1. Suppose you have generated independent \(U[0, 1] \) random variables \(U_1, U_2, \ldots \). Give a formula or algorithm for generating a single random variable \(X \) where \(X \) has:

 a. the following probability density function:
 \[
 f(x) = \frac{1}{2x\sqrt{2\pi}} \exp\left(-\frac{(\log x - 2)^2}{8}\right).
 \]

 b. probability density function
 \[
 f(x) = \frac{1}{96}x^3 e^{-x/2}
 \]
 for \(0 \leq x \), otherwise \(f(x) = 0 \).

 c. A discrete random variable with probability function
 \[
 P[X = x] = \frac{1}{kx} (0.9)^x, x = 1, 2, \ldots, \text{ where } k = 2.3025.
 \]
 How many uniform random numbers are required on average to generate a single random variable with this distribution?

 d. What is the probability density function of the random variables \(Z \) generated by the following Matlab code?
 \[
 U = \text{rand}(1,100000);
 V = \text{rand}(1,100000);
 X = U \cdot (V < 1-U);
 W = \text{rand}(1,\text{length}(X));
 Z = \text{min}(W.\text{power}(1/2), X);
 \]
2. Define the function whose graph appears in Figure 1;

\[f(x) = \frac{x^2}{1 + e^{-5x}} \]

and suppose we wish to estimate the integral

\[O = \int_0^1 f(x)2x \, dx \]

using Monte Carlo integration. Give estimators based on a sequence of independent uniform [0,1] random variables \(U_1, \ldots, U_n \) of this integral using the following methods. For each indicate how to assess their relative efficiency.

a. Importance sampling:

b. A control variate:

c. A stratified random sample with two strata, [0,0.75] and [0.75,1].

d. Guess the optimal sample sizes if we use the stratified sample with strata [0,0.75] and [0.75,1]. You may pretend that your function is equal to the one you used as a control variate in part (b).
3. A model for a financial time series \(S_t \) is written with stochastic differential equation in the form

\[
dS_t = rS_t dt + \sigma S_t^{0.5} dW_t
\]

for a Wiener (standard Brownian motion) process \(W_t \).

a. Give two methods for simulating \(S_2 \) starting with \(S_0 = 10, r = 0.05, \sigma = 0.2 \) and step size 1.

b. Suppose independent simulations are conducted at two points in order to estimate the rho of a derivative which has payoff at maturity \(T = 2 \) given by

\[
V(S_T) = (S_T - 10) \text{ if } 8 \leq S_T \leq 12
\]

otherwise \(V(S_T) = 0 \).

Is it possible to replicate this derivative using the stock, a risk-free account, ordinary European call options and digital options (having payoff equal to $1 if \(S_T \geq K \)) possibly with different strike prices?

c. We simulated the value of the discounted payoff \(e^{-2r} V(S_T) \) under two different circumstances:

Method 1 using interest rate \(r = 0.045 \) and \(r = 0.055 \) and independent simulations, \(n = 100,000 \) at each of \(r = 0.045 \) and \(r = 0.055 \).

Method 2 using interest rate \(r = 0.045 \) and \(r = 0.055 \) and common random numbers. The results of (ii) are as follows:

<table>
<thead>
<tr>
<th>Number of simulations</th>
<th>(r)</th>
<th>estimate of (var(e^{-2r} V(S_T)))</th>
<th>average(e^{-2r} V(S_T))</th>
</tr>
</thead>
<tbody>
<tr>
<td>100,000</td>
<td>0.045</td>
<td>0.46</td>
<td>0.57</td>
</tr>
<tr>
<td>100,000</td>
<td>0.055</td>
<td>0.43</td>
<td>0.63</td>
</tr>
</tbody>
</table>

The correlation coefficient between the vector of estimators at the two different values of \(r \) using Method 2 was 0.8. Use this data to estimate rho and estimate the efficiency of the use of common random numbers relative to the use of independent simulations as in Method 1.