Name_____ Final Exam, Stat 901 December 14, 2001. 3 Hours Instructor: D. L. McLeish

Do any SIX (6) of the questions below directly on the test paper.

1. Prove or disprove with a counter-example;

(a) If a sequence of events A_k satisfy $A_k \subset A_{k+1}$..for all k = 1, 2, ... then

$$P(\limsup_{n \to \infty} A_n) = \lim_{n \to \infty} P(A_n).$$

- (b) If X has a continuous c.d.f. F(x) then the random variable F(X) has a uniform distribution on the interval [0, 1].
- (c) If X_i ; i = 1, 2, ... are random variables, then $Y_n = \sup\{X_m; m \ge n\}$ is a random variable for each n and converges to a random variable as $n \to \infty$.

(a) If $|X|^p$ is integrable for $p \ge 1$, then for any constant $\epsilon > 0$,

$$P[|X| \ge \epsilon] \le \frac{E|X|^p}{\epsilon^p}$$

(b) For every integrable random variable X and every $\epsilon > 0$,

$$P[|X| \ge \epsilon] < \frac{E|X|}{\epsilon}$$

(c) For any value of t > 0 and random variable X with moment generating function $m_X(t)$,

$$P[X > c] \le e^{-tc} m_X(t)$$

(a) If $X_1, X_2, ..., X_n$ are independent N(0, 1) random variables and $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, then

$$\frac{1}{n}\sum_{i=1}^{n} (X_i - \overline{X}_n)^2 \to 1 \text{ almost surely as } n \to \infty.$$

(b) Define $M_n = median (X_1, X_2, \dots, X_n)$. Then $M_n \to 0$ almost surely as $n \to \infty$.

- (a) If F_n, F, G_n, G are all cumulative distribution functions and $F_n \Rightarrow F$ and $G_n \Rightarrow G$, then $F_n * G_n \Rightarrow F * G$.
- (b) If X_{λ} is a random variable with

$$P[X_{\lambda} = j] = \frac{\lambda^{j} e^{-\lambda}}{j!}, j = 0, 1, 2, \dots$$

then the characteristic function of X_{λ} is

$$\varphi(t) = \exp(\lambda(e^{it} - 1))$$

(c) As $\lambda \to \infty$, the distribution of

$$\frac{X_{\lambda} - \lambda}{\sqrt{\lambda}}$$

approaches the standard normal distribution.

- 5. Assume X is a random variable on the probability space (Ω, \mathcal{F}, P) with $E(X^2) < \infty$. If \mathcal{H} is a sigma algebra with $\mathcal{H} \subset \mathcal{F}$
 - (a) Define $E(X|\mathcal{H})$.
 - (b) Prove for constants c, d that $E(cX + d|\mathcal{H}) = cE(X|\mathcal{H}) + d$.
 - (c) Prove if $\mathcal{H} \subset \mathcal{G}$ are sigma-algebras, $E[E(X|\mathcal{G})|\mathcal{H}] = E(X|\mathcal{H})$. Does the same hold if $\mathcal{G} \subset \mathcal{H}$?

(a) Assume X, Y, Z are random variables on the probability space (Ω, \mathcal{F}, P) , X is integrable and Y is independent of (X, Z). Then.

$$E[X|Y,Z] = E[X|Z] \quad \text{a.s.}$$

(b) If τ is an optional stopping time taking values in the set $\{1, 2, ..., n\}$ and $\{(X_t, \mathcal{H}_t); t = 1, 2, ..., n\}$ is a martingale, then

$$E[(X_{j+1} - X_j)I(\tau > j)|\mathcal{H}_j] = 0$$
 a.s. for all $j = 1, ..., n - 1$.

(c) $E(X_{\tau}) = E(X_1).$

7. Prove or disprove with a counter-example ANY THREE of the following statements.

- (a) Assume the X_i , i = 1, 2, ... are independent and identically distributed random variables with mean μ and finite variance σ^2 . Define $Z_{2n} = \sum_{i=1}^n X_i \sum_{i=n+1}^{2n} X_i$. Then $n^{-1/2}Z_{2n}$ converges weakly to a normal distribution.
- (b) The characteristic function $\varphi(t)$ of every probability distribution is continuous at t = 0.
- (c) If X_n converges almost surely to a random variable X then X_n converges in probability to X.
- (d) If X_n converges weakly (in distribution) to the constant c then it converges in probability to c.