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This is a supplementary document to the corresponding paper submitted to Biometrika. §1
reviews the results in the main paper. §2 presents some preliminary preparation. §3 contains
the proofs of Theorems 1-2, Corollaries 1-2, the consistency of 52 and &2, the semiparametric

efficiency of N, and the consistency of fw(ac) 84 discusses the numerical implementation of
the empirical-likelihood-based methods. §5 provides some additional simulation results. §6 pro-
poses a bootstrap procedure to improve the performance of the empirical-likelihood-ratio-based
confidence interval.

1. MAIN RESULTS IN THE MAIN PAPER
1-1.  General case

Recall that we model the probability of capture on occasion j (j = 1,..., k) by the logistic
regression model g;(z) = g(z, 5;), where

exp{ 6} q(x)}
1+ exp{fq(x)}’

We show that the profile empirical log-likelihood of (N, 3, «) is, up to a constant not dependent
on the unknown parameters,

I'(N +1) }

g(x75j) =

(D

(N, B, ) =log { + (N —n)loga — Zlog[l + Mo(zi, B) — a}]

NN —n+1) P
n k
+ Z Z [dijlog g(wi, B5) + (1 — dij) log{1 — g(=4, B;)}], (2)

i=1 j=1
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2 Y. Liu, P. L1, AND J. QIN

where ) is the solution of

S qb(:EZ’ 5) —
=0 3
2 TF Ao B — ) )
and ¢(z, §) = [Tj_ {1 — gz, 5;)}.
% The maximum empirical likelihood estimators (]\7 , B, &) of (N, 8, «) are defined to be

(N,B,d):arg}vnﬁaxf(N,B,a). (4)

The empirical likelihood ratio functions of (N, 3, «) and N are
R(N,B,a) = 2{¢(N, 5,4) — (N, B, @)}, 5)

where (ﬁN, Gan) = argmaxg o £(N, 3, a) given N.
Let No, Bo = (810, - - -, B1)"» and ag be the true values of N, /3, and «, respectively. Denote

Gi(@) = {g(z, fro), - 9(x, Bro)} Galw) = diag{Gr(2)}, é» = B [{1 - 6(X, fo)} ']
We use @ to denote the Kronecker product operator. Define

Vit 0 Viz 0
0 Vag Vg Vou

V= 7
V31 Vag Va3 Vay @
0 Vig Vig Viy
-V 0 —Vi3
W = (Wij)i<ij<sz = 0  —Vao + VauVy ' Vio —Vag + Vau V' Vi |, (®)

Va1 —Vag + VoV Vi —Vag + Vay V' Vg
where
Vi = 1—04617 Vis :ao_la

LX) , '
Vo = 5 [ { 2520 GuO0GT00 + G0 - 6alX) | (0007}
e 6K
‘/23 - ‘/32 - E{l _ Cb(XyOBO)
Vs = ¢u — gty Vg = Viz = (1 — ag)?bu, Vi = (1 — ag) s — (1 — ap)®.

% With the above preparation, we have the following theorems.

G1(X) ® Q(X)} , Vou = Vi = (1 — ag)?Vag,

THEOREM 1. Assume that the support of X is compact, the capture probability function is
gj(x) = g(x, B;) as defined in (1) and the vector-valued function q(z) is b-variate with linearly
independent components. Let (Ny, By, ) be the true value of (N, 3, ) with ag € (0,1). If W
defined in (8) is nonsingular, then as Ny goes to infinity, we have

w(a) No*?{log(N/Ny), B — BT, & — ap}™ — N(0,W~1) in distribution;
(b) R(Ny, Bo, ) — ng o indistribution and R'(No) — X% in distribution, where k is the num-
ber of capture occasions.

Denote by ¢.(3) = log L.() the conditional log-likelihood given the observed data, where
L.(p) defined in (3) in the main paper is the conditional likelihood. The maximum conditional
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likelihood estimator of NV is defined as
B Z 1—é(xi, B)
where 3 = arg maxg £.(3).
THEOREM 2. Under the assumptions in Theorem 1, as Ny goes to infinity, we have
(a) N— N =0,(1);

(b) (N — No)/Ny'% (N = No) /N2, No/*1og(N /Np), and Ny V2 1og(N /Ny) all converge in
distribution to N (0, 0?), where 0® = qb* —1-— ‘/},21/22 Vo3.

Based on the form of o2 in Theorem 2, an estimator of o2 can be constructed as follows:
= ¢ — 1 — ViV Vi, ©)
where ¢, = N1 {1 — ¢(z;,3)} 2 and

Vag = Vg = ‘12 i :E;Z’ EE Gi(zi, B) ® q(;),

_ -1 ~ Gi(zi,B) 4 — G1(xz;, B) '
Vem ZH ¢(%ﬁ)}{ Z 1—¢<xi,5>}

1-2.  Special case
When the 3;’s are all equal, ¢(x, 3) reduces to ¢s(z, Bs) = {1 — g(x, 3s)}*, where (3, denotes

the common value of the /3;’s. In this situation, the profile empirical log-likelihood £,(N, /3, )
can be directly obtained from the profile empirical log-likelihood in (2):

V. Buve) = log { o

@ {q(zi)q(x:)" }.

+ (N —n)loga — Zlog[l + Mos(z4, Bs) — a}]
i=1

+ > [diy log g, Bs) + (k — diy) log{1 — g(x, Bs)}]
=1

where ) is the solution to

n

Z ¢s(xi7/85) —« -0
i1 1+ Mos (@i, 85) — a} '

With the profile empirical log-likelihood ¢4(N, s, ), we define the maximum empirical
likelihood estimators (N, B, &) of (N, Bs, ), the empirical likelihood ratio Ry(N, s, )
for (N, Bs,«) and the empirical likelihood ratio R.(N) for N similarly to the definitions of
(N,B,d), R(N,B,«), and R'(N) in (4), (5), and (6). To present the asymptotics, we de-
fine a new W matrix, namely W, which is W with ¢, Va3, Va4, and Vas in (8) replaced by
Psx = E[{l - ¢S(X7 530)}_1] and

[ 6B
Voa =B { 1= 6, (X, o)

Vass = HMHQQ(X, Bo) + kg (X, o) — kg(X, %)} q(X)q(X)T] |

ky(X, BSO)Q(X)} » Vass = (1= a0)2Vags,

1- ¢8(X7 580)
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4 Y. Liu, P. L1, AND J. QIN
Here (Ny, B350, ) is the true value of (N, fs, ).

o COROLLARY 1. Assume that the support of X is compact, the capture probability function is

gj(x) = g(z, Bs) with q(z) as in Theorem 1. Let (Ny, B0, o) be the true value of (N, Bs, c). If
W defined above is nonsingular, then as Ny goes to infinity, we have

(a) No"/*{log(N,/No), BT — 8L, a5 — ag}™ — N(0, W) in distribution;
(b) Rs(No, Bso, ) — X§+2 in distribution and R.(Ny) — X% in distribution.

70 Given the observations, the conditional log-likelihood is

n

les(Bs) =) [dig log g(wi, Bs) + (k — diy.) log{1 — g(i, Bs)}] = D log{1 — s(xs, Bs)}.

i=1 =1

Similarly to Huggins (1989) and Alho (1990), we define the maximum conditional likelihood
estimator of N as

where (3, = arg maxg, {cs(03s). The following corollary is equivalent to Theorem 2 when the
B;’s are all equal.

75 COROLLARY 2. Under the assumptions in Corollary 1, as Ny goes to infinity, we have

(@) Ny— N, = 0p(1);

(b) (N, — No)/N2, (N, — - No)/ 12 Nyl log(N /Noy), and No*/2 log (N, /Ny) all converge
in distribution to N(0,c2), where 02 = g — V323V228 Voss.

Similarly to 62 in (9), a consistent estimator of 03 can be constructed as
~2 7 o =17
05 = s — 1 = Vaas Vo Vi, (10)

o where ¢z, = N S {1 — ¢s(xi, B5)} % and

Vags = Vahe = NJ ! Z ¢;i2f;)s)}2k (i, Bo)q (i),

2
Vags = =Ny 12 { %} q(zi)q(zi)".

It can be shown that 62 is a root- Ny consistent estimator of o2,

2. PREPARATION

2-1. Reexpression
It can be verified that

E(Nwﬁa a) = h(N757047 )\N,ﬁ,a)7
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where

I'(N +1)

et (v mytoga = 3 logll + Mo ) — a)

1=1

h(N, B, , A) =10g{

n

k
+ Z dl] log g :L'Mﬁj) ( _dij)bg{l_g(ﬂjivﬁj)}]v
i=1 j=1
and Ay g o is the solution to Oh/OX = 0.
Let A be the solution to (3) with (3, &) in place of (3, «). We first discuss some asymptotic
properties of A. It can be verified that (N, 5, &, \) satisfy

Oh(N, B, \) _0 Oh(N, B, \) _0 Oh(N, B, a, \) _0 Oh(N, B, \) _0
ON - op - Oa - oA -

Note that

ah(N,ﬁ,Oé,A) :_Zn: ¢($27ﬁ)_a -0

O\ <1+ Mo(zi, B) — a}
OR(N,B,a,A)  N-—n & A B
O o« +;1+/\{¢(aji,ﬁ)—a}_0’
together imply that (N .8, 4, 5\) satisfy
~ 1-n/N
A= —7(71/]\[)& (11)

By the fact that n ~ B(Ny, 1 — ) and the law of large numbers, the right-hand side of (11) at

the true values of (IV, 8, a) converges to a constant (denoted by \g) in probability. That is,
1—n/N
(n/N)a

in probability. When (N , B, &) is consistent, we can further verify that

5\ = —ﬂ — )\0
(n/N)&

—))\0 = —1/(1 —Oé())

in probability.
Next, we define more notation. Let

¥ = (41,73, 73, 74) = No2{(N/No) — 1, (8 — Bo)™, @ — @, A — Ao},
and define
AT = (31,45, 43, 90) = No/2{(IV/No) — 1, (B — o)™, G — ap, A — Ao}
Define
H(v) = h(N, B, c, \) = h(No + Ne?71, Bo+ Ny 25, oo + Ny 23, Ao+ Ny ?y4).

It can be verified that 4 is the solution to 0H () /0y = 0.
To investigate the asymptotic properties of (N, 3, &, \), we need their approximations, which

can be obtained via the second-order Taylor expansion of H () around ~y = 0. In this subsection,
we derive the forms of 9H (0) /0~ and 9> H(0)/(0v0~") and study their properties.
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6 Y. Liu, P. L1, AND J. QIN

2-2.  First and second derivatives of H(vy) aty =0
Recall that G (x) = {g(z, f10),---,9(x, Bko)}*. After some calculus, we have

OH(0)/071 = No/*{S1(No,n) +log ag},

anym@=Mfﬂ§:{m—ff%%%®}®q@w
i=1 v

)

VS FACRIR o U (RN S o
OH(0)/87v3 = Ny [ao Z{l—¢(wi750)+o‘0}

=1
¢(zi, fo) — a0

e NY2 Sy Sl
OH(0)/0vs = —(1 — ag)Ny ; — (x4, fo)

Here

_ log{l'(N)}  d°log{I'(N —n+1)}

Se(N,n) dAN¢ dAN¢

for nonnegative integer c. Using the properties of the polygamma functions, we have

Se(N,n) = (=) He=1)1 > K (12)

see for example Murty & Saradha (2009).
Next we simplify OH (0) /ON using (12). Since ! is a monotone decreasing function, (12)
implies that

log{(N+1)/(N+1—-n)} <Si(N,n) <log{N/(N —n)}.

Since n follows B(Np,1 — «ayp), by the central limit theorem we have n/Ny=1— ag+
Op(Ny Y 2) and further

(n/NQ) -1 + (7))
Qo

+O0,(Ny ).

N _
S1(Ng,n) =log (No E n) +0,(Ng') = —logag +

Hence,

n/No) — (1 — ap)

Z?H(O)/a’yl = N(}/2{51(N0,n) —I—IOgOé()} — N()1/2{( }+Op(N0_1/2)

&%)
Let
Upl = Nol/2 n/MNo — (1~ ao) ; Upg = @7 Upg = M, Upg = @7 (13)
g 972 V3 04

T T
and uy, = (Un1, Uty Un3, Una) ™. Then

0H(0) —1/2
5y = i+ Op(Ng /2,
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Next we calculate the second derivatives of H () aty = 0. Recall that G (z) = diag{G1(z)}.
After some calculation, it can be verified that

92 H(0) 0 92 H(0) 0

o , 8271% ,
92H(0) 9°H(0) 92H(0)
O’H (0) _ 0 0y20vf 072073 07204 14
Doyt | HO) 9PHO) 9H(0) *HO) |° (14)
073971 0v30v; O3  Ov30ma
0 92H(0) 82H(0) 0% H(0)
07107 07a0vs 943
with 115
9%2H (0 9%2H (0 0*H (0 1
( ) :NOSQ(N07n)7 ( ) = ( ) = —

ov? omys  Opm

PH(0) 1 S Gilwi)Galwi) d(wi, o) — {1 = ¢(wi, Bo) HG2(w:i) — G3(wi)}
Z {1_ (w2750)}2

® {q(zi)q(x:)"},

072073 No

=1
82H( ) {62H } é(4, Bo) ) .
02073 073073 Z {1 — @(w4, Bo) }? 7C1(w) © alw);
82H(O):{a2 ()} :(1—0()282 ()
072074 074075 O 9ya0s”
OH(O0) 1 Z 1= (n/Ny)
¢ Ny {1 — (w4, Bo) }2 a% ’ 0
82H( ) 82H Z 1 - Oé()
73074 874873 T No & {1 (i, o)}
PH©O) 1 Z (1- 040) {¢($i750) — 00}2‘

i N {1 = o(wi, fo)}?

2-3.  Some useful technical lemmas

Recall that 0H (0)/0y = u, + Op(Ny Y 2). In the proof of Theorem 1, we need the limit of
0?H (0)/(0y0~") and the expectation and variance of u,, defined in (13). The following lemmas s
ease much of the calculation burden in our proofs.

LEMMA 1. Suppose r(z) is a given nonzero function of x and X ~ F(z). Then

(a) if E[r(X){1 = ¢(X,bo)}] < oo, we have

L { N (x»} — Br(X) {1 - 6(X, 6} (15)

i=1

(b) if E[r*(X){1 - ¢(X,50)}] < oo, we have

— 3" () — E[r(X) {1 - ¢(X, fo)}] = Op(Ny /%) (16)
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w (¢) if E{g(X, Bjo)r(X)} < oo, we have

135

1 n
E {Fo > dijr<xi)} = E{g(X, Bjo)r(X)}. (17)
i=1
For (a), we define NNy indicator variables Iy,..., Iy, for the Ny individuals in the popu-

lation such that I; = 1 if the 7th individual has been captured at least once and 0 otherwise,
i=1,...,Ny. Then

n No

() = 2 S r(XDl

0531

1

Ny
0531

which is the summation of independent and identically distributed random variables. Hence, (15)
follows from the fact that

BE{r(Xi);} = BE[E{r(Xi)I; | X;}| = E{r(X;)E(L; | X;)} = Elr(X){1 — ¢(X; bo)}],

where we use E(I; | X;) = pr(l; = 1| X;) = ¢(X;, Bo) in the last equation.
For (b), we first write

1 & 1 No
No = r(zi) = Elr(X){1 - ¢(X; 6o)}] = No ;[T(Xi)fi — E{r(X;)L;}].

Because E [r?(X) {1 — ¢(X, fy)}] < co and r(z) is nonzero, by the central limit theorem we
have

i (Nio > r(a) — Elr(X){1 - ¢(X; Bo)}]> - N [Qvar{r(Xl)h}]
i=1

in distribution, which implies (16).
For (c), we define d} = (d}},...,d};,)" to be the capture history for the individual with the
characteristic X;,7=1,..., Ny. Then

1 ¢ 1
N ; dijr(z;) = N ; dir(X)I;.
Note that d;;I; = d;;. Then
E{d;;r(Xi) 1} = E[E{d;;r(X;)|X;}] = E{r(Xi)E(d}; | X;)} = E{r(X)g(X, Bjo)},

where we use E(d}; | X;) = pr(d;; = 1| X;) = g(X;, Bjo). This completes the proof.
From Lemma 1 and (14), we have the following result regarding the limit of

9*H(0)/(9797").
LEMMA 2. Under the conditions of Theorem 1, we have 9*H(0)/(0v0yT) =V +
Op(No_l/z), where V' is defined in (7).
We concentrate on the result
0*H(0)
ot

The other results are either trivial or follow from the application of (15) and (16) in Lemma 1.

== N(]SQ(N(),TL) = ‘/11 + OP(NO_I/2)
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From (12) and the fact that ~2 is a monotone decreasing function of x, we have

—n/{N(N —n)} < Sa(N,n) < —n/{(N +1)(N +1—n)}.

Recall that n/Ny = 1 — g + Op(NO_1/2). Then 140
L oy l—-ao ~3/2
SQ(NQ,TL) - NO(NO . n) + OP(NO ) - N0040 OP(NO )
Therefore,
9%2H (0 11—« _ _
THO _ NoSa2(No,n) = — 1+ 0,(Ng %) = Var + 0, (N 12,

a’Y% (%]

This completes the proof.
From Lemma 1 and (13), we have the following lemma, which summarizes the properties of
Up,.

LEMMA 3. Under the conditions of Theorem 1, we have E(u,) = 0, var(uy,) = X, and as
Ny — o0, up, — N(0,X) in distribution, where

Vi 0 —Vi3 0

N 0 0
—Var 0 2Vag(1 —ap)™2 — Vaz Viu(1 — a) 2

0 0 Vis(1 — ap) ™2 Via

The results that £'(u,,) = 0 and var(u,) = X follow from (15) and (17) in Lemma 1 and some
tedious algebra work. With these results, the limiting distribution of u,, follows from the fact that 14
U, can be expressed as a summation of independent and identically distributed random vectors,
as demonstrated in the proof of Lemma 1.

3. PROOFS OF THE MAIN RESULTS IN MAIN PAPER
3-1.  Proof of Theorem 1

Using a similar argument to that in the proofs of Lemma 1 and Theorem 1 of Qin & Lawless
(1994), we have

5" = Ny {(N/No) = 1,(B — o)™, & — ag, A — Ao} = Op(1).

Next we investigate the asymptotic approximations of 4 and the likelihood ratio statistics. The s
following lemma from Hjort & Pollard (2011) will simplify our derivation.

LEMMA 4. Assume that 0" = (07, 603) where 0, and 0y are r- and s-dimensional vectors,
respectively. Let 0 = (07,,03,) be its true value, and v = (§,v3)" = n'/%(0 — 6o) where n is
the sample size. Suppose that for 0 = 0y + Op(n_l/ 2), we have

HO)=Cy,+2ay— v Ay +e,(0)

where a,, = Op(1), V is a positive definite matrix, C,, depends only on 8y, A is nonsingular, and  1ss
en(0) = O, (n=12) for any fixed 0. According to 0 = (67, 03)", we partition A into

Aqp Ao
A=
<A21 A22> '

and partition a into (a;,,ar,). As n — oo, if a, — N(0, A) in distribution, then
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(a) the maximizer O of H(0) satisfies
n'2(0 — 6p) = A a, + O, (n~Y2) — N(0,A71)
in distribution;

(b) maxg H(0) — H(0) = aX A a, + 0p(1) — X2, in distribution, and
100 (¢) maxg H () — maxg, H(019,02) = at A a, — a£2A2_21an2 +o0p(1) — X2 in distribution.

Applying the second-order Taylor expansion to H () at v = 0, we have

OH (0) }T 1 L 92H(0)

1) = 0)+ { 2210 1+ 0, ).

27 OyoyT

Recall that 0H (0) /0y = uy + Op(Ny Y ®). Further, using Lemma 2, we get
1 _
H(5) = H(0) +ujy + 37"V + Op(Ng %), (18)

Next we profile out -y, and obtain the profile log-likelihood function ¢(N, /3, ). Recall that for
the given 3 and «, A is the solution of

. Pz, B) — _
2 T Mg o] "

Equivalently, v, is the solution of
OH (v)
g7}
s Applying the first-order Taylor expansion, we get
OH(0) 0*H(0) 0?H(0) 0?H (0) 0?H(0)
= + 7 A V2t 3+ 5
Ove 00w 97301 973074 Zohy
With (13) and Lemma 2, (19) is simplified to

=0.

0 va+ Op(Ny %), (19)

0 = upa + Vaoyo + Vagyz + Viaays + Op(N(]_l/2), (20)
which implies that
Y4 =~V g — V' (0, Vag, Vag)y—a + O;U(N(]_l/2)7 21

where v, = (71,73, 73). Substituting (21) into (18), we get an approximation of the profile
likelihood,

UN, B,a) = H(0) — 0.5V, 42, + tTy_s — 057", Wry_s + O, (N; /) (22)
where W is defined in (8) and ™ = (1,3, t3) with
t1 = Un1, toa = Una — Vaa Vi tna, t3 = tng — VaaVy tna.

7o From Lemma 3, the form of ¢, and some tedious algebra work, it can be verified that var(t) = W.
Hence, t — N (0, W) in distribution.
Note that in (22), H(0) — 0.51/42114%4 does not depend on . Applying Part (a) of Lemma 4,
we get

J_g = NYH(N/Ng) = 1,(B = Bo), & — o} ™ = Wit + O, (N; /2). (23)
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With the asymptotic order NS/2{(]\7/N0) — 1} = O,(1), we have
No*{(N/No) = 1} = No'* 1og (N /No) + O,(Ng /%),
Hence,
1/2 Y 5 p\T A T _ -1 —1/2
No'“{log(N/No), (B = Bo)", & — ao}" = Wt + Op(N, ),

which converges in distribution to N (0, W~1) as claimed in Part (a) of Theorem 1.
Part (b) is a direct application of Parts (b) and (c) of Lemma 4. This completes the proof. 175

3-2.  Proof of Theorem 2

We first derive an approximation to N, which depends on that of . Note that 3 satisfies
0.(8)/0p = 0. It can be verified that

~1/200c(Bo) ic‘?%(ﬂo) ~ 9*H(0)

—1/2
RO R T A

Applying the first-order Taylor expansion to 9/.(3) /93 gives
Ny2(B = Bo) = —Vig s + Op(Ny /). (24)

Further, note that the partial derivative of 1 {1 — ¢(z;, 8)} ~ at 8 = By is 180

B Z {1- xgﬂoﬂo)} Gi(zi, Bo) ® q(x;) = —No{ V32 + Op(N, 1/2)}

Using (24), we have

_ _ " 1
Ny AN = Np) = N01/2{27~—N0}

1 1 _
_nNYZ2) o . 1/2
0 {Nozl—QS(ﬂii,ﬁ) }+%2V22u2+0( )
(unl + un3) + ‘/32‘/22 Un2 + @) ( 1/2)

Recall that the approximation of N is given in (23). Denote W ! by (Wij )i<i, j<3. Then the
first component of 4_4 in (23), namely N, 1 2(N Np), can be rewritten as

NO_I/2(N—N) Wllt +W13t2+W12t3 +0, ( 1/2)
= Wty + W B3+ W 2000 — (WBVaa Vgt + W2VaVig Y + Op(Ny /).
With the form of u,, in (13), it can be verified that
Ups = (1 — ao)unl + (1 — ao) Up3 + O ( _1/2)
Hence, 185
Ny PPN = No) = (W = (1= o) (W Vaa Vg + W VaaVig ) Y + W 2y
W = (1= a0 (W VaaVig' + W2Vaa Vg s + Op(NG %),
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Therefore, if we can prove that

WH — (1 — ag)(WBVR VL + WV = -1, (25)
W2 = Vi Viy (26)
W13 o (1 o OZ(])2(W13‘/34‘/421 + W12‘/24‘/421) — _1’ (27)

then
Ny (N = No) = No 2 (N = No) + 0,(N %),
which means N = N + O,(1) and
Ny A — No) = Ny AN = No) + Op(N; %)
—(tn1 + un3) + VaaViy tina + Op(Ny /7). (28)
With Lemma 3, we will further have that
0% = var(un1 + tng — Va2 Vg Un2) = ¢u — 1 — V3o Viy ' Vi,

and hence both N, 1/2 (N — Ng) and N_l/2 (N — Np) converge in distribution to N(0,02),

190 which can easily be used to verify the other results in Part (b). This completes the proofs of Parts
(a) and (b).

Lastly, we verify that (25)—(27) are correct. Let { = ¢, — (1 — ao)_l. Using the relationships

Vas = (1 — ag)?Vas,
1 1
Vag =&+

1-— (&%)} Oé(),
Vg = (1 —ap)? <§+ ! );
1-— (&%)
Vig = (1 — ap)'é,
we can simplify the left-hand sides of (25) and (27) to

W — (1 — ag) W3V Vit + WVt = W — WPVas Wl?’m, (29)
(1 —ao)é (I —ag)§

W12VY23 W13

13 211713 -1 12 —1
w ( ap) (W VsgVm + WV Vi) € (= a0)e (30)
Further, W in (8) is simplified to
1—ag 0 1
[e75) 1 1 [e5)
W = (Wij)lgi,jgi’, = 0 —V22 + EVQ?,‘/gQ WVQ?,
1 1 1 1
a0 (I-ao)é Va2 (1=ao)?€ T ao(l—a0)
195 Since W~ = (Wij)lgngg, from the first row of W1 x W = I, we have
1-— 1
&%) wil _ s = 1, 31)
a (7))
1 1
Wi <—V22 + —V23V32> + W5 =0, (32)
3 (1 —ao)é

1 1 1 1
—— W Wy + { + }Wl3 =0. (33
g (1 —ap)é P10 - a0 " ao(l —ao)



Maximum empirical likelihood estimation for abundance 13
It follows from (31) and (33) that

W12‘/23 W13
+ —1, 34
E a0k G4

1 12 1 1 13 _
S (e ] LR

Combining (34)—(35) with (29)—(30), we then verify that (25) and (27) are correct.
We now verify (26). From (34), we get

W = (1 — ag)é — (1 — ag) W Vas. (36)

_Wll +

Substituting (36) into (32) gives —W V59 4 Va9 = 0, which implies that (26) is correct. This
completes the proof. 200

3.3.  Consistency of >
The proof of Theorem 2 indicates that B is a root-Ng estimator of (3. Therefore,

~

by = 2}1—:m%» +0p(Ny %),
Theorems 1 and 2 imply N /Ny = 1 + O,(N, ~/ 2) Lemma | implies

1 ‘ —1/2
N ;{1 0w, f0)} % = 6" + Op(Ng ).

Combining the above results, we have

be = {14+ 0,(Ng )} {6+ Op(NG V) } + 0 (NG %) = 6+ O, (NG %),

With a similar analysis, we found that

. (x4, Bo) -1/
wrﬁgmzﬂ_%k» Ga(wi, o) ® () + O, (Ng %)

_p| 2@ . ~1/2

= B [P ) 0 4(a)] + 0,95

= Va3 + Op(NV, _1/2)

In addition, 205
No 1 ~ Gi(xi,6)  Gimi,Bo) 7 Nalz)T
= (T A (T e g | ] o)

+O,(Ng ).

Applying Lemma 1 and the result that N /Ny = 1 + O (N 172 ), we have

o= [ 2 o - 2 T o e

H%M@W»
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Gl wz; /80) ] o
1/2 { - 3(z1, Bo) } ® Q(ﬂfz)] =0,
we further have

sz = var [ 7 Z{d — Glxilfoﬂ)o)}é?(ﬂm)

Consequently, 6% = qﬁ* —1- V32V25 Vgg is a root- Ny consistent estimator of o2.

Using the fact that

E(ung

+ Op(Ny %) = Vag + 0, (Ny ).

3-4.  Proof of Corollaries 1 and 2 and consistency of 62

The proofs of Corollaries 1 and 2 are similar to those of Theorems 1 and 2, and the proof of
the consistency of 62 in (10) is similar to that of 52. Hence, the details are omitted here.

3.5.  Semiparametric efficiency of N
Let dF'(z) = f(x,0)dz denote a parametric submodel such that f(x,6) is the true density
function of X. Further, let N, (f,6) denote the parametric maximum likelihood estimator of N

under the parametric submodel f(x, ) for the marginal distribution of X . According to Fewster
& Jupp (2009), as Ny — oo,

Ny AN (,0) = No} = N (0,02(1,0))

for some ag (f,0) > 0. In this section, we establish the semiparametric efficiency of N by show-

ing that the asymptotic variance o2 of N satisfies
o =supoy(f,0), 37)

where the supremum is taken over all parametric submodels for dF'(z).
We need some preparation. Let n = 1/(1 — ), 7o = 1/(1 — ap), and 1) = 1/(1 — &). Since
we treat NV as a continuous parameter, /N and & should satisfy

S1(N,n) +loga = 0.

Recall that
log{(N+1)/(N+1—-n)} <Si(N,n) <log{N/(N —n)}.
Then
N =nij+ 0,(1), (38)
which implies that
N — No = n(i) = no) + nmo — No + Op(1). (39)
Combining (28) and (38), we get
—n! Z: [1/321/251 {di - %} ® q(a;) + m 0| + op(Ng /3.
(40)

By the central limit theorem and Slutsky’s theorem,

n'2(f) = o) | n = N(0,07)
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as n — oo, for some 0',27 > 0. 220
Let 7, (f,#) denote the parametric maximum likelihood estimator of 7 under the parametric
submodel f(z,6) for the marginal distribution of X . Similarly to (38), we have

Ny (f,0) = nijp(f,6) + Op(1).
According to Fewster & Jupp (2009),

n iy (1,0) ~ o) | n = N (0,02, (7.0))

as n — oo, for some o7 o (f50) >
We return to the proof of (37). The roadmap is as follows. In the first step, we show that 2
conditional on n, 7 is a semiparametric efficient estimator of 7, which implies that

2 2
o, =supo, . (f,0), (41)

where the supremum is taken over all parametric submodels for dF'(x). In the second step, we
show that

o =mg'oy+m =1, op(f.0) =g oy, (f,0)+m0 1,

which together with (41) imply (37).

We start with the first step. Let D and X respectively denote the capture history and char-
acteristic of an ideal individual, with D the number of captures in the k occasions, and
A = I(D4 > 0) with I(+) an indicator function. With (40), conditional on n, the influence func- 2
tion of 7 is

G1(X) } 1
————— 1 ®q¢X)+ ———= — 0.
Referring to the established theory for the semiparametric efficiency bound, for example Chap-

ter 3 of Bickel et al. (1993) and Newey (1990), we need to show only the following two parts to
establish the semiparametric efficiency of 7 conditional on n:

o)y [

(a) 7 is aregular estimator of 7y; 235

(b) there exists a parametric submodel with h¢(x, d) the joint density of X and D such that the
true model is ho(z,d) and

0log he(x,d) '

We first consider (a). Following the procedure for the derivation of the likelihood in §2 of the
main paper, the joint distribution of X and D conditioning on that it is captured is

9077(1'7 d) =

k
h(z,d;0,8) = {1—a(0,8)} " f(z,0) [ 9z, 8,)% {1 — g(z, 8;)}' %,
j=1

where (0, 8) = [ ¢(z,B) f(x,0)dz
Let

Olog h(z, d; 6y, Bo)
90 ’

dlog h(x,d; 8y, Bo)

Bl(l',d) = 85

Bg(x, d) =



16 Y. Liu, P. L1, AND J. QIN

By Theorem 2.2 in Newey (1990), arguing that 7) is a regular estimator of 79 is equivalent to
showing that

Eo{¢n(X,D)By(X, D)} = 0n/90 = n3da/ 90 (42)
240 and
Eo{¢y(X,D)By(X,D)} = 0n/0p = ngda /0P, (43)

where Fj indicates that the expectation is taken under h(zx,d;60y,5y). Let f'(z,0) =
Of (x,0)/00. After some calculus, it can be verified that

f’(:L',eo) f/(X’HO)
Fla ) 0 {¢(X’ P FX 0o) } ’

Bs(z,d) = {D — G1(2)} @ q(z) — noEo{¢(X, Bo)G1(X) ® q¢(X)}.
We now consider (42). Note that

Bl(ZL', d) =

EO{(PU(Xﬂ D)} =0.

Hence,
"(X,0
ol (X, D)B (X, D)) = o { iy, D) £ 00 |
- mo{ v {p - G e a0 ey b
R %)}
# [\ ratem ™) Ty @)
25 The term in (44) is equal to zero because
G (X
The term in (45) is equal to
f/(X790) f/(X790) _ f/(X790)

where F is the expectation with respect to the distribution of X given that the individual has
been captured at least once. Therefore,

9
06

280{

Eo {¢n(X,D)B1(X, D)} = E {ngp(X, Bo) f'(X,00) } = np =5

This proves (42).
=0 We proceed to show (43). Since Ey{¢, (X, D)} = 0, we have

Eo {¢y(X,D)B2(X, D)}
= Eo {y(X,D){D — G1(z)} ® ¢(X)}

-5 -y {p- DA s g oo fug'va] e

+8 [{ s~ m D - G0 o)) @

E{¢(X, Bo)f(X,00)}
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For (46), conditional on X, we have

5 10— Gy {p- =2 s facomon bt

_ B, [{Gi(X) —G3(X)  9(X, Bo)G1(X)GT (X) } ® {q(X)qT(X)}VﬁlV%]
)G (

—¢(X,50) {1 _¢(X750)}2
- 6(X, Bo)G1(X)GF(X) . _
=-—nkE H — Go(X) + G3(X) + I o(X 50)1 } ® {q(X)q (X)}V221V23}
= —noVaa Vg Vaz = —10Va3, (48)

where in the penultimate step we have used the definition of V5s.
Similarly, for (47), we get

o | { st~ 0 D~ G0} @ 4(0)

(X7 50)

5 [{ ot ™ T G @ a(x)]

=B [{ st — i 6 G () @ 4(0)

= noVas — M E {¢(X, fo)G1(X) ® ¢(X)}, (49)
where in the last step we have used the definition of V53. Combining (46)—(49), we obtain
Eo {0y(X, D)B(X, D)} = i E{$(X, £0)G1(X) ® q(X)}

which is exactly n2da/03. This completes the proof of (a). 255
For (b), we consider the following function

=

he(x, d) = {1 + Epy(a,d)} (1 — a0) ™ fo(a H (2, B0) {1 — g(z, Bjo)}' =Y, (50)

where fo(z) is the true density of X. If X has a compact support C, then max,ec ¢(z, fp) < 1
and ¢, (z, d) is bounded. Then it is easy to check that for sufficiently small & this h¢(x,d) is a
parametric submodel and

Olog he(z, d)
This completes the proof of (b), and hence the semiparametric efficiency of 7 is established.

We now move to the second step of proving (37) by identifying the relationship between o
and o*,%. The relationship between o3 ( f, 6) and 0%777( f,0) can be similarly proved.

Recall that N = n7j + O,(1). This implies that 260

n~ V2N = o) = n'2(0) — no) + op(1).

(pn(wv d) =

2

Therefore,
n_1/2(N —nn) |n— N (0,0727)
as n — oo. Note that No/n = ng + 0,(1). By Slutsky’s theorem, we further have

No_l/z(]v —nno) |n— N (0,770_10727)
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as n — oo.
Because the above limiting distribution does not depend on n, we conclude that as Ny — oo,

Ny 1/2 (N — nng) is asymptotically independent of n or Ny L/ 2(m70 — Ny), and
—1/2, %
Ny 2N — nig) ~ N(0,07/m0).-

Recall that n ~ B(No, 1 — ag = g '), which implies that Ny ' (nno — No) ~ N (0,9 — 1).
Hence,
No_l/2(]\7 —Ny) = No_l/2(]\7 —nno) + N_l/z(m]o — No) ~ N(O,no_la?7 + 1o —1).(51)
That is,
o? =nylor+mo— 1. (52)
Similarly, we have
oy (£,0) =15 oy, (f.0) + 10 — 1. (53)
Combining (52)—(53) with (41) leads to (37). This corr}pletes the proof of (37).
In practice, we may round /N to the closest integer /Vy. Then
IN — Ny| < 1.
Hence,

N = Nt + OP(1)7

which implies that N, 12 (N — Np) and N, Y Z(Nt — Np) have the same limiting distribution.
That is, N, is also semiparametric efficient in the sense that the asymptotic variance of N, is the
supremum of the asymptotic variances of the maximum parametric likelihood estimator of N
under all parametric submodels.

3-6. Consistency of the weighted kernel density estimator fw (x)

Given the maximum empirical likelihood estimators ﬁs and &g, let pg = n_l[l +
As{bs(24, Bs) — és}] 7! and let A4 be the solution to

n

¢s($iy33) - ds
Z'Z:; 1+ )\{(bs(winés) - (545}

We propose a weighted kernel estimator

fule) =" pak{(x;i — x)h ™ h"
i=1

for the covariate density function f(x), where K (z) is a kernel function, usually chosen to be
the standard normal density function, and h a bandwidth. In contrast, the usual kernel density
estimator is defined as
n
ful@) =D (nh) ' K{(z; — 2)h7 '},

i=1

Next we restate the properties of fw (x) and fu(ac) in the following proposition.
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PROPOSITION 1. Assume that the conditions of Corollary 1 hold and K (x) is a bounded,
symmetric, and continuous density function. Further, f(x) > 0 for the given z. As Ny goes to
infinity, if b = o(1) and Noh? — oo, then

ful@) = (@) +0p(1), fule) = (1 —a0)” {1 - ¢s(x, fo)}f(2) + 0p(1).

We now give a proof for the above proposition. The proof of Theorem 1 and Corollary 1
implies that

~

Ae=—(1—a0) +0p(Ng?), Bs =B+ Op(Ng %), 6 = ag + Op(Ny /?).

Because the support of X is compact, there must exist €y € (0, a) such that €9 < ¢4(x, Bs0) <
1 — €o uniformly over all . Using the first-order Taylor expansion and the condition that K (x)
is a bounded function, we have that

. 2 — 2)h 1

i=1

1 No —~ K{(z; —2)h “3pt
1— ) + 0,(1),
( NO n ZZ:: 1_¢s ':L'Zaﬁs(]) ;n( )

where in the last step, we have used the condition Noh? — 00 as Ny — oo.
Recall that n/Ny =1 — o + 0p(1). Then

K{(X; —2)h~1}h!
1- gbs(Xia BSO)

Fula) = 3 (10,1 W31, >0 T o,(1),
=1

where d;, is the number of times that the individual with covariate X; has been captured in the
k occasions. By the law of large numbers, we further have

R B-11,-1
ulo) = B |10, > 0>K U I a0} +0,00)
= B [K{(X— o) ] {1+ 0,(1)} + 0y(1).

If K(x) is a bounded, symmetric, and continuous density function, then it satisfies the conditions
in Theorem 1A of Parzen (1962). Applying that theorem, we have

E[K{(X; —x)h™}h7] = f(z) + 0p(1),
where h = o(1) as Ny — oo. Hence, we have shown the consistency of the proposed weighted

kernel density estimator f,,(z).
For the usual kernel density estimator, we similarly have

Fulz) = Ny {(1 = ag) ™' +0p(1 }ZI (diy > 0)K{(X; —x)h ' Ih™! + 0,(1).

285
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By the law of large numbers, we get that
{(1=a0) " +0,(1)} E [I(dy > 0)K{(X; — 2)h " }h 1} + 0,(1)
= {1 —a0)™ +op(1)} E [{L = 65(X;, fo) }h T K{(Xi — 2)h ™ }] + 0,(1)
{(1—a0)™ +0,(1)} /{1 — ¢s(y, Bo) Y K {(y — )b} fy)dy + 0p(1)
= (1 —a0)” {1 — ¢s(z, f0)}f(2) + 0p(1).

This completes the proof of Proposition 1.

4. NUMERICAL IMPLEMENTATION OF EMPIRICAL LIKELIHOOD METHODS

In the numerical calculation of empirical likelihood methods, a crucial step is to calculate
the Lagrange multiplier A. Recall that given (3, «), the empirical log-likelihood achieves its
maximum in general when

l 1
nl+ Mo(z, 8) —a}’

where the Lagrange multiplier ) is the solution to

pi =

- (i, 8) — _
2 T A e o] " Y

The fact that the p;’s are probability weights implies that 0 < p; < 1 for all 1 <7 <n or
equivalently

1+ Mo(zi,8) —a}>1/n, 1<i<n. (55)

Owen (1988) showed that the solution of (54) exists under constraint (55) if and only if
min; {¢(x;, 5) — a} < 0 < max;{¢(z;, 5) — a}. In this situation, the solution is unique, and
constraint (55) implies that A should lie in

1—nt

1—nt
_maxi{qS(xi,ﬁ) —a}’ _mini{¢($ivﬁ) - 04}> ‘

1(30) = (

We can use the R function uniroot to search for the solution of (54) in the interval J(f, «v).
Under certain regularity conditions,

Nliin pr [min{qS(a:i, B) —a} <0< max{o(z;, 5) — a}} =1

See Owen (1988). For certain values of (f,«) and a finite sample size, we may not have
min; {¢(x;, 8) — a} < 0 < max;{¢(x;, 5) — a}. In this situation, the solution of (54) does
not exist, and hence the profile empirical log-likelihood ¢(N, 3, «) in (2) is not well defined.
To overcome this difficulty, we follow a method proposed by Owen (1990) in our numerical
implementation.
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Recall that 310

I'(N +1) }

R(N, B, a, \) ZIOg{F(N—n+1) —i—(N—n)loga—Zlog[l—k)\{(b(ac,-,@ — a}]

=1
n k
+ Z [dijlog g(x;, B;) + (1 — dyj) log{1 — g(z4, B;)}] .

i=1 j=1

It can easily be verified that h(N, 3, o, A) is strictly convex in A and the solution of (54), if it ex-

ists, minimizes h(N, (3, o, \) with respect to A for the given (NN, 3, a). Hence, we can minimize

h(N, 3, c, A) to find the solution of (54). However, h(N, (3, «, \) is not always well defined. 315
Following the idea in Owen (1990), we first extend the definition of A(N,[3,a,A) to

h«(N, 8, a, \), where

h«(N, B, a,\) =log {%} + (N —n)loga — Zlog*[l + Moz, B) — a}]
i=1

n

k
+ Z [dijlog g(x;, B;) + (1 — dyj) log{1 — g(z4, B;)}] .

i=1 j=1
Here 320

B log(z), z > cp,
log,.(z) = {log(cn) —1.54+2z/cp, — 0.5(2/cn)?, 2 < cn,

where ¢, > 0 is usually chosen to be very small, e.g. ¢, = 1/n or 107°. The function log, (z)

is twice continuously differentiable and strictly concave throughout the whole real line. Hence,

for given (N, 3, ), hi(N, 3, a, \) is strictly convex and is well defined for all (N, 3, v, \). For

small ¢, h«(N, S, a, ) is a very close approximation to h(N, 3, «, \) when the latter is well

defined. 325
We next minimize h. (N, 3, «, \) with respect to \ to calculate the Lagrange multiplier for the

given (N, 3, ) and define the profile empirical log-likelihood of (N, 8, «) as

(N, B,a) = argm}%n h«(N, B, c, \).

The optimization problem can easily be solved using the R function opt imi ze. Our simulation
experience indicates that this procedure is computationally efficient and stable.

By implementing the idea in Owen (1990), we overcome the non-definition problem of the
profile empirical log-likelihood ¢(N, /3, «v). The resulting ¢(N, 3, «) is always well defined and
is a smooth function of (N, 5, «). When calculating the maximum empirical likelihood estimator s
of (N, B, «), we use a divide-and-conquer strategy to maximize ¢(N, (3, «).

Note that /(N, 3, «) can be rewritten

K(N,B,Oé) = hl(N7 Oé) + h23(57a)
where

hi(N,a) = log{%} + (N —n)loga,

h23(5,04) = m}%n h2*(57a7 )‘) + h3(5)7
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with

h2*(/87a)\ Zlog* +)\{¢(‘T27 )_ }]7
=1
n k

=3 [dijlogg(xs, B;) + (1 — dij) log{1 — g(x, 8))}]

i=1 j=1
We propose to maximize ¢(N, 3, «) via the following algorithm:

Step 1. Given (3 and «, obtain miny ha. (3, ¢, \) and hence hos (3, cv). This step can be carried
out using the R function optimize.

Step 2. Given «, maximize h; (N, «) with respect to N to obtain maxy h (N, o) and maxi-
mize hos(f3, o) with respect to 3 to obtain maxg haz(f3, cv). Let

hlgg(a) = mjs,x h1 (N, a) + InéiX hgg(ﬂ, a).

This step can be carried out by applying the R functions opt imize and nlminb respectively
to h1 (N, «) and hos(f3, «) for the given cv.

Step 3. Maximizing hjo3(cr) with respect to «v gives the maximum empirical likelihood esti-
mator ¢&. This step can be carried out by applying the R function optimize to hjsg(a). Then
maximizing hq (N, &) with respect to N gives N and maximizing hos(f, &) with respect to (3
gives 3.

The above algorithm has been implemented for both the general case and the special case. In
abun.R, the gabun function implements the empirical likelihood and conditional likelihood
methods for the general case, and the salbun function implements these methods for the special
case. See the accompanying example . R for the use of these functions. Both R files are available
athttp://sas.uwaterloo.ca/~p4li/publications/abun.zip.

Next we use simulation to compare the computational times for calculating the maximum
empirical likelihood estimator, N or N, and the maximum conditional likelihood estimator, N
or N, of N. In the simulation, we generate random samples from Scenario S1 and record the
times to calculate N and N under the My, model, and N and N under the M;, model. Based
on 100 repetitions, we record the averages of the times in seconds on an IMAC with a 3.4-GHz
Intel Core i7 processor. The results are summarized in Table 1. Under both Mj, and My, the
time to calculate the maximum empirical likelihood estimator increases as /Ny or k increases.
The averages of the times to calculate N under the My model are less than 8 seconds when
Ny = 5000 and k = 4; and the averages of the times to calculate N, s under the M;, model are
less than 3 seconds when Ny = 5000 and k£ = 16. We acknowledge that it takes more time to
calculate the maximum empirical likelihood estimator than the maximum conditional likelihood
estimator. However, this is the price to pay for a more efficient method.

5. ADDITIONAL SIMULATION RESULTS
5-1.  Some plots
In this section, we first display quantile-quantile plots of the empirical likelihood ratio R'(Ny)
of N versus the x? distribution, the pivotal (N — Ny)/(N'/2) versus the N (0, 1) distribution,

the pivotal N''/21log(N /Ny)/é versus the N (0, 1) distribution, and the pivotal C'(Ng; N) versus
the N (0, 1) distribution for Scenario G1 with Ny = 200. The quantile-quantile plots for k = 2
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Table 1. Average times in seconds to compute the maximum empirical likelihood and maximum
conditional likelihood estimators of N under My, and My, models.

Model My, Model My,
Ny k N N k N, N,
100 2 0.26 0.01 2 0.13 < 0.01
100 3 0.29 0.03 8 0.14 < 0.01
100 4 0.34 0.06 16 0.17 < 0.01
1000 2 1.10 0.14 2 0.37 < 0.01
1000 3 1.55 0.39 8 0.57 0.01
1000 4 1.63 0.79 16 0.61 0.01
5000 2 6.13 0.96 2 1.53 0.01
5000 3 7.53 2.76 8 2.63 0.04
5000 4 7.90 5.68 16 2.88 0.04

and k£ = 3 are in Figures 1 and 2, respectively. The plots for the remaining cases are similar and
omitted. These two figures indicate that the distribution of the empirical likelihood ratio R'(Np)
is quite close to x?, and the distributions of (N — Ny)/(N'/25) and N'/?log(N /Ny)/é are
not close to normal. They also show that the distribution of C'(Np; N) is quite close to normal.
These observations may explain why the empirical-likelihood-ratio-based confidence intervals
7, always have more accurate coverage probabilities than the Wald-type confidence intervals 75
and Z3 but only a slight advantage over Z,.

We next display boxplots of the logarithms of the lengths of Z;, ..., Z; under Scenario G1 in
Figure 3. Together with the results for the coverage probabilities, we observe that Z; has slightly
longer lengths than Is and I3 but much better coverage accuracy. Further, Z; in general has
shorter lengths than 7,4, but better or comparable coverage accuracy. The plots and conclusions
for the remaining cases are similar and omitted.

The plots of N versus N and log N versus log N in Figure 4 show that the two abundance
estimators N and N are indeed quite close, although N is slightly larger than N in general.

5-2.  Simulation results for small Ny

In this section, we conduct more simulations for Ny = 100, 150 under Scenarios G1, G2,
S1, and S2 to determine how the asymptotic results work for small Ny. The simulated coverage
probabilities of 7, . .., Z4 under Scenarios G1 and G2 and those of 7, . . . , Z4s under Scenarios
S1 and S2 at the nominal level 95% are summarized in Table 2.

We can see that the asymptotic theory works reasonably well for all four types of confidence
intervals and all sample sizes considered in the simulation under Scenarios G1 and G2 with
k = 3, especially for the empirical-likelihood-ratio-based confidence interval Z; and the Wald-
type confidence interval Z,. When k = 2, Z; has better coverage probabilities than the other
three confidence intervals. However, the general trend for all the confidence intervals is that
the asymptotic theory performs worse as Ny decreases. Some finite-sample correction may be
required in the application of Z; to small Vg and k£ = 2 under My;, models.

For Scenarios S1 and S2, the asymptotic theory works reasonably well for the empirical-
likelihood-ratio-based confidence interval Z;; with k = 2. The coverage for Z;, is much better
than that for the other confidence intervals. In particular, in Scenario S1 with Ny = 100 and
k = 2, the coverage gain of 7, over the other three intervals is at least 7%. When k = 2, 7,5 can
have worse coverage probabilities than Zos and Z3s. When k = 8, the asymptotic theory does
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Fig. 1. Simulation results for Scenario G1 with Ny = 200 and k& = 2. Panel (a) is

a quantile-quantile plot of the empirical likelihood ratio R'(Np) with the theoreti-

cal x? quantiles. Panel (b) is a quantile-quantile plot of (N — Np)/(N'/?5) with

the theoretical standard normal quantiles. Panel (c) is a quantile-quantile plot of

NY21log(N/Ny)/é with the theoretical standard normal quantiles. Panel (d) is a

quantile-quantile plot of C'(No; N ) with the theoretical standard normal quantiles.
In all panels, the solid line is the identity line.

Table 2. Coverage probabilities in percentages for L1, ..., 7, under Scenarios GI and G2 and
Tis, ..., Las under Scenarios S1 and S2 with Ny = 100, 150. Here the nominal level is 95%.
Scenario G1 Scenario G2
No k T I I3 Iy Ty Is I3 7y
100 2 903 834 862 884 912 877 90.3 899
100 3 939 91.1 927 951 945 91.8 93.7 950
150 2 91.8 858 885 902 927 882 90.3 919
150 3 933 920 928 939 943 928 943 95.1
Scenario S1 Scenario S2
No k Tis Zos 1I3s Tus Tis  Tos  1I3s Iy
100 2 93,6 840 86.7 828 91.6 86.8 89.0 87.8
100 8 90.1 83.0 845 912 875 842 856 893
150 2 938 846 8777 850 924 88.1 89.8 90.0
150 8 90.0 850 86.6 90.8 881 855 869 89.1
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Fig. 2. Simulation results for Scenario G1 with Ny = 200 and k = 3. Panel (a) is
a quantile-quantile plot of the empirical likelihood ratio R'(Np) with the theoreti-
cal x? quantiles. Panel (b) is a quantile-quantile plot of (N — No)/(N'/?6) with
the theoretical standard normal quantiles. Panel (c) is a quantile-quantile plot of
N2 10g(N/Ny) /6 with the theoretical standard normal quantiles. Panel (d) is a

quantile-quantile plot of C'(No; N ) with the theoretical standard normal quantiles.
In all panels, the solid line is the identity line.

not work well for any of the confidence intervals. Again, some finite-sample correction may be
required in the application of Z;5 when £k is large.

5-3.  Simulation results for the special case with large Ny
In §4 of the main paper, we noticed that under Scenarios S1 and S2, the empirical-likelihood-
ratio-based confidence interval Z;¢ has reduced coverage probabilities as k increases. We now
conduct more simulations with Ny = 1000, 5000, 10000 under Scenarios S1 and S2 with 2000
repetitions. The simulated coverage probabilities of Zyq, ..., Z4s are summarized in Table 3.

Clearly, the undesirable trend for Z; persists when Ny is increased to 10000 but is less severe
when N is increased to 1000.
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Fig. 3. Boxplots of the logarithm of lengths of Z1, ..., Z4 under Scenario G1.

Table 3. Coverage probabilities in percentages of Ly, ..., Lys at the nominal level 95% under
Scenarios S1 and S2 with Ny = 1000, 5000, 10000.

Scenario S1 Scenario S2
No k Tis Tos I3s Iys Tis Tos 1I3s Iy
1000 2 937 89.1 91.0 91.7 932 91.0 92.0 93.0
1000 8 93.7 90.1 91.2 94.1 92.5 91.7 922 933
5000 2 94.1 909 922 932 93.6 93.1 93.5 93.8

5000 8 93.7 925 92.8 93.9 93.1 93.1 93.1 93.7
10000 2 943 929 93.7 943 945 944 943 94.7
10000 8 93.9 93.1 93.4 94.1 93.1 929 929 935

5-4.  Simulation results for one-tailed interval estimation

In the general case, let

wi = sign(N — No){R'(No)}'/2,
wy = (N = No)/(N'?5),
w3 = N2 1og(N /Ny) /6,

Wy = C(No;N).
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Fig. 4. Comparison of ]ff and N for Scenario G1 with Ny = 200. Panels (a) and (c)
are plots of N versus N for k = 2 a~nd k = 3. Panels (b) and (d) are plots of log N
versus log N for k = 2 and k = 3.

That is, wy denotes the signed square root of the empirical likelihood ratio statistic R'(Ny),
and wo, ...,w, denote three asymptotic pivotal statistics based on the maximum conditional
likelihood estimator V. Based on the asymptotic results developed in the main paper, w1, . . . , w4
all have the limiting distribution N (0, 1) as Ny — oc. In §3 of the main paper, we discussed the
two-sided coverage probabilities of the confidence intervals based on wy, . .. ,wy. In this section,
we study the one-sided coverage probabilities of the confidence intervals based on wy, . .., wy.

For each of the four statistics wi,...,w4, we calculate the simulated probabilities that the
statistic is smaller than the 1%, 2.5%, 5%, 95%, 97.5%, and 99% quantiles of N (0, 1) based on
2000 repetitions. The results for Scenarios G1 and G2 with Ny = 200, 400 are summarized in
Table 4. Similarly to wy, ..., w4, we can define wys, . . . , wys for the special case. The simulation
results for Scenarios S1 and S2 with Ny = 200, 400 are summarized in Table 5.

We observe that the distributions of w9 and w3, including wos and w3, are much larger than
and not close to the standard normal distribution. This observation is consistent with Figures 1
and 2, where the normal quantiles are larger than those of wy and ws. Compared with w9 and
ws, the distributions of w; and wy, including wis and wys, are closer to the standard normal
distribution. It can be seen that the quantiles of w; and w;s are uniformly less than the standard
normal. This could explain the stable performance of the two-sided confidence interval based on
the empirical likelihood ratio or equivalently based on wj and wy4: there may be location shifts in
their distributions. DiCiccio and Romano (1989)’s adjustment method may be applied to reduce
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the bias in the one-sided coverage probabilities. At the same time, we observe that w, and wys
seem to shrink towards 0, the median of the standard normal, when k£ = 2. Compared with the
standard normal, the probabilities are larger at the lower-half normal quantiles and smaller at the
upper-half normal quantiles. As k increases, the shrinkage is alleviated and the distribution of wy
becomes closer to the standard normal. This explains why Z, and Z, have good performance for
large k but severe undercoverage for small k such as k = 2.

Table 4. Simulated probabilities that w1, . .. ,w4 are smaller than 1%, 2.5%, 5%, 95%, 97.5%,
and 99% quantiles of N (0, 1) under Scenarios G1 and G2 with Ny = 200, 400.

Scenario G1 Scenario G2
Ny = 200 Ny = 400 Ny = 200 Ny = 400
Statistic Level k=2 k=3 k=2 k=3 k=2 k=3 k=2 k=3
w1 1% 2.6 2.3 3.1 1.8 2.4 1.5 1.8 1.3
w1 2.5% 5.6 4.8 6.1 4.2 5.7 3.3 4.7 2.7
w1 5% 10.2 7.8 10.5 7.9 9.9 6.0 8.2 5.8
w1 95% 96.0 96.3 96.2 96.0 96.2 96.1 95.7 96.3
w1 97.5% 98.3 98.0 98.2 97.4 98.4 98.1 97.7 98.4
w1 99% 99.4 99.3 99.3 99.1 99.2 99.2 99.0 99.1
w9 1% 11.1 6.5 9.9 5.6 10.6 4.5 7.3 3.6
w9 2.5% 13.8 8.5 12.4 8.0 13.4 6.6 10.2 5.9
w9 5% 17.1 11.2 15.6 10.7 16.7 10.2 134 8.9
w9 95% 100.0  100.0 100.0 99.9 100.0 100.0 100.0 99.8
w9 97.5% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
w9 99% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
w3 1% 7.8 5.4 7.8 4.0 7.2 34 5.8 2.9
w3 2.5% 11.2 7.3 10.8 6.6 10.5 5.6 8.4 4.9
w3 5% 14.3 9.7 13.3 10.1 13.8 8.2 11.2 7.6
w3 95% 99.6 99.7 99.5 98.4 99.5 99.4 99.1 98.6
w3 97.5% 100.0 100.0 99.8 99.8 99.9 100.0 100.0 99.7
w3 99% 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
w4 1% 2.5 1.8 34 1.3 2.1 1.2 2.2 1.1
w4 2.5% 5.5 4.0 6.5 3.4 4.8 2.4 4.6 2.3
w4 5% 9.8 6.4 10.5 6.5 8.9 4.8 7.5 4.8
w4 95% 93.3 95.3 95.0 95.2 934 94.9 94.7 95.9
w4 97.5% 96.3 98.2 97.8 97.6 96.7 97.9 97.3 98.0
w4 99% 98.8 99.3 99.4 99.2 98.4 99.3 99.0 99.2

6. BOOTSTRAP PROCEDURE

The proposed empirical-likelihood-based framework enables us to use a bootstrap method to
calibrate the finite-sample distribution of a statistic. As an illustration, we concentrate on the
signed square root of the empirical likelihood ratio statistic, wy, for the special case with all 3;
equal to ;.

Next we discuss how to obtain the bootstrap distribution of wys. Recall that pg; = n_l[l +
5\5{(;55 (x4, ﬁs) — s}, where B, and G5 are the maximum empirical likelihood estimators of
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., Wys are smaller than 1%, 2.5%, 5%, 95%, 97.5%,

and 99% quantiles of N (0, 1) under Scenarios SI and S2 with Ny = 200, 400.

Statistic
Wis
Wis
Wis
Wis
Wis
Wis
W2s
w2s
W2s
W2s
W2s
W2s
W3s
W3s
W3s
W3s
W3s
W3s
Wis
Wis
Wis
Wis
W4s
W4s

Level
1%
2.5%
5%
95%
97.5%
99%
1%
2.5%
5%
95%
97.5%
99%
1%
2.5%
5%
95%
97.5%
99%
1%
2.5%
5%
95%
97.5%
99%

Scenario S1

Ny =200
k=2 k=8
2.6 4.6
5.1 7.9
9.3 13.8
96.8 97.3
98.7 99.3
99.5 99.7
13.1 11.3
16.1 15.2
18.5 19.0
100.0  100.0
100.0  100.0
100.0  100.0
9.8 9.3
12.9 13.4
15.9 17.2
99.3  100.0
99.8  100.0
100.0  100.0
5.1 39
7.5 6.4
12.1 10.9
92.6 95.3
94.8 98.1
96.5 99.2

Bs and «, and ;\s is the solution to

Similarly to the consistency of f,,(z), we can show that F(z) is consistent with F'(x).

n

Ny =400
k=2 k=8
3.2 3.2
5.7 6.1
9.4 11.7
97.1 97.6
98.3 98.8
99.4 99.6
12.1 8.6
15.7 13.2
18.8 17.3
100.0  100.0
100.0  100.0
100.0  100.0
9.4 7.0
12.3 114
159 15.8
99.5 99.9
99.7 100.0
100.0  100.0
5.8 3.2
8.8 5.5
12.1 10.3
94.1 97.0
96.3 98.8
97.7 99.7

(bs(wiaﬁs) - (545

D

Scenario S2

Ny =200
k=2 k=8
23 4.9
54 8.9
9.2 13.9
95.7 97.9
98.0 99.1
99.3 99.6
9.8 9.9
13.3 13.5
15.9 17.4
100.0  100.0
100.0  100.0
100.0  100.0
7.5 8.4
10.4 12.2
14.0 16.2
99.8 99.6
100.0  100.0
100.0  100.0
2.5 2.7
54 6.0
9.0 10.4
93.8 95.6
96.3 98.2
98.6 99.2

i=1 1+ /\{st(xiygs) — s} -

Then we can estimate the cumulative distribution function F'(z) by

Fs(l’) = Zﬁsil(l'i < :L')
i=1
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Ny =400
k=2 k=8
2.1 39
4.7 7.3
8.6 12.6
95.9 95.9
97.9 98.1
99.2 99.2
7.9 8.0
10.5 11.7
14.0 15.4
100.0 99.9
100.0  100.0
100.0  100.0
5.8 7.1
9.0 10.8
12.2 14.5
99.5 99.1
100.0 99.9
100.0  100.0
2.2 2.7
4.8 5.8
8.4 10.4
95.0 94.9
97.2 97.3
99.1 99.0

Based on N, Bs, and Fs(x) we propose the following bootstrap procedure to obtain the
bootstrap distribution of w1.

Step 1. Sample X;; (i = 1,... . N,) from Fs(aj)

Step 2. For each X;;, generate the number of captures d, , in the k occasions from

B(k:, 9(Xip, ﬁs)) Let ny be the number of individuals that have been captured at least once.
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Weuse z;, (1 =1,...,mp) and d;4 , (1 = 1,...,my) to denote the covariate and the number of
captures for these ny, individuals.

Step 3. Based on the bootstrap sample (z; 5, di+p) (i = 1,...,ny), calculate the maximum

empirical likelihood estimator N, s,b» the empirical likelihood ratio statistic R, b(N s) of the abun-
dance N, and the signed square root of the empirical likelihood ratio statistic

Wis,b = sign(N&b - NS){R;b(NS)}Uz'

Step 4. Repeat steps 1-3 B times and obtain {wis 1, ..., wis, }. The empirical distribution of
{wis1,...,wis B} is an accurate approximation of the bootstrap distribution of wj.

We run a simulation under Scenarios S1 and S2 with Ny = 200, 400 and k = 8 to check the
approximation of the bootstrap distribution to the finite distribution of wy,. The simulated proba-
bilities that w1 s is smaller than the 1%, 2.5%, 5%, 95%, 97.5%, and 99% quantiles of N (0, 1) and
those of the bootstrap distribution are summarized in Table 6. In the calculation of the bootstrap
distribution, we use B = 999. Clearly, the bootstrap procedure can significantly improve the
coverage probabilities on both tails. It can also improve the two-tailed coverage probability. For
example, under Scenario S2, the two-tailed coverage probability has been improved from 90.3%
to 92.6% at the nominal level 95%. It is well known that the adjustment to improve the coverage
precision is much harder for the one-sided confidence interval than for the two-sided. DiCiccio
and Romano (1989) studied the correction for the signed root of the empirical likelihood ratio
statistic. Further research is warranted.

Table 6. Simulated probabilities that wis are smaller than 1%, 2.5%, 5%, 95%, 97.5%, and
99% quantiles of N(0,1) and those of bootstrap distribution under Scenarios S1 and S2 with
Ny = 200, 400 and k = 8.

Scenario S1 Scenario S2
Ny = 200 Ny = 400 Ny = 200 Ny = 400

Level N(0,1) Bootstrap N(0,1) Bootstrap N(0,1) Bootstrap N(0,1) Bootstrap

1% 4.6 3.6 3.2 2.6 4.9 3.5 3.9 2.6
2.5% 7.9 6.3 6.1 4.4 8.9 5.9 7.3 5.4

5% 13.8 10.2 11.7 8.4 13.9 10.2 12.6 9.2
95% 97.3 95.0 97.6 95.6 97.9 96.4 95.9 94.6
97.5%  99.3 98.0 98.8 97.9 99.1 98.5 98.1 97.1
99% 99.7 99.5 99.6 99.2 99.6 99.5 99.2 98.7

In this section, we use wi ¢ as an illustration. The above bootstrap procedure can also be applied
to obtain the bootstrap percentile confidence interval and other types of confidence intervals for
N. We leave a thorough comparison of the different types of bootstrap confidence intervals for
N and their asymptotic properties to future research.
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