MONTE CARLO METHODS IN FINANCE

Don L. McLeish

September, 2003
Contents

1 Introduction 1

2 Some Basic Theory of Finance. 9
 2.1 Introduction to Pricing: Single Period Models. 9
 2.2 Multiperiod Models. .. 15
 2.3 Determining the Process B_t. 21
 2.4 Minimum Variance Portfolios and the Capital Asset Pricing Model. 24
 2.4.1 The Capital Asset Pricing Model (CAPM) 26
 2.5 Entropy: choosing a Q measure 40
 2.5.1 Maximum Entropy 40
 2.5.2 Minimum Cross-Entropy 44
 2.5.3 Cross Entropy 45
 2.6 Models in Continuous Time 48
 2.7 Review Problems ... 66

3 Basic Monte Carlo Methods 71
 3.1 Simulation and Monte Carlo Methods 71
 3.2 Uniform Random Number Generation 72
 3.3 Apparent Randomness of Pseudo-Random Number Generators 78
 3.4 Generating Random Numbers from Non-Uniform Continuous
 Distributions ... 83
 3.4.1 The Acceptance-Rejection Method 88
 3.4.2 Application: A Discrete Time Black-Scholes Model 95
 3.4.3 Algorithms for Generating the Gamma and Beta Distributions ... 98
 3.4.4 The Symmetric Stable Laws 108
 3.4.5 The Normal Inverse Gamma Distribution 110
 3.5 Generating Random Numbers from Discrete Distributions 114
 3.6 Simulating Stochastic Partial Differential Equations 121
 3.7 Problems .. 126

4 Variance Reduction Techniques. 137
 4.1 Introduction .. 137
 4.2 Variance reduction for one-dimensional Monte-Carlo Integration. 139
CONTENTS

4.3 Simulations from the Stationary Distribution of a Markov Chain. 166
4.4 Some Multivariate Applications in Finance. 169
 4.4.1 Asian Options. 169
 4.4.2 Use of Girsanov’s Lemma. 172
4.5 Simulating Barrier and lookback options 177
 4.5.1 Simulating the High and the Close 179
 4.5.2 One Factor, Two barriers 195
 4.5.3 Surviviorship Bias 201
4.6 Problems 204

5 Quasi-Monte Carlo Multiple Integration 209
 5.1 Introduction 209
 5.1.1 Errors in numerical Integration 211
 5.2 Theory of Low discrepancy sequences 213
 5.2.1 Definition: Measures of Discrepancy 214
 5.3 Examples of low discrepancy sequences 216
 5.3.1 Van der Corput Sequence 216
 5.3.2 The Halton Sequence 217
 5.3.3 Sobol Sequence 220
 5.3.4 Definition: elementary interval 221
 5.3.5 Definition: \((t,m,s)\) - net 221
 5.3.6 Definition: \((t,s)\) - sequence 221

6 Estimation and Calibration. 223
 6.1 Using Historical Data for Diffusion Models 223
 6.2 Estimating Volatility 225
 6.3 Estimating Hedge ratios and Correlation Coefficients 235
 6.4 Estimation using the Term Structure of Interest rates 241

7 Sensitivity Analysis, Estimating Derivatives and the Greeks. 243
 7.1 Estimating Derivatives 246
 7.1.1 The Score Function Estimator 247
 7.1.2 Example 250
 7.1.3 Example. Estimating Vega 250
 7.1.4 Gaussian Quadrature 251
 7.2 Infinitesimal Perturbation Analysis: Pathwise differentiation 253
 7.2.1 Example. IPA estimate of Vega 254
 7.2.2 Sensitivity of the value of a spread option to the correlation 257
 7.3 Problems 258

8 Miscellany 259
 8.1 Neural Nets 259
 8.2 Chaos, Long term dependence and non-linear Dynamics 260
 8.3 ARCH AND GARCH 260
 8.3.1 ARCH(1) 261
 8.3.2 Estimating Parameters 261