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1 Proof of Proposition 1

Consider the linear regression model

Y: = Bo + X1.8; + o€, D
the selection model
Zi = X3y + €2i, )
and the call-back model
U; = X5,€ + €34. 3)

Let R; = I(ZL > 0).
Let f(y,r,d|X1,X2,X3; 0) be the joint distribution of (Y, R, D) conditional on X; = x1, X2 = Xa,
and X3 = x3. Under models (1), (2), and (3),

f(y77‘,d|X17X27X3; 0) P(Y = y7R = 7“7D = d|X1 = X1,X2 = X27X3 = X3)
= {P(Y:y,R:1|X1,X2,X3)}T
x{P(Y = y,R=0,D = 1|x,x2, x5} ¢

x{P(R=0,D = 0|X1,X2,X3)}<17T>(17d).

The three terms in f(y, r, d|X1, X2, X3; @) are discussed in (1.7), (1.8), and (1.10) in the main paper, respec-
tively.
We need to prove that if

f(y7T,d|X17X27X3; 0) = f(y,r, d|X17X27X3; 0*) 4)
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for all possible values of y, r, d, X1, X2, and X3, then we must have 8 = 0™,
We first consider the identifiability of (37,~7, 0, p12)”. When r = 1, (4) implies that

P(Y = va = 1|X17X27X3§ﬁ:77‘77/)12) = P(Y = va = 1|X17X27X3;ﬁ*77*70*7p1<2)'

By the identifiability of Heckman selection model, see for example, Example 5 of Miao, Ding, and Geng
(2016), we have

B=B"vy=~" 0=0", p12 = pia.

Hence the parameters (37,~", 0, p12)" are identifiable. This finishes the proof of the first part of Proposi-
tion 1.

Next we consider the identifiability of (€7, p13, p23)”. When r = 0 and d = 1, together with the
identifiability of (87,~7, 0, p12)7, (4) implies that

X3y X3y
/ / ¢23‘1 t u; s dtdu —/ / ¢23‘1 t u; s)dtdu 5)

for all X2, X3, s. Here ¢35, is the the density of the bivariate normal with mean vector (p12s, pi3s)” and
L—pla iy — przpis
p3s — przpis 1= (pis)®
From (5), we further get that

¥ 13 v £
[ ] emntus)iau= [T [ i (b s)anau, ®

where v = —x37, £ = —x3&, and £" = —x3&".

the covariance matrix

With the condition that X> contains a continuous covariate which does not appear in X3, we can find

a 7o such that for ~ in a small neighbourhood of ~o,

v 3 v I
/ / Ba3)1 (L, u; s)dtdu = / / P33)1 (T, s s)dtdu,

which implies that for v in a small neighbourhood of g

§ *
/ <b23\1(%u;8)du=/ b33 (v, u; ) du. %)

With some calculus work, we obtain from (7) that

1 ) < Y — pP12S ) o £ — stlir;liﬁm,y _ pml Pp1122p2'g s
\/1 - P%z \/1 - p%z \/1 _ p%S _ (P2315;§513)2
- | s . £ - nglippl;zplgfy _ P1311Pp1§2;7238
V1- 912 V1= pi

(s 2 _ (P33—p12p73)?
\/1 (pis)? — 2%1 pmn
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Therefore,

* * * *
P23—P12P13 P13—pP12p23 * P23~ P12P13 P13 P12P23
§— Y- s - v - s

1*P%2 1-p1y _ 1*P%2 17”%2
_ 2 _ (p23—pi2p13)? . (pka— )2
1y - e N
for v in a small neighbourhood of o and all s. Then we must have
3 _ ¢
- b
VI = p3) (1 = ply) — (p23 — przp1s)? VT = (p13)23(1 = p3s) — (P33 — pr2p73)?
P23 — P12P13 o p§3 - plzpﬁ
- b
V1 =) (1 = pty) — (p23 — przp1s)? VL= (p13)23(1 = p2o) — (35 — p12p73)?
P13 — P12P23 _ pis — P12P33
V1= p33) (1 = ply) — (23 — pr2p1s)? VL= (013)23(1 = pTa) — (33 — p12p75)?

By solving the above three equations and some algebra work, we further have

§= f*y P13 = ptSv p23 = PSS-

Recall that the components of X3 are linearly independent. Then £ = £* implies that £ = £*. Hence the
parameters (€7, p13, p23)” are identifiable. This finishes the proof.

2 Regularity conditions

To ensure the asymptotic normality of 0 under the correctly specified models, we need the following regu-

larity conditions.

Al. Suppose the response, missing-data, and call-back models (1), (2), and (3) are correctly specified for
(Yi, Zi, Us). Further, the joint distribution of (€14, €2;, €3;)7 is trivariate normal with mean vector O

and covariance matrix

1 pi2 pi3
Y= pi2 1 pa23
p13 p23 1

A2. The errors (€13, €21, €3, ) are independent from (Xi4, Xo2:, X3;).

A3. E{|log f(Y, R, D|X1,X2,X3;00)|} < oo, where 6y is the true value of € and the expectation is

taken under the assumption that @ = 6.

A4. The Fisher information matrix

5 _ 9log f(Y, R, D|X1, X2, X3;60)
06067

is positive definite.
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AS. There exists a function B(y, 7, d, X1, X2,X3), possible depending on 6o, such that for 0 in a neigh-

borhood of Oy,
o log f(y,r, d|x1,X2,%3;0)
00,00

< B(y,r,d,X1,X2,X3)

for all (y,7,d,x1,X2,x3)and ¢, 5,k =1,...,p+q+r+4, and
E{B(Y,R,D,X1,X2,X3)} < c0.

Here 0; denotes the ith element of 6.

To ensure the consistency of 8 under the misspecified models, we need a new set of regularity condi-

tions.

B1. Suppose the true model for (Y;, Z;, U;) is (1.14) in the main paper and the joint cumulative distri-

bution function of (w14, wai, wss)” is H (s, ¢, u).
B2. The errors (w14, w2i, w3, ) are independent from (X14, X2, X3;).
B3. There exists a function C1(y, 7, d, X1, X2, X3) such that for all 8
|log f(y,r,d|x1,X2,X3;0)| < C1(y,7,d,X1,X2,X3)

and
Er{Cy(Y,R,D,X1,X5,X3)} < oo.

Here E'r means that the expectation is taken under the true model specified in B1.
B4. Er{log f(Y, R, D|X1,Xz2,Xa3;0)} is uniquely maximized at 8 = 6.

B5. There exists a function C2(y, r, d, X1, X2, X3), possible depending on 6*, such that for @ in a neigh-
borhood of 6%,
% log f(y,r,d|x1,X2,X3; 0)
0000y,

S Cz(y,?‘,d,xl,xz,X3)
for all (y,r,d,x1,%X2,x3) and i, 5,k =1,...,p+q+r+4,and

Er{C2(Y,R,D,X1,X5,X3)} < oo.

B6. The two matrices

5 _ &log f(Y, R, D|X1, X2, X3; 0%)
r 960067

and

Varr {810gf()/7 R, -Da|;(17x27x3;0 )}

are positive definite.
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3 Derivation of score functions

Some preparation

Recall that €1, = (y; — Bo — X1;8,)/0, ¢231(t, u|s) is the density of the bivariate normal with
mean Vvector foy); and the covariance matrix o)1 specified in (1.9) in the main paper, and @23 (t,u) is
the density of the bivariate normal with mean vector O and the covariance matrix 323 specified in (1.11) in

the main paper. Then
1 1 —1 T
Pa3)1 (T, uleri) = W exp{ - §(t — P12€1i, U — p1351i)223‘1(t — P12€1i, U — P13€1i) }

and

1 1 —1 T
da3(t,u) = GV exp{ - §(t7u)223 (t,u) }

When deriving the form of S; (), we need the derivatives of ¢o31 (¢, ule1:) with respect to 3, o, p12, p13,
and p23, and the derivative of ¢23(¢, u) with respect to p23. We first summarize them.
Let X7; = (1,X1;)" and
hazj1 (t,u;8) = —0.5(t — p1as,u — p138)2;31‘1(t — p12s,u — p13s)”
= —0.5|223\1|71{(1 - p13)2(t - p128)2 + 2(p12p1s — p23)(t — p12s)(u — p13s)

(L= 1) (= p1ss)? .

It can be verified that

01 (t, ulers)

98 = —0 "oz (t,ulens) (t — procri, u — prser) Bag) (P12, p13) " Xis, ®)
W = —071¢23\1(t7 uleri)(t — piz€ri, u — PlS€1i)E;31‘1(P127plS)T€1i7 9)
a%sgi)t;:le”) = Poz)1 (L, ulers) {—0.5|223\1|71 8';22” + ah%%(;;:; 11) } (10)
a%sgi)t;:le”) = Poz)1 (L, ulers) {—0.5|223\1|71 8';2133‘” + ah%%(;;;; 11) } (11)
8%3%2:—|6”) = a1 (¢, ulers) {—0.5|223‘1|*18|;23;1| + ah%“a(;;;“”) } (12)

Here |223\1| =(1- P%2)(1 - P%s) — (p23 — P12P13)2 and

oz

% = —2(pi12 — p13p23),
oz

% = —2(p13 — p12p23),
9B

BDpas = —2(p23 — p12p13)-



6 BAOJIANG CHEN, PENGFEI LI AND JING QIN

After some calculus work, we have that

hosp (tuseni) = 2[Bagp |~ (prz — prspas)hosi (¢, ulers)

1o}
dp12
—0-5|223\1|71{ —2e1(1 — p13)2(t — p12€1i) + 2p13(t — pr2eri)(u — pizerq)

—2€13(p12p13 — p23)(u — piseri) — 2(1 — p12)(u — P1351i)2}-

Similarly,
J —1
9 hosj1 (t,use1i) = 2|Xaz1]” (p13 — p12p23)has)y (t, ule1s)
P13
—0.5|223‘1|71{ —2(1—p13)(t — P12€1i)2 + 2p12(t — prz€1i)(u — pis€rs)
—2e15(p12p13 — p23)(t — pr2eri) — 2€13(1 — p12)2(u - p1361i)}
and
1o} _ _
oms hosi1 (t,us €13) = 2| a1 |~ (p2s — pr2p1a)hagr (t, ulers) + [Sazpi| ™ (t — przers) (u — prsens).

Combining the above terms, we get the derivatives of ¢q3)1 (¢, u|e1;) with respect to 3, o, p12, p13, and
p23.
As a final piece of preparation, we provide the form of O¢a3 (¢, u)/Op23. Note that ¢23(t, u) can be

rewritten as

1 1 2 2
$a3(t,u) = ————=—exp {—7(15 — 2postu + u )} )
2my/1 — pi, 2(1 - p33)
Hence,
O¢23(t,u) P23 P23 2 2 tu
——— = ¢as(t,u - t" —2pastu+u’) + —5 . (13)
dp23 (&) l—p3s (- P%s)Q( ) 1 —p3s
Form of S;(0)
For ease of expression, we denote g(u) = &(u)/®(u) and use the result that ¢'(u) = —uep(u).

Recall that S;(0) = 9¢;(6)/06. Next we find each term in S;(0).
For 0¢;(0) /903, we have that

0¢;(0) 0014(0) " 002;(0)

o 0B oB

Rm*l {Eu _ g(Xzi’Y + p12261¢) P12 . XL}
\/1 — P12 \/(1—912)

—X7.v oo
f7m217 fixglg %Qbiﬂl (1‘,‘7 u|61i)dtdu

-XZ7,v oo
f7m217 fixglg ¢23\1 (t7 u|€1i)dtdu

+Di(1 — Ry) +o tenXi g,

where O¢a3)1 (¢, u|e1;) /0B is given in (8).
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For 94;(0)/0~y, we have that

oL (0) 001,(0) n 002;(0) n 003,(0)
100% o 100% 100%

X3, + piz€1i 1
R; g( ) Xo;i
{ vl_P%2 (1= p?s)

X7, ¢ G231 (—Xgy, ulers)du
—Di(l_Ri){ fX31£ - Xai

f:oo277 fooxr £ ¢23‘1(t U|€1i)dtdu

Xz
—(1—=Ri)(1 - D) { f $as(— Xy u)du X2i} .

fioozf‘/ f70§3¢£ B3 (t, u)dtdu
For 94;(0)/0&, we have that

O(0) _ 9(8)  9lsi(6)
ot~ o¢ o€

,X;.A/ -
g t, —X3;&|€1:)du
D;(1 - Ry) fifo el stlen) X3
I dtdu

it I2X; ¢ 2sn (t ulers)

0 rya - py | = et Xagau
J7X [ XGE (¢ ) dtdu
For 0¢;(0) /00, we have that

0:(0)  001;(0) + 002:(0)
do do do
_ X%y + pi2€is P12€1;
= Rio '{el; - 2 -1
{ ( \/1_P12 )\/1_9%2 }
Xoy r ¢ 2 b (b, ulers)didu
+D,(1— Ry ffoj _ LXSI,{ 9o P23 I
it I2X; ¢ b3 (t, ulers)dtdu

where O¢o3)1 (t, u|e1:) /0o is given in (9).
For 04;(0)/dp12, we have that

00;(0)  0014(0) | 0l2:(0)
op12 op12 Opi2

- R, g(Xgi"/ + PlZEli) €1i + p12X5;7y
l VI—p2, /(1= p})32

XDy o
+Di(1— Ry) { S22 2,6 3o @sin (1 wlersdtdu
f )

700217 ffox;s ¢23‘1(t, u|eu)dtdu
where O¢a3)1 (¢, ule1:)/Opi2 is given in (10).
For 0¢;(0)/0p13, we have that

Opis  Opis

X7~ oo
0L0) _ 90) _ py. 1 _ gy =27 I7Xs 6 9 @2 ( wlers)dtdu
f:o§2i7 ffox;f ¢ag1 (t, ulers)dtdu

7
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where O¢a3)1 (¢, ule1i)/Op13 is given in (11).
For 04;(0)/0p23, we have that
0L:(0)  0l24(0) " 003:(0)
Opas 0p23 0p23
f*X;’Y f°° ng t Ndtd
—oo ~X3,€ 9pa3 23)1 (¢, ulers ) dtdu
f:zfzi’y ffox;s (Z)gg‘l (t, u|eu)dtdu
f:o)o(;n f*ngg Lqﬁzg(tu)dtdu

+(1_Ri)(1—Di) — — Tapza
f:f“” f;f“g ba3(t, u)dtdu

D;(1 - Ry)

where O¢a3)1 (¢, u|€1i)/Opas is given in (12) and D23 (t, u)/Opas is given in (13).

4 Extension to multiple call-backs

The proposed method in Section 4 of the main paper can easily be extended to multiple call-backs.
Suppose there are K call-backs, and let D;;, = 1 if the ith subject is called back, and 0 otherwise,
k =1,..., K. We again assume that D;; is a manifestation of a latent variable U;x, which is from the

multivariate regression model

Uit = X3:k€), + €3k, (14)

k=1,..., K, where X3, is an 75 X 1 vector with the first element being 1 and the remaining 75, — 1
elements being covariates associated with U;,. We further assume that €3, ~ N(0,1), k = 1,..., K,
and (€1, €24, €341, ..., €3ix )" follows a multivariate normal distribution with the covariance matrix X.
The diagonal elements of 3 are all equal to 1 and the off-diagonal elements of 3 are unknown. Let
X; = (X74, X5, X5, -, X5k) 7

We now derive the likelihood function. Let @ be the vector of unknown parameters in models (1),
(2), and (14). For ease of expression, we denote R; = D;o. When Do = 1, we observe (Y; = y;, Dio =
1,X;); when D;;, = 1, we observe (Y; = yi, Dio = 0,...,D; k-1 = 0, Dy, = 1,X;) for k < K; when
Dikx =0, we observe (Dio =0, ..., D;x = 0,X;). Therefore, the likelihood function of @ is

n

10) = [ [(P0i =i Dio = 11x)}"

i=1
K
X H{P(YL = Yi, DiO = O7 ey Di,k—l = 0, Dzk = 1|Xi)}(17D7v'0).-.(17Di’7671)D“c
k=1
x{P(Dj =0,...,Dix = o|xi)}“*Di°>“'<1*DiK)].
The first term in the likelihood is

P(Dio =1,Y; = yi|Xs)

P(R; = 1|Y; = y;, Xi) P(Y; = y:|Xi)
_ (I)(Xm’)’ + P12612')071¢(6M)7

v1-— P%Q
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where €1; = (y; — fo — X1.31)/0.
The second term in the likelihood is
P(Yi =vi,Dio =0,...,D; p—1 =0, Dy, = 1|X;)
= P(Dio=0,...,D;5-1=0,Dy = 1Y; = y;,Xs) P(Y; = 4:|Xs)
= Pleai < —Xgv,€3i1 < —X3a&y, - e3ih-1 < —Xzin—1&5_1, €3k > —Xzin&y|Yi = vi, Xi)
X P(Yi = yilXi)

X% X34 ~X%ik 16k—1 oo
= / / / / ¢2,31,A.A,3k\1(t7ul7ooo7uk|€1i)dtdu1"'duk
—o° - —oo ~XZintr

co (BB XiBy)

g

where ¢2 31, 3x1 (t, U1, ..., uk|s) is the density function of (e2;, €341, . - . , €3:% )7 conditional on €1; = s.
The third term in the likelihood is

!

(Dio =0,..., Dix = 0]X,)
= Ple2i < =X5v, €301 < —X3i1&y, .- 3ix < — X5 € i [Xi)

X2y -X5a€ -XZix€x
/ / ¢2,31,.4.,3k(t7U17...7UK)dth1"'dUK7
— o0 — 00 — 00

where ¢2.31, . 3k (t,u1, . .., ur) is the density function for (e2i, €3i1, . . ., €3ix )"
Let .
0(6) =log L(0) = _ £:(6) (15)
i=1

be the log-likelihood, where 1;(0) is the log-likelihood contribution from individual 7. Maximizing (15)
with respect to 6, we obtain the maximum likelihood estimator, 9. Similarly, we can show that the maxi-

mum likelihood estimate 8 satisfies
n'2(6 — 60) — N(0,J 1)

in distribution as n — co, where J = —E[0%¢;(00)/{00007 }].
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