Midterm Exam, Stat 901
 November 2001. 90 minutes
 Instructor: D. L. McLeish

Do any Four (4) of the questions below directly on the test paper.
Name

1. Recall that a family of subsets \mathcal{F} of Ω is a π-system if, whenever $A_{k} \in \mathcal{F}$ for $k=1,2$ then $A_{1} \cap A_{2} \in \mathcal{F}$. A Boolean algebra of subsets is closed under finite intersections, finite unions and complementation.
(a) Give an example of a family of subsets of the set $\{1,2,3\}$ that is a π-system but NOT a Boolean algebra of sets.
(b) Give an example of a family of subsets that is a Boolean Algebra. Is this family also a Sigma Algebra?
(c) Define a random variable on this space by $X(\omega)=0$ if ω is odd, and otherwise $X(\omega)=1$. What is $\sigma(X)$?

Name
2. Indicate true or false and prove or find a counterexample:
(a) There exist two independent random variables X, Y defined on the space $\Omega=\{1,2,3,4\}$ which have exactly the same distribution.
(b) For independent random variables X, Y : it is always true that $\sigma(X, Y)=$ $\sigma(X) \cup \sigma(Y)$.

Name \qquad
3. Indicate true or false and prove or find a counterexample:
(a) For any non-negative random variable X, there is a sequence of simple random variables X_{n} such that $X_{n}(\omega) \leq X(\omega)$ for all $\omega \in \Omega$. and $E\left(X_{n}\right) \rightarrow E(X)$ as $n \rightarrow \infty$.
(b) For any integrable random variable X (taking positive and negative values), there is a sequence of simple random variables X_{n} such that $X_{n} \rightarrow X$ a.s. and $E\left(X_{n}\right) \rightarrow E(X)$ as $n \rightarrow \infty$.

Name \qquad
4. Indicate true or false and prove or find a counterexample:
(a) If X, Y are independent, nonegative random variables, $E(X Y)=$ $E(X) E(Y)$.
(b) If two indicator random variables X, Y satisfy $E(X Y)=E(X) E(Y)$ then they are independent.

Name \qquad
5. Indicate true or false and prove or find a counterexample:
(a) If

$$
E\left(\left|X_{n}-X\right|\right) \rightarrow 0
$$

as $n \rightarrow \infty$, then $X_{n} \rightarrow X$ in probability.
(b) If $P\left(\left\{\omega ; X_{n}(\omega) \rightarrow X(\omega)\right\}\right)=1$ for some integrable random variable X then $E\left(\left|X_{n}-X\right|\right) \rightarrow 0$.

Name \qquad
6. Indicate true or false and prove or find a counterexample:
(a) If X_{n} converges in probability to a random variable X then it converges in distribution (i.e. weakly) to X.
(b) If X_{n} converges in distribution to a random variable X then it converges in probability to X.

