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S

Zhu & Hastie (2003) presented a general criterion for finding discriminant directions. To optimise
their criterion, iterative methods are needed unless each class has a Gaussian distribution with a
common covariance matrix. In this short paper, we present a slightly more general case where
iterative methods can also be avoided.
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1. I

Suppose we have data {(x
i
, y
i
); i=1, . . . , n}, where x

i
µRd is a vector of d predictors and

y
i
µ{1, . . . , K} is a class label. When d is relatively large, information useful for distinguishing the
classes is often contained in a few directions a

1
, a2 , . . . , aMµRd, where M<d; these directions are

sometimes referred to as discriminant directions.
To find these directions, Zhu & Hastie (2003) proposed a general likelihood-ratio criterion for
measuring the discriminatory power for a given direction a, with dad=1:

(a)= logGmaxpk XKk=1 XxjµCk p(a)k (aTx
j
)

max
p
XK
k=1
X

x
j
µC
k

p(a) (aTx
j
)H , (1)

where p(a)
k

( . ) is the marginal density along the projection defined by a for class k, and p(a) ( . ) is the
corresponding marginal density under the null hypothesis that the classes share the same density
function.
Zhu &Hastie (2003) showed how important discriminant directions can be derived by recursively
maximising (1) even when there is no specific parametric assumption about the class density
function p

k
(k=1, . . . , K ). Of course, there are practical issues when we try to maximise (a) using

iterative methods, most notably the problem of multiple local solutions.
Such problems are inevitable, except in a few special cases. If, for each k, p

k
is the N(m

k
, S )

density, then criterion (1) is equivalent to the well-known criterion used in Fisher’s linear
discriminant analysis:

(a)=
aTBa
aTWa

, (2)

where B and W are between- and within-class sample covariance matrices (Zhu & Hastie, 2003).
The maximising solution is then the leading eigenvector of W−1B (Mardia et al., 1979, Ch. 11);
iterative methods are not necessary.
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It is natural to consider next the case when p
k
corresponds to N(m

k
, S
k
). This leads to quadratic

discriminant analysis in that the Bayes decision boundaries are quadratic functions of x (Hastie
et al., 2001, Ch. 4). Under such a model, apart from a constant not depending on a,

(a)3 ∑
K

k=1
AnkNB ( log aTSa− log aTSka) (3)

(Zhu & Hastie, 2003), where S is the total sample covariance matrix and S
k
is the sample covariance

matrix for class k. Unfortunately, iterative methods are still needed to maximise (3).
In this short paper, we look at another special case, one that is more general than Fisher’s linear
discriminant analysis but less general than quadratic discriminant analysis. For simplicity, we
also follow a common practice and assume that the data are preprocessed such that S=I.
Equation (3) then simplifies to

(a)3 ∑
K

k=1
AnkNB (−log aTSka), (4)

since aTSa=dad2=1.

2. M 

Consider the following reparameterisation of S
k
based on its spectral decomposition:

S
k
=U
k
L
k
UT
k
,

where L
k
=diag{l

1k
, l
2k

, . . . , l
dk
}. Let a

k
be the largest eigenvalue of S

k
. If we take out a

k
as a

factor and write l
jk
=a
k
q
jk
, then the parameters a

k
, Q
k
¬diag{q

jk
}, and U

k
can be seen to describe

the size, shape and orientation of S
k
(Banfield & Raftery, 1993; Bensmail & Celeux, 1996). A

hierarchy of models can then be constructed by restricting some of these parameters to be identical
across the K classes. Table 1 lists all the possible combinations.

Table 1. A hierarchy of models, where ‘s’ means ‘same’ and ‘d’
means ‘diVerent’

Case Size (a
k
) Shape (Q

k
) Orientation (U

k
) Also known as

1 s s s 

2 s d s –
3 d s s –
4 d d s –
5 s s d –
6 s d d –
7 d s d –
8 d d d 

, linear discriminant analysis; , quadratic discriminant
analysis.

Clearly, the two extreme cases in which a
k
, Q
k
and U

k
are either all identical, Case 1 in Table 1,

or all different, Case 8 in Table 1, across the K classes correspond to linear discriminant analysis
and quadratic discriminant analysis. In this paper, we focus on the four cases in which the class
covariance matrices S

k
have the same orientation, that is U

k
=U for all k=1, . . . , K. These

correspond to the cases numbered one to four in Table 1 and are also known collectively as the
common principal component model (Flury, 1988).
In what follows, we will use S

k
=UC LC

k
UC T=a@

k
UC QC
k
UC T to denote the empirical estimate of S

k
under the common principal component model. Flury (1988) gives details on how to obtain
maximum likelihood estimates of these quantities.
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D 1. A vector wµRd is called a weighting if Wd
j=1

w
j
=1 and w

j
�0, for all j.

D 2. L et S
k
=UC LC

k
UC T be the empirical estimate of S

k
under the common principal

component model. We define the average eigenvalue of S
k

with respect to the weighting w as

w
k
(w)¬ ∑

d

j=1
w
j
l@
jk

.

D 3. L et S
k
=UC LC

k
UC T be the empirical estimate of S

k
under the common principal

component model. T hen the estimated common eigenvectors u@
i
and u@

j
are dissimilar with respect to

the weighting w if

∑
k
AnkNBq l@ ikw

k
(w)rN∑

k
AnkNBq l@ jkw

k
(w)r . (5)

T hey are uniformly dissimilar if they are dissimilar with respect to all weightings wµRd.

T 1. L et S
k
=UC LC

k
UC T be the empirical estimate of S

k
under the common principal

component model. If the estimated common eigenvectors u@
i
and u@

j
are uniformly dissimilar for all iN j,

then (a) as in equation (4) is maximised by the common eigenvector u@
j
for which

∑
K

k=1
AnkNB (−log l@ jk ) (6)

is the largest.

Proof. Since S
k
=UC LC

k
UC T, we can simply choose to work in the basis of {u@1 , . . . , u@d}. If we write

out (a) explicitly in this case, our problem becomes

max
a
j
; j=1,...,d

∑
K

k=1 AnkNBq−logA ∑dj=1 a2j l@ jkBr
subject to Wd

j=1
a2
j
=1. The Lagrangian function for this constrained optimisation problem is

∑
K

k=1
AnkNBq−logA ∑d

j=1
a2
j
l@
jkBr+hA ∑d

j=1
a2
j
−1B

and the first-order conditions are

∑
k

2AnkNBA ajl@ jkW

j
a2
j
l@
jk
B−2ha

j
=0

for all j, or

a
jq∑
k
AnkNBA l@ jkw

k
(a2 )B−hr=0

for all j, where w
k
(a2 )¬W

j
a2
j
l@
jk

. Therefore, for every j, either a
j
=0 or

∑
k
AnkNBq l@ jkw

k
(a2 )r=h. (7)

Since the eigenvectors are uniformly dissimilar for every jN i, this means that there exists at the
most one j= j* for which (7) can be true. The fact that Wd

j=1
a2
j
=1 means that the optimal a must

be 1 at the j*th position and 0 everywhere else. Plugging this back into the objective function, we
obtain

(a)3 ∑
K

k=1
AnkNB (−log l@ j*k ).
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Obviously, the correct j* that maximises this is

j*= arg max
j q ∑Kk=1 AnkNB (−log l@ jk )r . %

The theorem tells us that if, under the common principal component model, the common eigen-
vectors are uniformly dissimilar then the function (a) can be maximised by searching over a
finite number of candidates, namely the common eigenvectors u@1 , . . . , u@d ; no iterative method is
necessary, and we now have a closed-form solution for a more general case than just for the case
corresponding to linear discriminant analysis. For the remaining Cases 5–8 in Table 1, of course,
iterative methods are required.

3. D

3·1. Special cases: Q
k
=Q

If we further restrict the class covariance matrices to have the same shape, that is Q
k
=Q for

all k, Cases 1 and 3 in Table 1, then S
k
=a
k
UQUT¬a

k
Q0 . This is sometimes called the proportional

covariance model (Flury, 1986).

C 1. L et S
k
=a@
k
UC QCUC T=a@

k
QC
0

be the empirical estimate of S
k

under the proportional
covariance model. T hen (a) as in equation (4) is maximised by the common eigenvector u@

j
for

which q@
j
is the smallest.

Proof. Under the extra condition, LC
k
=a@
k
QC , as specified by the proportional covariance model,

(6) becomes

∑
K

k=1
AnkNB (−log l@ jk )=− ∑K

k=1
AnkNB {log (a@k )+ log (q@ j )}

=−log (q@
j
)+a constant not depending on j,

which clearly is maximised by the smallest q@
j
. %

Small eigen-directions are often regarded as containing little or no information. The reason
for the above seemingly counter-intuitive result is that we have assumed that the data are pre-
standardised to have the total sample covariance matrix S equal to I. Apart from scaling factors,
the total sample covariance matrix S is just the ‘sum’ of the between- and within-class covariance
matrices, B and W . If S

k
=a@
k
QC0 , then W=a:QC0 , where a: is the average size of the S

k
’s. It is then

easy to see that the smallest eigen-direction of QC0 , and hence of W , must contain the largest amount
of between-class separation if B and W must ‘sum’ up to a fixed constant.

3·2. Uniform dissimilarity

We now provide some intuition for how the notion of uniform dissimilarity can be understood.
Note that w

k
(w) is a weighted average of the eigenvalues within class k, averaged across all directions;

hence l@
jk

/w
k
(w) can be regarded as a standardised eigenvalue. Then

∑
k
AnkNBq l@ jkw

k
(w)r

can be regarded as a weighted average of the standardised eigenvalues in the jth eigen-direction,
averaged between classes. The notion of uniform dissimilarity, therefore, can be taken to mean the
following: no matter how you standardise the eigenvalues within each class, the average eigenvalues
are still different from one dimension to another when averaged between classes.
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4. A

4·1. A simulated example

The results presented above can be used to answer a common question that has been raised by
a number of readers regarding an example used by Zhu & Hastie (2003) to compare the criterion
(a) and the sliced average variance estimator, an alternative criterion proposed by Cook & Yin
(2001) for finding discriminant directions.
Zhu & Hastie (2003) constructed a simple two-dimensional problem in which two classes, with
equal sample sizes, n1=n2=N/2, differ in the mean but have the same marginal variance in the
direction x1 whereas, in the direction x2 , they have the same mean but different marginal variances.
The two classes were constructed to have sample means equal to

m
1
=A−√0·5

0 B , m2=A√0·5

0 B ;
and sample covariance matrices equal to

S
1
=A0·5 0

0 0·3B , S
2
=A0·5 0

0 1·7B .
Zhu & Hastie (2003) then evaluated the different criterion functions at x1 and x2 and found that
the Cook & Yin method would pick x2 whereas their method would pick x1 as the best discriminant
direction.
A number of readers have claimed that it was not fair just to compare the different criterion
functions at x1 and x2 alone because it was not obvious that maximising  (a) would not result
in a third direction, neither x1 nor x2 , as the best discriminant direction. However, it is easy to see
that the common principal component model applies to this example; moreover x1 and x2 are the
common eigen-directions. Our result above then implies that it suffices to consider just these two
directions provided that the two directions are uniformly dissimilar. It is easy to check that this is
the case, because there is no w between 0 and 1 such that

0·5

0·5w+0·3(1−w)
+

0·5

0·5w+1·7(1−w)
=

0·3

0·5w+0·3(1−w)
+

1·7

0·5w+1·7(1−w)
.

Therefore, instead of maximising  (a) iteratively, we only need to compare the two eigenvectors,
in this case x1 and x2 , according to

e
1
=1
2
(−log 0·5− log 0·5)j0·69, e

2
=1
2
(−log 0·3− log 1·7)j0·34.

Since e1>e2 , the conclusion is that x1 is the best discriminant direction.

4·2. Swiss banknotes data

Flury (1988, Ch. 4) studied an interesting dataset known now as the Swiss banknotes dataset,
which can be obtained from a library called ncomplete as part of the R package (R Development
Core Team, 2004). The dataset consists of six measurements made on 100 genuine and 100 forged
Swiss banknotes. The measured variables are as follows: X1 , width of the banknote; X2 , height of
the left-hand side of the banknote; X3 , height of the right-hand side of the banknote; X4 , distance
between the top of the inner box to the upper border; X5 , distance between the bottom of the
inner box to the lower border; X6 , diagonal of the inner box.
Flury (1988) tells us that this dataset satisfies the common principal component model and
provides us with an algorithm, called the Flury–Gautschi algorithm, for finding the estimates of
the common eigenvectors u@1 , . . . , u@6 as well as the two sets of eigenvalues l

@
jk
for j=1, . . . , 6 and

k=1, 2. Once the l@
jk
’s are computed, it is easy to check whether or not the uniform dissimilarity

condition is satisfied for any two common eigenvectors u@
i
and u@

j
by verifying numerically that
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Fig. 1: Swiss banknotes data. Data projected on to the first two discriminant directions:
(a) common principal components, (b) linear discriminant analysis. Genuine notes are coded
with a circle whereas forged notes are coded with a cross. The second direction is meaningless

for linear discriminant analysis.

there is no feasible solution for w to the equation

∑
k
AnkNBq l@ ikw

k
(w)r−∑

k
AnkNBq l@ jkw

k
(w)r=0.

Figure 1 shows the data projected on to the first two discriminant directions. Genuine notes are
coded with a circle whereas forged notes are coded with a cross. In Fig. 1(a), the discriminant
directions are the common principal components, reordered according to criterion (6). In Fig. 1(b),
the first direction is the maximiser of (2) whereas the second direction is meaningless because the
between-class covariance matrix has rank 1 for a two-class problem; it is used here just so that we
can draw a scatterplot.
Table 2 shows that, aside from an inconsequential scaling factor, the first direction found
by maximising  (a) under the common principal component model is very close to the linear
discriminant direction. Using just the first discriminant direction or simply linear discriminant
analysis, we see that most forged notes can be detected relatively easily, except for one particular
case, which seems to be a particularly well-made forgery.
Here the second direction displayed in Fig. 1(a) is especially useful. On this scale, it appears that
the genuine notes can be further divided into two different types, those appearing in the upper left
corner of the plot, which we call type I, and those appearing in the lower left corner, which we

Table 2: Swiss banknotes data. Normalised load-
ings of the first discriminant directions. ‘- ’
refers to maximising  (a) under the common
principal component model; ‘ ’ refers to linear

discriminant analysis

Dimension - 

1 −0·04 0·00
2 0·28 −0·33
3 −0·39 0·33
4 −0·41 0·44
5 −0·47 0·46
6 0·62 −0·61
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call type II. Clearly, the well-made forgery conforms to type II, which may suggest a line of criminal
investigation!
One could also ignore the fact that the common principal component model is satisfied for these
data and try to find disciminant directions by recursively maximising criterion (4) directly. As
mentioned earlier in § 1, numerous local solutions often exist. In this case, the underlying Newton-
type algorithm actually fails to converge for some starting values, giving us completely useless
‘solutions’. Therefore, if the common principal component model holds, it is much better to take
full advantage of it.
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