φ(xi, β0)− α0

1− φ(xi, β0)
.

Here

Sc(N,n) =
dc log{Γ(N)}

dN c
−

dc log{Γ(N − n+ 1)}

dN c

for nonnegative integer c. Using the properties of the polygamma functions, we have

Sc(N,n) = (−1)c−1(c− 1)!

N
∑

k=N−n+1

k−c; (12)

see for example Murty & Saradha (2009).105

Next we simplify ∂H(0)/∂N using (12). Since x−1 is a monotone decreasing function, (12)

implies that

log{(N + 1)/(N + 1− n)} < S1(N,n) < log{N/(N − n)}.

Since n follows B(N0, 1− α0), by the central limit theorem we have n/N0 = 1− α0 +

Op(N
−1/2
0 ) and further

S1(N0, n) = log

(

N0

N0 − n

)

+Op(N
−1
0 ) = − logα0 +

(n/N0)− 1 + α0

α0
+Op(N

−1
0 ).

Hence,110

∂H(0)/∂γ1 = N
1/2
0 {S1(N0, n) + logα0} = N

1/2
0

{

(n/N0)− (1− α0)

α0

}

+Op(N
−1/2
0 ).

Let

un1 = N
1/2
0

{

n/N0 − (1− α0)

α0

}

, un2 =
∂H(0)

∂γ2
, un3 =

∂H(0)

∂γ3
, un4 =

∂H(0)

∂γ4
, (13)

and un = (un1, u
T

n2, un3, un4)
T. Then

∂H(0)

∂γ
= un +Op(N

−1/2
0 ).
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Next we calculate the second derivatives of H(γ) at γ = 0. Recall that G2(x) = diag{G1(x)}.

After some calculation, it can be verified that

∂2H(0)

∂γ∂γT
=

















∂2H(0)
∂γ2

1

0 ∂2H(0)
∂γ1γ3

0

0 ∂2H(0)

∂γ2∂γT

2

∂2H(0)
∂γ2∂γ3

∂2H(0)
∂γ2∂γ4

∂2H(0)
∂γ3∂γ1

∂2H(0)

∂γ3∂γT

2

∂2H(0)
∂γ2

3

∂2H(0)
∂γ3∂γ4

0 ∂2H(0)

∂γ4∂γT

2

∂2H(0)
∂γ4∂γ3

∂2H(0)
∂γ2

4

















, (14)

with 115

∂2H(0)

∂γ21
= N0S2(N0, n),

∂2H(0)

∂γ1γ3
=

∂2H(0)

∂γ3γ1
=

1

α0
,

∂2H(0)

∂γ2∂γT

2

=
1

N0

n
∑

i=1

G1(xi)G1(xi)
Tφ(xi, β0)− {1− φ(xi, β0)}{G2(xi)−G2

2(xi)}

{1− φ(xi, β0)}2
⊗ {q(xi)q(xi)

T},

∂2H(0)

∂γ2∂γ3
=

{

∂2H(0)

∂γ3∂γT

2

}

T

=
1

N0

n
∑

i=1

φ(xi, β0)

{1− φ(xi, β0)}2
G1(xi)⊗ q(xi),

∂2H(0)

∂γ2∂γ4
=

{

∂2H(0)

∂γ4∂γT

2

}T

= (1− α0)
2 ∂

2H(0)

∂γ2∂γ3
,

∂2H(0)

∂γ23
=

1

N0

n
∑

i=1

1

{1− φ(xi, β0)}2
−

1− (n/N0)

α2
0

, 120

∂2H(0)

∂γ3∂γ4
=

∂2H(0)

∂γ4∂γ3
=

1

N0

n
∑

i=1

(1− α0)
2

{1− φ(xi, β0)}2
,

∂2H(0)

∂γ24
=

1

N0

n
∑

i=1

(1− α0)
2{φ(xi, β0)− α0}

2

{1− φ(xi, β0)}2
.

2·3. Some useful technical lemmas

Recall that ∂H(0)/∂γ = un +Op(N
−1/2
0 ). In the proof of Theorem 1, we need the limit of

∂2H(0)/(∂γ∂γT) and the expectation and variance of un defined in (13). The following lemmas 125

ease much of the calculation burden in our proofs.

LEMMA 1. Suppose r(x) is a given nonzero function of x and X ∼ F (x). Then

(a) if E [r(X) {1− φ(X,β0)}] < ∞, we have

E

{

1

N0

n
∑

i=1

r(xi)

}

= E [r(X) {1− φ(X,β0)}] ; (15)

(b) if E
[

r2(X) {1− φ(X,β0)}
]

< ∞, we have

1

N0

n
∑

i=1

r(xi)− E [r(X) {1− φ(X,β0)}] = Op(N
−1/2
0 ); (16)
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(c) if E {g(X,βj0)r(X)} < ∞, we have130

E

{

1

N0

n
∑

i=1

dijr(xi)

}

= E {g(X,βj0)r(X)} . (17)

For (a), we define N0 indicator variables I1, . . . , IN0
for the N0 individuals in the popu-

lation such that Ii = 1 if the ith individual has been captured at least once and 0 otherwise,

i = 1, . . . , N0. Then

1

N0

n
∑

i=1

r(xi) =
1

N0

N0
∑

i=1

r(Xi)Ii,

which is the summation of independent and identically distributed random variables. Hence, (15)

follows from the fact that

E{r(Xi)Ii} = E[E{r(Xi)Ii | Xi}] = E{r(Xi)E(Ii | Xi)} = E[r(X){1 − φ(X;β0)}],

where we use E(Ii | Xi) = pr(Ii = 1 | Xi) = φ(Xi, β0) in the last equation.

For (b), we first write

1

N0

n
∑

i=1

r(xi)− E[r(X){1 − φ(X;β0)}] =
1

N0

N0
∑

i=1

[r(Xi)Ii − E{r(Xi)Ii}].

Because E
[

r2(X) {1− φ(X,β0)}
]

< ∞ and r(x) is nonzero, by the central limit theorem we

have

N
1/2
0

(

1

N0

n
∑

i=1

r(xi)− E[r(X){1 − φ(X;β0)}]

)

→ N
[

0, var{r(X1)I1}
]

in distribution, which implies (16).

For (c), we define d∗i = (d∗i1, . . . , d
∗
ik)

T to be the capture history for the individual with the

characteristic Xi, i = 1, . . . , N0. Then

1

N0

n
∑

i=1

dijr(xi) =
1

N0

N0
∑

i=1

d∗ijr(Xi)Ii.

Note that d∗ijIi = d∗ij . Then

E{d∗ijr(Xi)Ii} = E[E{d∗ijr(Xi)|Xi}] = E{r(Xi)E(d∗ij | Xi)} = E{r(X)g(X,βj0)},

where we use E(d∗ij | Xi) = pr(d∗ij = 1 | Xi) = g(Xi, βj0). This completes the proof.

From Lemma 1 and (14), we have the following result regarding the limit of

∂2H(0)/(∂γ∂γT).135

LEMMA 2. Under the conditions of Theorem 1, we have ∂2H(0)/(∂γ∂γT) = V +

Op(N
−1/2
0 ), where V is defined in (7).

We concentrate on the result

∂2H(0)

∂γ21
= N0S2(N0, n) = V11 +Op(N

−1/2
0 ).

The other results are either trivial or follow from the application of (15) and (16) in Lemma 1.
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From (12) and the fact that x−2 is a monotone decreasing function of x, we have

−n/{N(N − n)} < S2(N,n) < −n/{(N + 1)(N + 1− n)}.

Recall that n/N0 = 1− α0 +Op(N
−1/2
0 ). Then 140

S2(N0, n) = −
n

N0(N0 − n)
+Op(N

−2
0 ) = −

1− α0

N0α0
−Op(N

−3/2
0 ).

Therefore,

∂2H(0)

∂γ21
= N0S2(N0, n) = −

1− α0

α0
+Op(N

−1/2
0 ) = V11 +Op(N

−1/2
0 ).

This completes the proof.

From Lemma 1 and (13), we have the following lemma, which summarizes the properties of

un.

LEMMA 3. Under the conditions of Theorem 1, we have E(un) = 0, var(un) = Σ, and as

N0 → ∞, un → N(0,Σ) in distribution, where

Σ =









−V11 0 −V13 0
0 −V22 0 0

−V31 0 2V34(1− α0)
−2 − V33 V44(1− α0)

−2

0 0 V44(1− α0)
−2 V44









.

The results that E(un) = 0 and var(un) = Σ follow from (15) and (17) in Lemma 1 and some

tedious algebra work. With these results, the limiting distribution of un follows from the fact that 145

un can be expressed as a summation of independent and identically distributed random vectors,

as demonstrated in the proof of Lemma 1.

3. PROOFS OF THE MAIN RESULTS IN MAIN PAPER

3·1. Proof of Theorem 1

Using a similar argument to that in the proofs of Lemma 1 and Theorem 1 of Qin & Lawless

(1994), we have

γ̂T = N
1/2
0 {(N̂/N0)− 1, (β̂ − β0)

T, α̂ − α0, λ̂− λ0} = Op(1).

Next we investigate the asymptotic approximations of γ̂ and the likelihood ratio statistics. The 150

following lemma from Hjort & Pollard (2011) will simplify our derivation.

LEMMA 4. Assume that θT = (θT

1 , θ
T

2 ) where θ1 and θ2 are r- and s-dimensional vectors,

respectively. Let θT

0 = (θT

10, θ
T

20) be its true value, and γ = (γT

1 , γ
T

2 )
T = n1/2(θ − θ0) where n is

the sample size. Suppose that for θ = θ0 +Op(n
−1/2), we have

H(θ) = Cn + 2aT

nγ − γTAγ + εn(θ)

where an = Op(1), V is a positive definite matrix, Cn depends only on θ0, A is nonsingular, and 155

εn(θ) = Op(n
−1/2) for any fixed θ. According to θ = (θT

1 , θ
T

2 )
T, we partition A into

A =

(

A11 A12

A21 A22

)

,

and partition aT

n into (aT

n1, a
T

n2). As n → ∞, if an → N(0, A) in distribution, then
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(a) the maximizer θ̂ of H(θ) satisfies

n1/2(θ̂ − θ0) = A−1an +Op(n
−1/2) → N(0, A−1)

in distribution;

(b) maxθ H(θ)−H(θ0) = aT

nA
−1an + op(1) → χ2

r+s in distribution, and

(c) maxθ H(θ)−maxθ2 H(θ10, θ2) = aT

nA
−1an − aT

n2A
−1
22 an2 + op(1) → χ2

r in distribution.160

Applying the second-order Taylor expansion to H(γ) at γ = 0, we have

H(γ) = H(0) +

{

∂H(0)

∂γ

}

T

γ +
1

2
γT

∂2H(0)

∂γ∂γT
γ +Op(N

−1/2
0 ).

Recall that ∂H(0)/∂γ = un +Op(N
−1/2
0 ). Further, using Lemma 2, we get

H(γ) = H(0) + uT

nγ +
1

2
γTV γ +Op(N

−1/2
0 ). (18)

Next we profile out γ4 and obtain the profile log-likelihood function ℓ(N,β, α). Recall that for

the given β and α, λ is the solution of

n
∑

i=1

φ(xi, β)− α

1 + λ{φ(xi, β)− α}
= 0

Equivalently, γ4 is the solution of

∂H(γ)

∂γ4
= 0.

Applying the first-order Taylor expansion, we get165

0 =
∂H(0)

∂γ4
+

∂2H(0)

∂γ1∂γ4
γ1 +

∂2H(0)

∂γT

2 ∂γ4
γ2 +

∂2H(0)

∂γ3∂γ4
γ3 +

∂2H(0)

∂γ24
γ4 +Op(N

−1/2
0 ). (19)

With (13) and Lemma 2, (19) is simplified to

0 = un4 + V42γ2 + V43γ3 + V44γ4 +Op(N
−1/2
0 ), (20)

which implies that

γ4 = −V −1
44 un4 − V −1

44 (0, V42, V43)γ−4 +Op(N
−1/2
0 ), (21)

where γT

−4 = (γ1, γ
T

2 , γ3). Substituting (21) into (18), we get an approximation of the profile

likelihood,

ℓ(N,β, α) = H(0) − 0.5V −1
44 u2n4 + tTγ−4 − 0.5γT

−4Wγ−4 +Op(N
−1/2
0 ) (22)

where W is defined in (8) and tT = (t1, t
T

2 , t3) with

t1 = un1, t2 = un2 − V24V
−1
44 un4, t3 = un3 − V34V

−1
44 un4.

From Lemma 3, the form of t, and some tedious algebra work, it can be verified that var(t) = W .170

Hence, t → N(0,W ) in distribution.

Note that in (22), H(0)− 0.5V −1
44 u2n4 does not depend on γ. Applying Part (a) of Lemma 4,

we get

γ̂−4 = N
1/2
0 {(N̂/N0)− 1, (β̂ − β0)

T, α̂− α0}
T = W−1t+Op(N

−1/2
0 ). (23)
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With the asymptotic order N
1/2
0 {(N̂/N0)− 1} = Op(1), we have

N
1/2
0 {(N̂/N0)− 1} = N

1/2
0 log(N̂/N0) +Op(N

−1/2
0 ).

Hence,

N
1/2
0 {log(N̂/N0), (β̂ − β0)

T, α̂− α0}
T = W−1t+Op(N

−1/2
0 ),

which converges in distribution to N(0,W−1) as claimed in Part (a) of Theorem 1.

Part (b) is a direct application of Parts (b) and (c) of Lemma 4. This completes the proof. 175

3·2. Proof of Theorem 2

We first derive an approximation to Ñ , which depends on that of β̃. Note that β̃ satisfies

∂ℓc(β̃)/∂β = 0. It can be verified that

N
−1/2
0

∂ℓc(β0)

∂β
= un2,

1

N0

∂2ℓc(β0)

∂β∂βT
=

∂2H(0)

∂γ2∂γT

2

= V22 +Op(N
−1/2
0 ).

Applying the first-order Taylor expansion to ∂ℓc(β̃)/∂β gives

N
1/2
0 (β̃ − β0) = −V −1

22 un2 +Op(N
−1/2
0 ). (24)

Further, note that the partial derivative of
∑n

i=1{1− φ(xi, β)}
−1 at β = β0 is 180

−

n
∑

i=1

φ(xi, β0)

{1 − φ(xi, β0)}2
G1(xi, β0)⊗ q(xi) = −N0{V32 +Op(N

−1/2
0 )}.

Using (24), we have

N
−1/2
0 (Ñ −N0) = N

−1/2
0

{

n
∑

i=1

1

1− φ(xi, β̃)
−N0

}

= N
1/2
0

{

1

N0

n
∑

i=1

1

1− φ(xi, β)
− 1

}

+ V32V
−1
22 un2 +Op(N

−1/2
0 )

= −(un1 + un3) + V32V
−1
22 un2 +Op(N

−1/2
0 ).

Recall that the approximation of N̂ is given in (23). Denote W−1 by (W ij)1≤i,j≤3. Then the

first component of γ̂−4 in (23), namely N
−1/2
0 (N̂ −N0), can be rewritten as

N
−1/2
0 (N̂ −N0) = W 11t1 +W 13t2 +W 12t3 +Op(N

−1/2
0 )

= W 11un1 +W 13un3 +W 12un2 − (W 13V34V
−1
44 +W 12V24V

−1
44 )un4 +Op(N

−1/2
0 ).

With the form of un in (13), it can be verified that

un4 = (1− α0)un1 + (1− α0)
2un3 +Op(N

−1/2
0 ).

Hence, 185

N
−1/2
0 (N̂ −N0) = {W 11 − (1− α0)(W

13V34V
−1
44 +W 12V24V

−1
44 )}un1 +W 12un2

+{W 13 − (1− α0)
2(W 13V34V

−1
44 +W 12V24V

−1
44 )}un3 +Op(N

−1/2
0 ).
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Therefore, if we can prove that

W 11 − (1− α0)(W
13V34V

−1
44 +W 12V24V

−1
44 ) = −1, (25)

W 12 = V32V
−1
22 , (26)

W 13 − (1− α0)
2(W 13V34V

−1
44 +W 12V24V

−1
44 ) = −1, (27)

then

N
−1/2
0 (Ñ −N0) = N

−1/2
0 (N̂ −N0) +Op(N

−1/2
0 ),

which means Ñ = N̂ +Op(1) and

N
−1/2
0 (N̂ −N0) = N

−1/2
0 (Ñ −N0) +Op(N

−1/2
0 )

= −(un1 + un3) + V32V
−1
22 un2 +Op(N

−1/2
0 ). (28)

With Lemma 3, we will further have that

σ2 = var(un1 + un3 − V32V
−1
22 un2) = φ∗ − 1− V32V

−1
22 V23,

and hence both N
−1/2
0 (Ñ −N0) and N

−1/2
0 (N̂ −N0) converge in distribution to N(0, σ2),

which can easily be used to verify the other results in Part (b). This completes the proofs of Parts190

(a) and (b).

Lastly, we verify that (25)–(27) are correct. Let ξ = φ∗ − (1− α0)
−1. Using the relationships

V24 = (1− α0)
2V23,

V33 = ξ +
1

1− α0
−

1

α0
,

V34 = (1− α0)
2

(

ξ +
1

1− α0

)

,

V44 = (1− α0)
4ξ,

we can simplify the left-hand sides of (25) and (27) to

W 11 − (1− α0)(W
13V34V

−1
44 +W 12V24V

−1
44 ) = W 11 −

W 12V23

(1− α0)ξ
−W 13

ξ + 1
1−α0

(1− α0)ξ
, (29)

W 13 − (1− α0)
2(W 13V34V

−1
44 +W 12V24V

−1
44 ) = −

W 12V23

ξ
−

W 13

(1− α0)ξ
. (30)

Further, W in (8) is simplified to

W = (Wij)1≤i,j≤3 =







1−α0

α0
0 − 1

α0

0 −V22 +
1
ξV23V32

1
(1−α0)ξ

V23

− 1
α0

1
(1−α0)ξ

V32
1

(1−α0)2ξ
+ 1

α0(1−α0)






.

Since W−1 = (W ij)1≤i,j≤3, from the first row of W−1 ×W = I , we have195

1− α0

α0
W 11 −

1

α0
W 13 = 1, (31)

W 12

(

−V22 +
1

ξ
V23V32

)

+
1

(1− α0)ξ
W 13V32 = 0, (32)

−
1

α0
W 11 +

1

(1− α0)ξ
W 12V23 +

{

1

(1− α0)2ξ
+

1

α0(1− α0)

}

W 13 = 0. (33)



Maximum empirical likelihood estimation for abundance 13

It follows from (31) and (33) that

W 12V23

ξ
+

W 13

(1− α0)ξ
= 1, (34)

−W 11 +
1

(1− α0)ξ
W 12V23 +

{

1

(1− α0)2ξ
+

1

(1− α0)

}

W 13 = 1. (35)

Combining (34)–(35) with (29)–(30), we then verify that (25) and (27) are correct.

We now verify (26). From (34), we get

W 13 = (1− α0)ξ − (1− α0)W
12V23. (36)

Substituting (36) into (32) gives −W 12V22 + V32 = 0, which implies that (26) is correct. This

completes the proof. 200

3·3. Consistency of σ̂2

The proof of Theorem 2 indicates that β̃ is a root-N0 estimator of β0. Therefore,

φ̂∗ =
N0

Ñ
·
1

N0

n
∑

i=1

{1− φ(xi, β0)}
−2 +Op(N

−1/2
0 ).

Theorems 1 and 2 imply Ñ/N0 = 1 +Op(N
−1/2
0 ). Lemma 1 implies

1

N0

n
∑

i=1

{1− φ(xi, β0)}
−2 = φ∗ +Op(N

−1/2
0 ).

Combining the above results, we have

φ̂∗ =
{

1 +Op(N
−1/2
0 )

}{

φ∗ +Op(N
−1/2
0 )

}

+Op(N
−1/2
0 ) = φ∗ +Op(N

−1/2
0 ).

With a similar analysis, we found that

V̂23 =
N0

Ñ
·
1

N0

n
∑

i=1

φ(xi, β0)

{1− φ(xi, β0)}2
G1(xi, β0)⊗ q(xi) +Op(N

−1/2
0 )

= E

[

φ(xi, β0)

1− φ(xi, β0)
G1(xi, β0)⊗ q(xi)

]

+Op(N
−1/2
0 )

= V23 +Op(N
−1/2
0 ).

In addition, 205

V̂22 = −
N0

Ñ
·
1

N0

n
∑

i=1

[{

di −
G1(xi, β0)

1− φ(xi, β0)

}{

di −
G1(xi, β0)

1− φ(xi, β0)

}

T
]

⊗ {q(xi)q(xi)
T}

+Op(N
−1/2
0 ).

Applying Lemma 1 and the result that Ñ/N0 = 1 +Op(N
−1/2
0 ), we have

V̂22 = −E

{

1

N0

n
∑

i=1

[{

di −
G1(xi, β0)

1− φ(xi, β0)

}{

di −
G1(xi, β0)

1− φ(xi, β0)

}

T
]

⊗ {q(xi)q(xi)
T}

}

+Op(N
−1/2
0 ).
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Using the fact that

E(un2) = E

[

1

N
1/2
0

n
∑

i=1

{

di −
G1(xi, β0)

1− φ(xi, β0)

}

⊗ q(xi)

]

= 0,

we further have

V̂22 = var

[

1

N
1/2
0

n
∑

i=1

{

di −
G1(xi, β0)

1− φ(xi, β0)

}

⊗ q(xi)

]

+Op(N
−1/2
0 ) = V22 +Op(N

−1/2
0 ).

Consequently, σ̂2 = φ̂∗ − 1− V̂32V̂
−1
22 V̂23 is a root-N0 consistent estimator of σ2.

3·4. Proof of Corollaries 1 and 2 and consistency of σ̂2
s

The proofs of Corollaries 1 and 2 are similar to those of Theorems 1 and 2, and the proof of210

the consistency of σ̂2
s in (10) is similar to that of σ̂2. Hence, the details are omitted here.

3·5. Semiparametric efficiency of N̂

Let dF (x) = f(x, θ)dx denote a parametric submodel such that f(x, θ0) is the true density

function of X. Further, let N̂p(f, θ) denote the parametric maximum likelihood estimator of N
under the parametric submodel f(x, θ) for the marginal distribution of X. According to Fewster

& Jupp (2009), as N0 → ∞,

N
−1/2
0 {N̂p(f, θ)−N0} → N

(

0, σ2
p(f, θ)

)

for some σ2
p(f, θ) > 0. In this section, we establish the semiparametric efficiency of N̂ by show-

ing that the asymptotic variance σ2 of N̂ satisfies

σ2 = supσ2
p(f, θ), (37)

where the supremum is taken over all parametric submodels for dF (x).215

We need some preparation. Let η = 1/(1 − α), η0 = 1/(1 − α0), and η̂ = 1/(1 − α̂). Since

we treat N as a continuous parameter, N̂ and α̂ should satisfy

S1(N̂ , n) + log α̂ = 0.

Recall that

log{(N + 1)/(N + 1− n)} < S1(N,n) < log{N/(N − n)}.

Then

N̂ = nη̂ +Op(1), (38)

which implies that

N̂ −N0 = n(η̂ − η0) + nη0 −N0 +Op(1). (39)

Combining (28) and (38), we get

η̂ − η0 = n−1
n
∑

i=1

[

V32V
−1
22

{

di −
G1(xi)

1− φ(xi, β0)

}

⊗ q(xi) +
1

1− φ(xi, β0)
− η0

]

+ op(N
−1/2
0 ).

(40)

By the central limit theorem and Slutsky’s theorem,

n1/2(η̂ − η0) | n → N(0, σ2
η)
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as n → ∞, for some σ2
η > 0. 220

Let η̂p(f, θ) denote the parametric maximum likelihood estimator of η under the parametric

submodel f(x, θ) for the marginal distribution of X. Similarly to (38), we have

N̂p(f, θ) = nη̂p(f, θ) +Op(1).

According to Fewster & Jupp (2009),

n1/2{η̂p(f, θ)− η0} | n → N
(

0, σ2
p,η(f, θ)

)

as n → ∞, for some σ2
p,η(f, θ) > 0.

We return to the proof of (37). The roadmap is as follows. In the first step, we show that 225

conditional on n, η̂ is a semiparametric efficient estimator of η, which implies that

σ2
η = supσ2

p,η(f, θ), (41)

where the supremum is taken over all parametric submodels for dF (x). In the second step, we

show that

σ2 = η−1
0 σ2

η + η0 − 1, σ2
p(f, θ) = η−1

0 σ2
p,η(f, θ) + η0 − 1,

which together with (41) imply (37).

We start with the first step. Let D and X respectively denote the capture history and char-

acteristic of an ideal individual, with D+ the number of captures in the k occasions, and

∆ = I(D+ > 0) with I(·) an indicator function. With (40), conditional on n, the influence func- 230

tion of η̂ is

ϕη(X,D) = V32V
−1
22

{

D −
G1(X)

1− φ(X,β0)

}

⊗ q(X) +
1

1− φ(X,β0)
− η0.

Referring to the established theory for the semiparametric efficiency bound, for example Chap-

ter 3 of Bickel et al. (1993) and Newey (1990), we need to show only the following two parts to

establish the semiparametric efficiency of η̂ conditional on n:

(a) η̂ is a regular estimator of η0; 235

(b) there exists a parametric submodel with hξ(x, d) the joint density of X and D such that the

true model is h0(x, d) and

ϕη(x, d) =
∂ log hξ(x, d)

∂ξ

∣

∣

∣

∣

ξ=0

.

We first consider (a). Following the procedure for the derivation of the likelihood in §2 of the

main paper, the joint distribution of X and D conditioning on that it is captured is

h(x, d; θ, β) = {1− α(θ, β)}−1 f(x, θ)

k
∏

j=1

g(x, βj)
dj{1− g(x, βj)}

1−dj ,

where α(θ, β) =
∫

φ(x, β)f(x, θ)dx.

Let

B1(x, d) =
∂ log h(x, d; θ0, β0)

∂θ
, B2(x, d) =

∂ log h(x, d; θ0, β0)

∂β
.
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By Theorem 2.2 in Newey (1990), arguing that η̂ is a regular estimator of η0 is equivalent to

showing that

E0 {ϕη(X,D)B1(X,D)} = ∂η/∂θ = η20∂α/∂θ (42)

and240

E0 {ϕη(X,D)B2(X,D)} = ∂η/∂β = η20∂α/∂β, (43)

where E0 indicates that the expectation is taken under h(x, d; θ0, β0). Let f ′(x, θ) =
∂f(x, θ)/∂θ. After some calculus, it can be verified that

B1(x, d) =
f ′(x, θ0)

f(x, θ0)
+ η0E0

{

φ(X,β0)
f ′(X, θ0)

f(X, θ0)

}

,

B2(x, d) = {D −G1(x)} ⊗ q(x)− η0E0{φ(X,β0)G1(X)⊗ q(X)}.

We now consider (42). Note that

E0{ϕη(X,D)} = 0.

Hence,

E0 {ϕη(X,D)B1(X,D)} = E0

{

ϕη(X,D)
f ′(X, θ0)

f(X, θ0)

}

= E0

{

V32V
−1
22

{

D −
G1(X)

1− φ(X,β0)

}

⊗ q(X)
f ′(X, θ0)

f(X, θ0)

}

(44)

+E0

[{

1

1− φ(X,β0)
− η0

}

f ′(X, θ0)

f(X, θ0)

}

. (45)

The term in (44) is equal to zero because245

E0(D | X) =
G1(X)

1− φ(X,β0)
.

The term in (45) is equal to

η0E

{

f ′(X, θ0)

f(X, θ0)

}

− η20E

[

{1− φ(X,β0)}
f ′(X, θ0)

f(X, θ0)

]

= η20E

{

φ(X,β0)
f ′(X, θ0)

f(X, θ0)

}

,

where E is the expectation with respect to the distribution of X given that the individual has

been captured at least once. Therefore,

E0 {ϕη(X,D)B1(X,D)} = E
{

η20φ(X,β0)f
′(X, θ0)

}

= η20
∂

∂θ
E {φ(X,β0)f(X, θ0)} = η20

∂α

∂θ
.

This proves (42).

We proceed to show (43). Since E0{ϕη(X,D)} = 0, we have250

E0 {ϕη(X,D)B2(X,D)}

= E0 {ϕη(X,D){D −G1(x)} ⊗ q(X)}

= E0

[

{D −G1(X)}

{

D −
G1(X)

1− φ(X,β0)

}

T

⊗

{

q(X)qT(X)

}

V −1
22 V23

]

(46)

+E0

[{

1

1− φ(X,β0)
− η0

}

{D −G1(X)} ⊗ q(X)

]

. (47)
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For (46), conditional on X, we have

E0

[

{D −G1(X)}

{

D −
G1(X)

1− φ(X,β0)

}

T

⊗

{

q(X)qT(X)

}

V −1
22 V23

]

= E0

[{

G2(X)−G2
2(X)

1− φ(X,β0)
−

φ(X,β0)G1(X)GT

1 (X)

{1− φ(X,β0)}2

}

⊗

{

q(X)qT(X)

}

V −1
22 V23

]

= −η0E

[{

−G2(X) +G2
2(X) +

φ(X,β0)G1(X)GT

1 (X)

1− φ(X,β0)

}

⊗

{

q(X)qT(X)

}

V −1
22 V23

]

= −η0V22V
−1
22 V23 = −η0V23, (48)

where in the penultimate step we have used the definition of V22.

Similarly, for (47), we get

E0

[{

1

1− φ(X,β0)
− η0

}

{D −G1(X)} ⊗ q(X)

]

= E0

[{

1

1− φ(X,β0)
− η0

}

φ(X,β0)

1− φ(X,β0)
G1(X)⊗ q(X)

]

= η0E

[{

1

1− φ(X,β0)
− η0

}

φ(X,β0)G1(X)⊗ q(X)

]

= η0V23 − η20E {φ(X,β0)G1(X)⊗ q(X)} , (49)

where in the last step we have used the definition of V23. Combining (46)–(49), we obtain

E0 {ϕη(X,D)B2(X,D)} = −η20E {φ(X,β0)G1(X)⊗ q(X)}

which is exactly η20∂α/∂β. This completes the proof of (a). 255

For (b), we consider the following function

hξ(x, d) = {1 + ξϕη(x, d)} (1− α0)
−1f0(x)

k
∏

j=1

g(x, βj0)
dj{1− g(x, βj0)}

1−dj , (50)

where f0(x) is the true density of X. If X has a compact support C , then maxx∈C φ(x, β0) < 1
and ϕη(x, d) is bounded. Then it is easy to check that for sufficiently small ξ this hξ(x, d) is a

parametric submodel and

ϕη(x, d) =
∂ log hξ(x, d)

∂ξ

∣

∣

∣

∣

ξ=0

.

This completes the proof of (b), and hence the semiparametric efficiency of η̂ is established.

We now move to the second step of proving (37) by identifying the relationship between σ2

and σ2
η . The relationship between σ2

p(f, θ) and σ2
p,η(f, θ) can be similarly proved.

Recall that N̂ = nη̂ +Op(1). This implies that 260

n−1/2(N̂ − nη0) = n1/2(η̂ − η0) + op(1).

Therefore,

n−1/2(N̂ − nη0) | n → N
(

0, σ2
η

)

as n → ∞. Note that N0/n = η0 + op(1). By Slutsky’s theorem, we further have

N
−1/2
0 (N̂ − nη0) | n → N

(

0, η−1
0 σ2

η

)
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as n → ∞.

Because the above limiting distribution does not depend on n, we conclude that as N0 → ∞,

N
−1/2
0 (N̂ − nη0) is asymptotically independent of n or N

−1/2
0 (nη0 −N0), and

N
−1/2
0 (N̂ − nη0) ∼ N(0, σ2

η/η0).

Recall that n ∼ B(N0, 1 − α0 = η−1
0 ), which implies that N

−1/2
0 (nη0 −N0) ∼ N(0, η0 − 1).

Hence,265

N
−1/2
0 (N̂ −N0) = N

−1/2
0 (N̂ − nη0) +N−1/2(nη0 −N0) ∼ N(0, η−1

0 σ2
η + η0 − 1). (51)

That is,

σ2 = η−1
0 σ2

η + η0 − 1. (52)

Similarly, we have

σ2
p(f, θ) = η−1

0 σ2
p,η(f, θ) + η0 − 1. (53)

Combining (52)–(53) with (41) leads to (37). This completes the proof of (37).

In practice, we may round N̂ to the closest integer N̂t. Then

|N̂ − N̂t| ≤ 1.

Hence,

N̂ = N̂t +Op(1),

which implies that N
−1/2
0 (N̂ −N0) and N

−1/2
0 (N̂t −N0) have the same limiting distribution.

That is, N̂t is also semiparametric efficient in the sense that the asymptotic variance of N̂t is the270

supremum of the asymptotic variances of the maximum parametric likelihood estimator of N
under all parametric submodels.

3·6. Consistency of the weighted kernel density estimator f̂w(x)

Given the maximum empirical likelihood estimators β̂s and α̂s, let p̂si = n−1[1 +

λ̂s{φs(xi, β̂s)− α̂s}]
−1 and let λ̂s be the solution to275

n
∑

i=1

φs(xi, β̂s)− α̂s

1 + λ{φs(xi, β̂s)− α̂s}
= 0.

We propose a weighted kernel estimator

f̂w(x) =

n
∑

i=1

p̂siK{(xi − x)h−1}h−1

for the covariate density function f(x), where K(x) is a kernel function, usually chosen to be

the standard normal density function, and h a bandwidth. In contrast, the usual kernel density

estimator is defined as

f̂u(x) =

n
∑

i=1

(nh)−1K{(xi − x)h−1}.

Next we restate the properties of f̂w(x) and f̂u(x) in the following proposition.280
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PROPOSITION 1. Assume that the conditions of Corollary 1 hold and K(x) is a bounded,

symmetric, and continuous density function. Further, f(x) > 0 for the given x. As N0 goes to

infinity, if h = o(1) and N0h
2 → ∞, then

f̂w(x) = f(x) + op(1), f̂u(x) = (1− α0)
−1{1− φs(x, β0)}f(x) + op(1).

We now give a proof for the above proposition. The proof of Theorem 1 and Corollary 1

implies that

λ̂s = −(1− α0)
−1 +Op(N

−1/2
0 ), β̂s = βs0 +Op(N

−1/2
0 ), α̂s = α0 +Op(N

−1/2
0 ).

Because the support of X is compact, there must exist ǫ0 ∈ (0, α0) such that ǫ0 ≤ φs(x, βs0) ≤
1− ǫ0 uniformly over all x. Using the first-order Taylor expansion and the condition that K(x)
is a bounded function, we have that 285

f̂w(x) = (1− α0)
1

n

n
∑

i=1

K{(xi − x)h−1}h−1

1− φs(xi, βs0)
+Op{1/(N0h

2)1/2}

= (1− α0)
1

N0

N0

n

n
∑

i=1

K{(xi − x)h−1}h−1

1− φs(xi, βs0)
+ op(1),

where in the last step, we have used the condition N0h
2 → ∞ as N0 → ∞.

Recall that n/N0 = 1− α0 + op(1). Then

f̂w(x) =
1

N0
{1 + op(1)}

N0
∑

i=1

I(d∗i+ > 0)
K{(Xi − x)h−1}h−1

1− φs(Xi, βs0)
+ op(1),

where d∗i+ is the number of times that the individual with covariate Xi has been captured in the

k occasions. By the law of large numbers, we further have

f̂w(x) = E

[

I(d∗i+ > 0)
K{(Xi − x)h−1}h−1

1− φs(Xi, βs0)

]

{1 + op(1)} + op(1)

= E
[

K{(Xi − x)h−1}h−1
]

{1 + op(1)} + op(1).

If K(x) is a bounded, symmetric, and continuous density function, then it satisfies the conditions 290

in Theorem 1A of Parzen (1962). Applying that theorem, we have

E
[

K{(Xi − x)h−1}h−1
]

= f(x) + op(1),

where h = o(1) as N0 → ∞. Hence, we have shown the consistency of the proposed weighted

kernel density estimator f̂w(x).
For the usual kernel density estimator, we similarly have

f̂u(x) = N−1
0

{

(1− α0)
−1 + op(1)

}

N0
∑

i=1

I(d∗i+ > 0)K{(Xi − x)h−1}h−1 + op(1).
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By the law of large numbers, we get that295

f̂u(x) =
{

(1− α0)
−1 + op(1)

}

E
[

I(d∗i+ > 0)K{(Xi − x)h−1}h−1}
]

+ op(1)

=
{

(1− α0)
−1 + op(1)

}

E
[

{1− φs(Xi, β0)}h
−1K{(Xi − x)h−1}

]

+ op(1)

=
{

(1− α0)
−1 + op(1)

}

∫

{1− φs(y, β0)}h
−1K{(y − x)h−1}f(y)dy + op(1)

= (1− α0)
−1{1− φs(x, β0)}f(x) + op(1).

This completes the proof of Proposition 1.

4. NUMERICAL IMPLEMENTATION OF EMPIRICAL LIKELIHOOD METHODS

In the numerical calculation of empirical likelihood methods, a crucial step is to calculate

the Lagrange multiplier λ. Recall that given (β, α), the empirical log-likelihood achieves its

maximum in general when300

pi =
1

n

1

1 + λ{φ(xi, β)− α}
,

where the Lagrange multiplier λ is the solution to

n
∑

i=1

φ(xi, β)− α

1 + λ{φ(xi, β)− α}
= 0. (54)

The fact that the pi’s are probability weights implies that 0 < pi < 1 for all 1 ≤ i ≤ n or

equivalently

1 + λ{φ(xi, β)− α} > 1/n, 1 ≤ i ≤ n. (55)

Owen (1988) showed that the solution of (54) exists under constraint (55) if and only if

mini{φ(xi, β)− α} < 0 < maxi{φ(xi, β) − α}. In this situation, the solution is unique, and

constraint (55) implies that λ should lie in

J(β, α) =

(

−
1− n−1

maxi{φ(xi, β)− α}
, −

1− n−1

mini{φ(xi, β)− α}

)

.

We can use the R function uniroot to search for the solution of (54) in the interval J(β, α).
Under certain regularity conditions,

lim
N0→∞

pr

[

min
i
{φ(xi, β)− α} < 0 < max

i
{φ(xi, β)− α}

]

= 1.

See Owen (1988). For certain values of (β, α) and a finite sample size, we may not have305

mini{φ(xi, β)− α} < 0 < maxi{φ(xi, β) − α}. In this situation, the solution of (54) does

not exist, and hence the profile empirical log-likelihood ℓ(N,β, α) in (2) is not well defined.

To overcome this difficulty, we follow a method proposed by Owen (1990) in our numerical

implementation.
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Recall that 310

h(N,β, α, λ) = log

{

Γ(N + 1)

Γ(N − n+ 1)

}

+ (N − n) logα−
n
∑

i=1

log[1 + λ{φ(xi, β)− α}]

+

n
∑

i=1

k
∑

j=1

[dij log g(xi, βj) + (1− dij) log{1− g(xi, βj)}] .

It can easily be verified that h(N,β, α, λ) is strictly convex in λ and the solution of (54), if it ex-

ists, minimizes h(N,β, α, λ) with respect to λ for the given (N,β, α). Hence, we can minimize

h(N,β, α, λ) to find the solution of (54). However, h(N,β, α, λ) is not always well defined. 315

Following the idea in Owen (1990), we first extend the definition of h(N,β, α, λ) to

h∗(N,β, α, λ), where

h∗(N,β, α, λ) = log

{

Γ(N + 1)

Γ(N − n+ 1)

}

+ (N − n) logα−

n
∑

i=1

log∗[1 + λ{φ(xi, β)− α}]

+

n
∑

i=1

k
∑

j=1

[dij log g(xi, βj) + (1− dij) log{1− g(xi, βj)}] .

Here 320

log∗(z) =

{

log(z), z > cn,
log(cn)− 1.5 + 2z/cn − 0.5(z/cn)

2, z ≤ cn,

where cn > 0 is usually chosen to be very small, e.g. cn = 1/n or 10−5. The function log∗(z)
is twice continuously differentiable and strictly concave throughout the whole real line. Hence,

for given (N,β, α), h∗(N,β, α, λ) is strictly convex and is well defined for all (N,β, α, λ). For

small cn, h∗(N,β, α, λ) is a very close approximation to h(N,β, α, λ) when the latter is well

defined. 325

We next minimize h∗(N,β, α, λ) with respect to λ to calculate the Lagrange multiplier for the

given (N,β, α) and define the profile empirical log-likelihood of (N,β, α) as

ℓ(N,β, α) = argmin
λ

h∗(N,β, α, λ).

The optimization problem can easily be solved using the R function optimize. Our simulation

experience indicates that this procedure is computationally efficient and stable.

By implementing the idea in Owen (1990), we overcome the non-definition problem of the

profile empirical log-likelihood ℓ(N,β, α). The resulting ℓ(N,β, α) is always well defined and

is a smooth function of (N,β, α). When calculating the maximum empirical likelihood estimator 330

of (N,β, α), we use a divide-and-conquer strategy to maximize ℓ(N,β, α).
Note that ℓ(N,β, α) can be rewritten

ℓ(N,β, α) = h1(N,α) + h23(β, α)

where

h1(N,α) = log

{

Γ(N + 1)

Γ(N − n+ 1)

}

+ (N − n) log α,

h23(β, α) = min
λ

h2∗(β, α, λ) + h3(β),
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with

h2∗(β, α, λ) = −

n
∑

i=1

log ∗[1 + λ{φ(xi, β)− α}],

h3(β) =

n
∑

i=1

k
∑

j=1

[dij log g(xi, βj) + (1− dij) log{1− g(xi, βj)}] .

We propose to maximize ℓ(N,β, α) via the following algorithm:335

Step 1. Given β and α, obtain minλ h2∗(β, α, λ) and hence h23(β, α). This step can be carried

out using the R function optimize.

Step 2. Given α, maximize h1(N,α) with respect to N to obtain maxN h1(N,α) and maxi-

mize h23(β, α) with respect to β to obtain maxβ h23(β, α). Let

h123(α) = max
N

h1(N,α) + max
β

h23(β, α).

This step can be carried out by applying the R functions optimize and nlminb respectively

to h1(N,α) and h23(β, α) for the given α.

Step 3. Maximizing h123(α) with respect to α gives the maximum empirical likelihood esti-340

mator α̂. This step can be carried out by applying the R function optimize to h123(α). Then

maximizing h1(N, α̂) with respect to N gives N̂ and maximizing h23(β, α̂) with respect to β

gives β̂.

The above algorithm has been implemented for both the general case and the special case. In

abun.R, the gabun function implements the empirical likelihood and conditional likelihood345

methods for the general case, and the sabun function implements these methods for the special

case. See the accompanying example.R for the use of these functions. Both R files are available

at http://sas.uwaterloo.ca/˜p4li/publications/abun.zip.

Next we use simulation to compare the computational times for calculating the maximum

empirical likelihood estimator, N̂ or N̂s, and the maximum conditional likelihood estimator, Ñ350

or Ñs, of N . In the simulation, we generate random samples from Scenario S1 and record the

times to calculate N̂ and Ñ under the Mth model, and N̂s and Ñs under the Mh model. Based

on 100 repetitions, we record the averages of the times in seconds on an IMAC with a 3.4-GHz

Intel Core i7 processor. The results are summarized in Table 1. Under both Mh and Mth, the

time to calculate the maximum empirical likelihood estimator increases as N0 or k increases.355

The averages of the times to calculate N̂ under the Mth model are less than 8 seconds when

N0 = 5000 and k = 4; and the averages of the times to calculate N̂s under the Mh model are

less than 3 seconds when N0 = 5000 and k = 16. We acknowledge that it takes more time to

calculate the maximum empirical likelihood estimator than the maximum conditional likelihood

estimator. However, this is the price to pay for a more efficient method.360

5. ADDITIONAL SIMULATION RESULTS

5·1. Some plots

In this section, we first display quantile-quantile plots of the empirical likelihood ratio R′(N0)
of N versus the χ2

1 distribution, the pivotal (Ñ −N0)/(Ñ
1/2σ̂) versus the N(0, 1) distribution,

the pivotal Ñ1/2 log(Ñ/N0)/σ̂ versus the N(0, 1) distribution, and the pivotal C(N0; Ñ) versus365

the N(0, 1) distribution for Scenario G1 with N0 = 200. The quantile-quantile plots for k = 2
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Table 1. Average times in seconds to compute the maximum empirical likelihood and maximum

conditional likelihood estimators of N under Mth and Mh models.

Model Mth Model Mh

N0 k N̂ Ñ k N̂s Ñs

100 2 0.26 0.01 2 0.13 < 0.01
100 3 0.29 0.03 8 0.14 < 0.01
100 4 0.34 0.06 16 0.17 < 0.01

1000 2 1.10 0.14 2 0.37 < 0.01
1000 3 1.55 0.39 8 0.57 0.01

1000 4 1.63 0.79 16 0.61 0.01

5000 2 6.13 0.96 2 1.53 0.01

5000 3 7.53 2.76 8 2.63 0.04

5000 4 7.90 5.68 16 2.88 0.04

and k = 3 are in Figures 1 and 2, respectively. The plots for the remaining cases are similar and

omitted. These two figures indicate that the distribution of the empirical likelihood ratio R′(N0)
is quite close to χ2

1, and the distributions of (Ñ −N0)/(Ñ
1/2σ̂) and Ñ1/2 log(Ñ/N0)/σ̂ are

not close to normal. They also show that the distribution of C(N0; Ñ ) is quite close to normal. 370

These observations may explain why the empirical-likelihood-ratio-based confidence intervals

I1 always have more accurate coverage probabilities than the Wald-type confidence intervals I2
and I3 but only a slight advantage over I4.

We next display boxplots of the logarithms of the lengths of I1, . . . ,I4 under Scenario G1 in

Figure 3. Together with the results for the coverage probabilities, we observe that I1 has slightly 375

longer lengths than I2 and I3 but much better coverage accuracy. Further, I1 in general has

shorter lengths than I4, but better or comparable coverage accuracy. The plots and conclusions

for the remaining cases are similar and omitted.

The plots of N̂ versus Ñ and log N̂ versus log Ñ in Figure 4 show that the two abundance

estimators Ñ and N̂ are indeed quite close, although Ñ is slightly larger than N̂ in general. 380

5·2. Simulation results for small N0

In this section, we conduct more simulations for N0 = 100, 150 under Scenarios G1, G2,

S1, and S2 to determine how the asymptotic results work for small N0. The simulated coverage

probabilities of I1, . . . ,I4 under Scenarios G1 and G2 and those of I1s, . . . ,I4s under Scenarios

S1 and S2 at the nominal level 95% are summarized in Table 2. 385

We can see that the asymptotic theory works reasonably well for all four types of confidence

intervals and all sample sizes considered in the simulation under Scenarios G1 and G2 with

k = 3, especially for the empirical-likelihood-ratio-based confidence interval I1 and the Wald-

type confidence interval I4. When k = 2, I1 has better coverage probabilities than the other

three confidence intervals. However, the general trend for all the confidence intervals is that 390

the asymptotic theory performs worse as N0 decreases. Some finite-sample correction may be

required in the application of I1 to small N0 and k = 2 under Mth models.

For Scenarios S1 and S2, the asymptotic theory works reasonably well for the empirical-

likelihood-ratio-based confidence interval I1s with k = 2. The coverage for I1s is much better

than that for the other confidence intervals. In particular, in Scenario S1 with N0 = 100 and 395

k = 2, the coverage gain of I1s over the other three intervals is at least 7%. When k = 2, I4s can

have worse coverage probabilities than I2s and I3s. When k = 8, the asymptotic theory does
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Fig. 1. Simulation results for Scenario G1 with N0 = 200 and k = 2. Panel (a) is
a quantile-quantile plot of the empirical likelihood ratio R′(N0) with the theoreti-

cal χ2

1 quantiles. Panel (b) is a quantile-quantile plot of (Ñ −N0)/(Ñ
1/2σ̂) with

the theoretical standard normal quantiles. Panel (c) is a quantile-quantile plot of

Ñ1/2 log(Ñ/N0)/σ̂ with the theoretical standard normal quantiles. Panel (d) is a

quantile-quantile plot of C(N0; Ñ) with the theoretical standard normal quantiles.
In all panels, the solid line is the identity line.

Table 2. Coverage probabilities in percentages for I1, . . . ,I4 under Scenarios G1 and G2 and

I1s, . . . ,I4s under Scenarios S1 and S2 with N0 = 100, 150. Here the nominal level is 95%.

Scenario G1 Scenario G2

N0 k I1 I2 I3 I4 I1 I2 I3 I4
100 2 90.3 83.4 86.2 88.4 91.2 87.7 90.3 89.9

100 3 93.9 91.1 92.7 95.1 94.5 91.8 93.7 95.0

150 2 91.8 85.8 88.5 90.2 92.7 88.2 90.3 91.9

150 3 93.3 92.0 92.8 93.9 94.3 92.8 94.3 95.1

Scenario S1 Scenario S2

N0 k I1s I2s I3s I4s I1s I2s I3s I4s
100 2 93.6 84.0 86.7 82.8 91.6 86.8 89.0 87.8

100 8 90.1 83.0 84.5 91.2 87.5 84.2 85.6 89.3

150 2 93.8 84.6 87.7 85.0 92.4 88.1 89.8 90.0

150 8 90.0 85.0 86.6 90.8 88.1 85.5 86.9 89.1



Maximum empirical likelihood estimation for abundance 25

0 2 4 6 8 10 12 14

0
2

4
6

8
1
0

1
2

1
4

Quantiles  of   χ1
2

Q
u

a
n

ti
le

s
  
o

f 
 R

’(
N

0
)

(a)  R’(N0)

−4 −2 0 2 4

−
8

−
6

−
4

−
2

0

Quantiles  of  N(0,1)

Q
u

a
n

ti
le

s
  
o

f 
   

(N~
−

N
0
)

(N~
1

2
σ̂)

(b)  (N~ − N0) (N~1 2
σ̂)

−4 −2 0 2 4

−
6

−
4

−
2

0
2

Quantiles  of  N(0,1)

Q
u

a
n

ti
le

s
  

o
f 

   
N~

1
2
lo

g
(N~

N
0
)

σ̂

(c)  N
~1 2

log(N~ N0) σ̂

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Quantiles  of  N(0,1)

Q
u

a
n

ti
le

s
  

o
f 

 C
(N

0
; 

N~
)

(d)  C(N0; N
~

)

Fig. 2. Simulation results for Scenario G1 with N0 = 200 and k = 3. Panel (a) is
a quantile-quantile plot of the empirical likelihood ratio R′(N0) with the theoreti-

cal χ2

1 quantiles. Panel (b) is a quantile-quantile plot of (Ñ −N0)/(Ñ
1/2σ̂) with

the theoretical standard normal quantiles. Panel (c) is a quantile-quantile plot of

Ñ1/2 log(Ñ/N0)/σ̂ with the theoretical standard normal quantiles. Panel (d) is a

quantile-quantile plot of C(N0; Ñ) with the theoretical standard normal quantiles.
In all panels, the solid line is the identity line.

not work well for any of the confidence intervals. Again, some finite-sample correction may be

required in the application of I1s when k is large.

5·3. Simulation results for the special case with large N0 400

In §4 of the main paper, we noticed that under Scenarios S1 and S2, the empirical-likelihood-

ratio-based confidence interval I1s has reduced coverage probabilities as k increases. We now

conduct more simulations with N0 = 1000, 5000, 10000 under Scenarios S1 and S2 with 2000

repetitions. The simulated coverage probabilities of I1s, . . ., I4s are summarized in Table 3.

Clearly, the undesirable trend for I1s persists when N0 is increased to 10000 but is less severe 405

when N0 is increased to 1000.
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Fig. 3. Boxplots of the logarithm of lengths of I1, . . . , I4 under Scenario G1.

Table 3. Coverage probabilities in percentages of I1s, . . ., I4s at the nominal level 95% under

Scenarios S1 and S2 with N0 = 1000, 5000, 10000.

Scenario S1 Scenario S2

N0 k I1s I2s I3s I4s I1s I2s I3s I4s
1000 2 93.7 89.1 91.0 91.7 93.2 91.0 92.0 93.0

1000 8 93.7 90.1 91.2 94.1 92.5 91.7 92.2 93.3

5000 2 94.1 90.9 92.2 93.2 93.6 93.1 93.5 93.8

5000 8 93.7 92.5 92.8 93.9 93.1 93.1 93.1 93.7

10000 2 94.3 92.9 93.7 94.3 94.5 94.4 94.3 94.7

10000 8 93.9 93.1 93.4 94.1 93.1 92.9 92.9 93.5

5·4. Simulation results for one-tailed interval estimation

In the general case, let

ω1 = sign(N̂ −N0){R
′(N0)}

1/2,

ω2 = (Ñ −N0)/(Ñ
1/2σ̂),

ω3 = Ñ1/2 log(Ñ/N0)/σ̂,

ω4 = C(N0; Ñ).
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Fig. 4. Comparison of N̂ and Ñ for Scenario G1 with N0 = 200. Panels (a) and (c)

are plots of N̂ versus Ñ for k = 2 and k = 3. Panels (b) and (d) are plots of log N̂
versus log Ñ for k = 2 and k = 3.

That is, ω1 denotes the signed square root of the empirical likelihood ratio statistic R′(N0),
and ω2, . . . , ω4 denote three asymptotic pivotal statistics based on the maximum conditional 410

likelihood estimator Ñ . Based on the asymptotic results developed in the main paper, ω1, . . . , ω4

all have the limiting distribution N(0, 1) as N0 → ∞. In §3 of the main paper, we discussed the

two-sided coverage probabilities of the confidence intervals based on ω1, . . . , ω4. In this section,

we study the one-sided coverage probabilities of the confidence intervals based on ω1, . . . , ω4.

For each of the four statistics ω1, . . . , ω4, we calculate the simulated probabilities that the 415

statistic is smaller than the 1%, 2.5%, 5%, 95%, 97.5%, and 99% quantiles of N(0, 1) based on

2000 repetitions. The results for Scenarios G1 and G2 with N0 = 200, 400 are summarized in

Table 4. Similarly to ω1, . . . , ω4, we can define ω1s, . . . , ω4s for the special case. The simulation

results for Scenarios S1 and S2 with N0 = 200, 400 are summarized in Table 5.

We observe that the distributions of ω2 and ω3, including ω2s and ω3s, are much larger than 420

and not close to the standard normal distribution. This observation is consistent with Figures 1

and 2, where the normal quantiles are larger than those of ω2 and ω3. Compared with ω2 and

ω3, the distributions of ω1 and ω4, including ω1s and ω4s, are closer to the standard normal

distribution. It can be seen that the quantiles of ω1 and ω1s are uniformly less than the standard

normal. This could explain the stable performance of the two-sided confidence interval based on 425

the empirical likelihood ratio or equivalently based on ω1 and ω1s: there may be location shifts in

their distributions. DiCiccio and Romano (1989)’s adjustment method may be applied to reduce
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the bias in the one-sided coverage probabilities. At the same time, we observe that ω4 and ω4s

seem to shrink towards 0, the median of the standard normal, when k = 2. Compared with the

standard normal, the probabilities are larger at the lower-half normal quantiles and smaller at the430

upper-half normal quantiles. As k increases, the shrinkage is alleviated and the distribution of ω4

becomes closer to the standard normal. This explains why I4 and I4s have good performance for

large k but severe undercoverage for small k such as k = 2.

Table 4. Simulated probabilities that ω1, . . . , ω4 are smaller than 1%, 2.5%, 5%, 95%, 97.5%,

and 99% quantiles of N(0, 1) under Scenarios G1 and G2 with N0 = 200, 400.

Scenario G1 Scenario G2

N0 = 200 N0 = 400 N0 = 200 N0 = 400
Statistic Level k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

ω1 1% 2.6 2.3 3.1 1.8 2.4 1.5 1.8 1.3

ω1 2.5% 5.6 4.8 6.1 4.2 5.7 3.3 4.7 2.7

ω1 5% 10.2 7.8 10.5 7.9 9.9 6.0 8.2 5.8

ω1 95% 96.0 96.3 96.2 96.0 96.2 96.1 95.7 96.3

ω1 97.5% 98.3 98.0 98.2 97.4 98.4 98.1 97.7 98.4

ω1 99% 99.4 99.3 99.3 99.1 99.2 99.2 99.0 99.1

ω2 1% 11.1 6.5 9.9 5.6 10.6 4.5 7.3 3.6

ω2 2.5% 13.8 8.5 12.4 8.0 13.4 6.6 10.2 5.9

ω2 5% 17.1 11.2 15.6 10.7 16.7 10.2 13.4 8.9

ω2 95% 100.0 100.0 100.0 99.9 100.0 100.0 100.0 99.8

ω2 97.5% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ω2 99% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ω3 1% 7.8 5.4 7.8 4.0 7.2 3.4 5.8 2.9

ω3 2.5% 11.2 7.3 10.8 6.6 10.5 5.6 8.4 4.9

ω3 5% 14.3 9.7 13.3 10.1 13.8 8.2 11.2 7.6

ω3 95% 99.6 99.7 99.5 98.4 99.5 99.4 99.1 98.6

ω3 97.5% 100.0 100.0 99.8 99.8 99.9 100.0 100.0 99.7

ω3 99% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ω4 1% 2.5 1.8 3.4 1.3 2.1 1.2 2.2 1.1

ω4 2.5% 5.5 4.0 6.5 3.4 4.8 2.4 4.6 2.3

ω4 5% 9.8 6.4 10.5 6.5 8.9 4.8 7.5 4.8

ω4 95% 93.3 95.3 95.0 95.2 93.4 94.9 94.7 95.9

ω4 97.5% 96.3 98.2 97.8 97.6 96.7 97.9 97.3 98.0

ω4 99% 98.8 99.3 99.4 99.2 98.4 99.3 99.0 99.2

6. BOOTSTRAP PROCEDURE

The proposed empirical-likelihood-based framework enables us to use a bootstrap method to435

calibrate the finite-sample distribution of a statistic. As an illustration, we concentrate on the

signed square root of the empirical likelihood ratio statistic, ω1s, for the special case with all βj
equal to βs.

Next we discuss how to obtain the bootstrap distribution of ω1s. Recall that p̂si = n−1[1 +

λ̂s{φs(xi, β̂s)− α̂s}]
−1, where β̂s and α̂s are the maximum empirical likelihood estimators of440
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Table 5. Simulated probabilities that ω1s, . . . , ω4s are smaller than 1%, 2.5%, 5%, 95%, 97.5%,

and 99% quantiles of N(0, 1) under Scenarios S1 and S2 with N0 = 200, 400.

Scenario S1 Scenario S2

N0 = 200 N0 = 400 N0 = 200 N0 = 400
Statistic Level k = 2 k = 8 k = 2 k = 8 k = 2 k = 8 k = 2 k = 8
ω1s 1% 2.6 4.6 3.2 3.2 2.3 4.9 2.1 3.9

ω1s 2.5% 5.1 7.9 5.7 6.1 5.4 8.9 4.7 7.3

ω1s 5% 9.3 13.8 9.4 11.7 9.2 13.9 8.6 12.6

ω1s 95% 96.8 97.3 97.1 97.6 95.7 97.9 95.9 95.9

ω1s 97.5% 98.7 99.3 98.3 98.8 98.0 99.1 97.9 98.1

ω1s 99% 99.5 99.7 99.4 99.6 99.3 99.6 99.2 99.2

ω2s 1% 13.1 11.3 12.1 8.6 9.8 9.9 7.9 8.0

ω2s 2.5% 16.1 15.2 15.7 13.2 13.3 13.5 10.5 11.7

ω2s 5% 18.5 19.0 18.8 17.3 15.9 17.4 14.0 15.4

ω2s 95% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9

ω2s 97.5% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ω2s 99% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ω3s 1% 9.8 9.3 9.4 7.0 7.5 8.4 5.8 7.1

ω3s 2.5% 12.9 13.4 12.3 11.4 10.4 12.2 9.0 10.8

ω3s 5% 15.9 17.2 15.9 15.8 14.0 16.2 12.2 14.5

ω3s 95% 99.3 100.0 99.5 99.9 99.8 99.6 99.5 99.1

ω3s 97.5% 99.8 100.0 99.7 100.0 100.0 100.0 100.0 99.9

ω3s 99% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ω4s 1% 5.1 3.9 5.8 3.2 2.5 2.7 2.2 2.7

ω4s 2.5% 7.5 6.4 8.8 5.5 5.4 6.0 4.8 5.8

ω4s 5% 12.1 10.9 12.1 10.3 9.0 10.4 8.4 10.4

ω4s 95% 92.6 95.3 94.1 97.0 93.8 95.6 95.0 94.9

ω4s 97.5% 94.8 98.1 96.3 98.8 96.3 98.2 97.2 97.3

ω4s 99% 96.5 99.2 97.7 99.7 98.6 99.2 99.1 99.0

βs and α, and λ̂s is the solution to

n
∑

i=1

φs(xi, β̂s)− α̂s

1 + λ{φs(xi, β̂s)− α̂s}
= 0.

Then we can estimate the cumulative distribution function F (x) by

F̂s(x) =
n
∑

i=1

p̂siI(xi ≤ x).

Similarly to the consistency of f̂w(x), we can show that F̂s(x) is consistent with F (x).

Based on N̂s, β̂s, and F̂s(x), we propose the following bootstrap procedure to obtain the

bootstrap distribution of ω1s.

Step 1. Sample Xi,b (i = 1, . . . , N̂s) from F̂s(x). 445

Step 2. For each Xi,b, generate the number of captures d∗i+,b in the k occasions from

B
(

k, g(Xi,b, β̂s)
)

. Let nb be the number of individuals that have been captured at least once.
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We use xi,b (i = 1, . . . , nb) and di+,b (i = 1, . . . , nb) to denote the covariate and the number of

captures for these nb individuals.

Step 3. Based on the bootstrap sample (xi,b, di+,b) (i = 1, . . . , nb), calculate the maximum

empirical likelihood estimator N̂s,b, the empirical likelihood ratio statistic R′
s,b(N̂s) of the abun-

dance N , and the signed square root of the empirical likelihood ratio statistic

ω1s,b = sign(N̂s,b − N̂s){R
′
s,b(N̂s)}

1/2.

Step 4. Repeat steps 1–3 B times and obtain {ω1s,1, . . . , ω1s,B}. The empirical distribution of450

{ω1s,1, . . . , ω1s,B} is an accurate approximation of the bootstrap distribution of ω1s.

We run a simulation under Scenarios S1 and S2 with N0 = 200, 400 and k = 8 to check the

approximation of the bootstrap distribution to the finite distribution of ω1s. The simulated proba-

bilities that ω1s is smaller than the 1%, 2.5%, 5%, 95%, 97.5%, and 99% quantiles of N(0, 1) and

those of the bootstrap distribution are summarized in Table 6. In the calculation of the bootstrap455

distribution, we use B = 999. Clearly, the bootstrap procedure can significantly improve the

coverage probabilities on both tails. It can also improve the two-tailed coverage probability. For

example, under Scenario S2, the two-tailed coverage probability has been improved from 90.3%

to 92.6% at the nominal level 95%. It is well known that the adjustment to improve the coverage

precision is much harder for the one-sided confidence interval than for the two-sided. DiCiccio460

and Romano (1989) studied the correction for the signed root of the empirical likelihood ratio

statistic. Further research is warranted.

Table 6. Simulated probabilities that ω1s are smaller than 1%, 2.5%, 5%, 95%, 97.5%, and

99% quantiles of N(0, 1) and those of bootstrap distribution under Scenarios S1 and S2 with

N0 = 200, 400 and k = 8.

Scenario S1 Scenario S2

N0 = 200 N0 = 400 N0 = 200 N0 = 400
Level N(0, 1) Bootstrap N(0, 1) Bootstrap N(0, 1) Bootstrap N(0, 1) Bootstrap

1% 4.6 3.6 3.2 2.6 4.9 3.5 3.9 2.6

2.5% 7.9 6.3 6.1 4.4 8.9 5.9 7.3 5.4

5% 13.8 10.2 11.7 8.4 13.9 10.2 12.6 9.2

95% 97.3 95.0 97.6 95.6 97.9 96.4 95.9 94.6

97.5% 99.3 98.0 98.8 97.9 99.1 98.5 98.1 97.1

99% 99.7 99.5 99.6 99.2 99.6 99.5 99.2 98.7

In this section, we use ω1s as an illustration. The above bootstrap procedure can also be applied

to obtain the bootstrap percentile confidence interval and other types of confidence intervals for

N . We leave a thorough comparison of the different types of bootstrap confidence intervals for465

N and their asymptotic properties to future research.
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