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Chapter 1

Mathematical Prerequisites

1.1 Sets and sequences of Real Numbers

The real numbers < form a field. This is a set together with operations of
addition and multiplication and their inverse operations (subtraction and in-
verse). They are totally ordered in the sense that any two real numbers can be
compared; i.e. for any a, b ∈ <, either a < b, a = b, or a > b. The set of real
numbers, unlike the set of rational numbers, is uncountable. A set is countable
if it can be put in one-one correspondence with the positive integers. It is is
at most countable if it can be put in one-one correspondence with a subset of
the positive integers (i.e. finite or countable). The set of rational numbers is
countable, for example, but it is easy to show that the set of all real numbers is
not. We will usually require the concept of ”at most countable” in this course
and often not distinguish between these two terminologies, i.e. refer to the set
as countable. If we wish to emphasize that a set is infinite we may describe it
as countably infinite.

A brief diversion: why do we need the machinery of measure theory? Con-
sider the simple problem of identifying a uniform distribution on all subsets of
the unit iterval [0, 1] so that this extends the notion of length. Specifically can
we define a “measure” or distribution P so that

1. P (([a, b)) = b− a for all 0 ≤ a ≤ b ≤ 1

2. P (A1 ∪ A2 ∪ ...) = P (A1) + P (A2) + ... for any disjoint sequence of sets
An ⊂ [0, 1], n = 1, 2, ...

3. P (A ⊕ r) = P (A) for any r ∈ [0, 1] where for A ⊂ [0, 1],we define the
shift of a set

A⊕ r = {x ∈ [0, 1];x− r ∈ A or x− r + 1 ∈ A}.

Theorem 1 There is no function P defined on all the subsets of the unit in-
terval which satisfies properties 1-3 above.

1



2 CHAPTER 1. MATHEMATICAL PREREQUISITES

The consequence of this theorem is that in order to define even simple con-
tinuous distributions we are unable to deal with all subsets of the unit interval
or the real numbers but must restrict attention to a subclass of sets or events
in what we call a “sigma-algebra”.

The set of all integers is not a field because the operation of subtraction
(inverse of addition) preserves the set, but the operation of division (inverse of
multiplication) does not. However, the set of rational numbers, numbers of the
form p/q for integer p and q, forms a field with a countable number of elements.
Consider A ⊂ <. Then A has an upper bound b if b ≥ a for all a ∈ A. If b0
is the smallest number with this property, we define b0 to be the least upper
bound. Similarly lower bounds and greatest lower bounds.

The real numbers is endowed with a concept of distance. More generally,
a set X with such a concept defined on it is called a metric space if there is
a function d(x, y) defined for all x, y ∈ X (called the distance between points x
and y) satisfying the properties

1. d(x, y) > 0 for all x 6= y and d(x, x) = 0 for all x.

2. d(x, y) = d(y, x)

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Obviously the real line is a metric space with distance d(x, y) = |x− y| but
so is any subset of the real line. Indeed any subset of Euclidean space <n is a
metric space. A metric space allows us to define the notion of neighbourhoods
and open sets. In particular, a neighbourhood of a point x is a set of the form
{y; d(x, y) < r} for some radius r > 0. A subset B of a metric space is open if
every point x in B has a neighbourhood entirely contained in B.Formally B is
open if, for every x ∈ B, there exists r > 0 such that {y; d(x, y) < r} ⊂ B. Note
that the whole metric space X is open, and trivially the empty set ϕ is open.

We say that a set E in a metric space has an open cover consisting of
(possibly infinitely many) open sets {Gs, s ∈ S} if E ⊂ ∪s∈SGs,or in other
words if every point in E is in at least one of the open sets Gs. The set E
is compact if every open cover has a finite subcover– i.e. if for any open cover
there are finitely many sets, say Gsi , i = 1, ..., n such that E ⊂ ∪iGsi . Compact
sets in Euclidean space are easily identified- they are closed and bounded. In
a general metric space, a compact set is always closed.

Now consider a sequence of elements of a metric space {xn, n = 1, 2, . . .}.
We say this sequence converges to a point x if, for all ε > 0 there exists an
N < ∞ such that d(xn, x) < ε for all n > N . The property that a sequence
converges and the value of the limit is a property only of the tail of the sequence-
i.e. the values for n arbitrarily large. If the sequence consists of real numbers
and if we define lN = sup{xn;n ≥ N} to be the least upper bound of the set
{xn;n ≥ N}, then we know the limit x, provided it exists, is less than or equal
to each lN . Indeed since the sequence lN is a decreasing sequence, bounded
below, it must converge to some limit l, and we know that any limit is less
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than or equal to l as well. The limit l = limN→∞lN we denote commonly by
l = lim supn→∞xn.

It is easy to identify l = lim sup of a sequence of numbers xn by comparing
it to an arbitrary real number a. In general, l > a if and only if xn > a infinitely
many times or infinitely often (i.e. for infinitely many subscripts n). Similarly
l ≤ a if and only if xn > a+ ε at most finitely many times or finitely often for
each ε > 0.

We will deal throughout Stat 901 with subsets of the real numbers. For
example, consider the set O of all open intervals (a, b) = {x; a < x < b}
and include (a, a) = φ the empty set. If we take the union of two (overlap-
ping or non-overlapping) sets in O is the result in O? What if we take the
union of finitely many? Infinitely many? Repeat with intersections. These basic
properties of open intervals are often used to describe more general topologies
since they hold for more complicated spaces such as finite dimensional Euclidean
spaces. Denote a closed interval [a, b] = {x; a ≤ x ≤ b}. Which of the above
properties hold for closed intervals? Note that we can construct closed inter-
vals from open ones provided we are permitted countably many operations of
intersections for example:

[a, b] = ∩∞n=1(a− 1/n, b+ 1/n).

We shall normally use the following notation throughout this course. Ω is a
fundamental measure (or probability, or sample) space. It is a set consisting of
all points possible as the outcome to an experiment. For example what is the
probability space if the experiment consists of choosing a random number from
the interval [0, 1]? What if the experiment consists of tossing a coin repeatedly
until we obtain exactly one head? We do not always assume that the space
Ω has a topology (such as that induced by a metric) but in many cases it
is convenient if the probability space does possess a metric topology. This is
certainly the case if we are interested in the value of n random variables and so
our space is <n.

We denote by Ω a typical point in Ω. We wish to discuss events or classes
of sets of possible outcomes.

Definition 2 (Event) An Event A is a subset of Ω. The empty event φ
and the whole space Ω are also considered events. However, the calculus of
probability does not allow us in the most general case to accommodate the set of
all possible subsets of Ω in general, and we need to restrict this class further.

Definition 3 (Topological Space) A topological Space (Ω,O) is a space Ω
together with a class O of subsets of Ω. The members of the set O are called
open sets. O has the property that unions of any number of the sets in O
(finite or infinite, countable or uncountable) remain in O, and intersections of
finite numbers of sets in O also remain in O. The closed sets are those whose
complements are in O.

Definition 4 ( Some Notation)
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1. Union of sets A ∪B

2. Intersection of sets A ∩B

3. Complement : Ac = Ω \A

4. Set differences : A \B = A ∩Bc.

5. Empty set : φ = Ωc

Theorem 5 (De Morgan’s rules) (∪iAi)
c = ∩iA

c
i and (∩iAi)

c = ∪iA
c
i

Definition 6 (Boolean Algebra) A Boolean Algebra (or algebra for short) is a
family F′ of subsets of Ω such that

1. A,B ∈ F′ implies A ∪B ∈ F′.

2. A ∈ F′ implies Ac ∈ F′.

3. φ ∈ F′.

While Boolean algebras have satisfying mathematical properties, they are
not sufficiently general to cover most probability spaces of interest. In particular,
they may be used to model experiments with at most a finite number of possible
outcomes. In the next chapter, we will deal with extending Boolean algebras to
cover more general probability spaces.

1.2 Problems

1. Suppose we consider the space Ω of positive integers and define a measure
by P (A) = 0 of the number of integers in A is finite, P (A) = 1 if the
number is infinite. Does this measure satisfy the property of countable
additivity:

P (A1 ∪A2 ∪ ...) = P (A1) + P (A2) + ...

for any disjoint sequence of sets An ⊂ Ω, n = 1, 2, ...?

2. Prove that the equation p2 = 2 is not satisfied by any rational number
p.(Let p = m/n where not both integers m,n are even).

3. The extended real number system consists of the usual real numbers
{x;−∞ < x < ∞} together with the symbols ∞ and −∞. Which of
the following have a meaning in the extended real number system and
what is the meaning? Assume x is real (−∞ < x <∞).

(a) x+∞
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(b) x−∞
(c) x(+∞)

(d) x/∞
(e) x

−∞
(f) ∞−∞
(g) ∞/∞

4. Prove: the set of rational numbers, numbers of the form p/q for integer
p and q, has a countable number of elements.

5. Prove that the set of all real numbers is not countable.

6. Let the sets En, n = 1, 2, ... each be countable. Prove that ∪∞n=1En is
countable.

7. In a metric space, prove that for fixed x and r > 0, the set {y; d(x, y) < r}
is an open set.

8. In a metric space, prove that the union of any number of open sets is
open, the intersection of a finite number of open sets is open, but the
intersection of an infinite number of open sets might be closed.

9. Give an example of an open cover of the interval (0, 1) which has no finite
subcover.

10. Consider A to be the set of rational numbers a ∈ Q such that a2 < 2.
Is there least upper bound, and a greatest lower bound, and are they in
Q?

11. Show that any non-decreasing sequence of numbers that is bounded above
converges.

12. Show that if x ≤ lN for each N <∞ and if lN converges to some number
l, then x ≤ l.

13. Find an example of a double sequence {aij , i = 1, 2, . . . , j = 1, 2, . . .}
such that ∞∑

i=1

∞∑

j=1

aij 6=
∞∑

j=1

∞∑

i=1

aij

14. Define the set O of open intervals (a, b) = {x;−a < x < b}, ∞ ≥ a ≥ 0,
∞ ≥ b ≥ 0.

(a) Verify that the union or intersection of finitely many sets in O is in
O.

(b) Verify that the union of a countably infinite number of sets in O is
in O
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(c) Show that the intersection of a countably infinite number of sets in
O may not be in O.

15. Prove the triangle inequality:

|a+ b| ≤ |a|+ |b|

whenever a, b ∈ <n.

16. Define the metric d(X,Y ) =
√
E(X − Y )2 on a space of random variables

with finite variance. Prove the triangle inequality

d(X,Z) ≤ d(X,Y ) + d(Y,Z)

for arbitrary choice of random variablesX,Y, Z.(Hint: recall that cov(W1,W2) ≤√
var(W1)

√
var(W2))

17. Verify that
[a, b) = ∩∞n=1(a− 1/n, b).

(a, b) = ∪∞n=1(a+ 1/n, b− 1/n).

[a, b) = ∪∞n=1[a, b− 1/n).

18. Let an be a sequence or real numbers converging to a. Prove that |an|
converges to |a|. Prove that for any function f(x) continuous at the point
a then f(an)→ f(a).

19. Give an example of a convergent series
∑

pn = 1 with all pn ≥ 0 such that
the expectation of the distribution does not converge; i.e.

∑
n npn =∞.

20. Define Ω to be the interval (0,1] and F0 to be the class of all sets of the
form (a0, a1]∪ (a2, a3]∪ ...∪ (an−1, an] where 0 ≤ a0 ≤ ... ≤ an ≤ 1. Then
is F0 a Boolean algebra? Verify.

21. Prove that any open subset of < is the union of countable many intervals
of the form (a, b) where a < b.

22. Suppose the probability space Ω = {1, 2, 3} and P (ϕ) = 0, P (Ω) = 1.
What conditions are necessary for the values x = P ({1, 2}), y = P ({2, 3}), z =
P ({1, 3}) for the measure P to be countably additive?

23. Suppose a measure satisfies the property of countable additivity:

P (A1 ∪A2 ∪ ...) = P (A1) + P (A2) + ...

for any disjoint sequence of sets An ⊂ Ω, n = 1, 2, ...?

Prove that for an arbitrary sequence of sets Bj ,

P (B1 ∪B2 ∪ ...) ≤ P (B1) + P (B2) + ...
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24. Prove for any probability measure and for an arbitrary setsBj , j = 1, 2, ..., n

P (B1 ∪B2 ∪ ...Bn) =

n∑

j=1

P (Bj)−
∑

i<j

P (BiBj) +
∑

i<j<k

P (BiBjBk)....

25. Find two Boolean Algebras F0 and F1 both defined on the space Ω =
{1, 2, 3} such that the union F0 ∪ F1 is NOT a Boolean Algebra.

26. For an arbitrary space Ω, is it true that

F0 = {A ⊂ Ω;A is a finite set}

is a Boolean algebra?

27. For two Boolean Algebras F0 and F1 both defined on the space Ω is it
true that the intersection F0 ∩ F1 is a Boolean Algebra?

28. The smallest non-empty events belonging to a Boolean algebra are called
the atoms. Find the atoms of

F0 = {ϕ,Ω, {1}, {2, 3}, {4}, {1, 2, 3}, {1, 4}, {2, 3, 4}}

where Ω = {1, 2, 3, 4}.

29. The smallest non-empty events belonging to a Boolean algebra are called
the atoms. Show that in general different atoms must be disjoint. If a
Boolean algebra F0 has a total of n atoms how many elements are there
in F0?
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Chapter 2

Measure Spaces

2.1 Families of Sets

Definition 7 ( π − systems) A family of subsets F of Ω is a π−system if,
Ak ∈ F for k = 1, 2 implies A1 ∩A2 ∈ F .

A π−system is closed under finitely many intersections but not necessarily
under unions. The simplest example of a π−system is the family of rectangles
in Euclidean space. Clearly a Boolean algebra is a π-system but there are
π−systems that are not Boolean algebras (see the problems).

Definition 8 (Sigma-Algebra) F is sigma algebra if,

(i) Ak ∈ F for all k implies ∪∞k=1Ak ∈ F

(ii) A ∈ F implies Ac ∈ F .

(iii) φ ∈ F .

Note that only the first property of a Boolean algebra has been changed-it
is slightly strengthened. Any sigma algebra is automatically a Boolean algebra.

Theorem 9 (Properties of a Sigma-Algebra) If F is a sigma algebra, then

(iv) Ω ∈ F .

(v) Ak ∈ F for all k implies ∩∞k=1Ak ∈ F

Proof. Note that Ω = ϕc ∈ F by properties (ii) and (iii). This verifies (iv).
Also ∩∞k=1Ak = (∪∞k=1Ac

k)
c ∈ F by properties (i) and (ii).

Theorem 10 (Intersection of sigma algebras) Let Fλ be sigma algebras for
each λ ∈ Λ. The index set Λ may be finite or infinite, countable or uncountable.
Then ∩λ Fλ is a sigma-algebra.

2
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Proof. Clearly if F = ∩λFλ then ϕ ∈ F since ϕ ∈ Fλ for every λ. Similarly
if A ∈ F then A ∈ Fλ for every λ and so is Ac. Consequently Ac ∈ F . Finally
if An ∈ F for all n = 1, 2, ...then An ∈ Fλ for every n, λ and ∪∞n=1An ∈ Fλ for
every λ. This implies ∪∞n=1An ∈ F .

Definition 11 ( sigma algebra generated by family of sets) If C is a family of
sets, then the sigma algebra generated by C , denoted σ(C), is the intersection of
all sigma-algebras containing C. It is the smallest sigma algebra which contains
all of the sets in C.

Example 12 Consider Ω = [0, 1] and C ={[0, .3], [.5, 1]} = {A1, A2}, say. Then
σ(C) = {ϕ, A1, A2, A3, A1∪A2, A1∪A3, A2∪A3,Ω} where we define A3 = (.3, .5).
(There are 8 sets in σ(C)).

Example 13 Define Ω to be the interval (0,1] and F′ to be the class of all
sets of the form (a0, a1] ∪ (a2, a3] ∪ ... ∪ (an−1, an] where 0 ≤ a0 ≤ ... ≤ an ≤ 1.
Then F′ is a Boolean algebra but not a sigma algebra.

Example 14 (all subsets) Define F′ to be the class of all subsets of any given
set Ω. Is this a Boolean algebra? Sigma Algebra? How many distinct sets are
there in F′ if Ω has a finite number, N points?

Example 15 A and B play a game until one wins once (and is declared winner
of the match). The probability that A wins each game is 0.3, the probability
that B wins each game is 0.2 and the probability of a draw on each game is 0.5.
What is a suitable probability space, sigma algebra and the probability that A
wins the match?

Example 16 (Borel Sigma Algebra) The Borel Sigma Algebra is defined on a
topological space (Ω,O) and is B = σ(O).

Theorem 17 The Borel sigma algebra on R is σ(C), the sigma algebra gener-
ated by each of the classes of sets C described below;

1. C1 = {(a, b); a ≤ b}

2. C2 = {(a, b]; a ≤ b}

3. C3 = {[a, b); a ≤ b}

4. C4 = {[a, b]; a ≤ b}

5. C5 =the set of all open subsets of R

6. C6 =the set of all closed subsets of R

To prove the equivalence of 1 and 5 above, we need the following theorem
which indicates that any open set can be constructed from a countable number
of open intervals.
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Theorem 18 Any open subset of R is a countable union of open intervals of
the form (a, b).

Proof. Let O be the open set and x ∈ O. Consider the interval Ix =
∪{(a, b); a < x < b, (a, b) ⊂ O}. This is the largest open interval around x that
is entirely contained in O. Note that if x 6= y, then Ix = Iy or Ix ∩ Iy = ϕ.
This is clear because if there is some point z ∈ Ix ∩ Iy, then Ix ∪ Iy is an open
interval containing both x and y and so since they are, by definition, the largest
such open interval, Ix ∪ Iy = Ix = Iy. Then we can clearly write

O = ∪{Ix;x ∈ O}
= ∪{Ix;x ∈ O, x is rational}

since every interval Ix contains at least one rational number.

Definition 19 ( Lim Sup, Lim Inf) For an arbitrary sequence of events Ak

lim
n→∞

supAn = ∩∞n=1 ∪∞k=n Ak = [An i.o.]

lim
n→∞

inf An = ∪∞n=1 ∩∞k=n Ak = [An a.b.f.o.]

The notation An i.o. refers to An infinitely often and An a.b.f.o. refers to
An “all but finitely often”.

A given point ω is in limn→∞ supAn if and only if it lies in infinitely many
of the individual sets An. The point is in limn→∞ inf An if and only if it is in all
but a finite number of the sets. Which of these two sets is bigger? Compare them
with ∪∞k=nAk and ∩∞k=nAk for any fixed n. Can you think of any circumstances
under which lim sup An = lim inf An? You should be able to prove that

[lim supAn]
c = lim inf Ac

n.

Theorem 20 Assume F is a sigma-algebra. If each of An ∈ F , n = 1, 2, . . .,
then both ∪∞n=1 ∩∞k=nAk and ∩∞n=1 ∪∞k=nAk are in F .
Definition 21 ( measurable space) A pair (Ω,F) where the former is a set
and the latter a sigma algebra of subsets of Ω is called a measurable space.

Definition 22 (additive set function) Consider a space Ω and a family of
subsets F0 of Ω such that φ ∈ F0. Suppose µ0 is a non-negative set function;
i.e. has the properties that

• µ0 : F0→[0,∞]

• When F,G and F ∪ G ∈ F0 and F ∩ G = φ, then µ0(F ) + µ0(G) =
µ0(F ∪G).

Then we call µ0 an additive set function on (Ω,F0).

Note that it follows that µ0(φ) = 0 (except in the trivial case that µ0(A) =∞
for every subset including the empty set. We rule this out in our definition of a
measure.)
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Definition 23 We call µ0 a countably additive set function on (Ω,F0) if,
whenever all An, n = 1, 2, . . . are members of F0 and ∪∞n=1 An ∈ F0 , and
the sets are disjoint ( Ai ∩Aj = φ, i 6= j) then it follows that

µ0(∪∞n=1An) =
∞∑

n=1

µ0(An)

We saw at the beginning of this chapter that the concept of a π−system
provides one basic property of a Boolean algebra, but does not provide for
unions. In order to insure that such a family is a σ−algebra we need the
additional conditions provided by a λ−system (below).

Definition 24 A family of events F is called a λ-system if the following con-
ditions hold:

1. Ω ∈ F

2. A,B ∈ F and B ⊂ A implies A\B ∈ F

3. If An ∈ F for all n = 1, 2, ... and An ⊂ An+1 then ∪∞n=1An ∈ F

A λ−system is closed under set differences if one set is included in the other
and monotonically increasing countable unions. It turns out this this provides
the axioms that are missing in the definition of a π-system to guarantee the
conditions of a sigma-field are satisfied.

Proposition 25 If F is both a π-system and a λ-system then it is a sigma-
algebra.

Proof. By the properties of a λ−system, we have that Ω ∈ F and if A ∈ F
then Ac = Ω \A ∈ F . So we need only show that F is closed under countable
unions. Note that since F is a π−system it is closed under finite intersections.
Therefore if An ∈ F for each n = 1, 2, ... then Bn = ∪n

i=1Ai = (∩n
i=1A

c
i )

c ∈ F
for each n and since Bn ⊂ Bn+1, ∪∞n=1Bn = ∪∞n=1An ∈ F by the third
property of a λ− system.

Theorem 26 (The π−λ Theorem) Suppose a family of sets F is a π−system
and F ⊂ G where G is a λ-system. Then σ(F) ⊂ G .

This theorem is due to Dynkin and is proved by showing that the smallest
λ−system containing F is a π-system and is therefore, by the theorem above, a
sigma-algebra.
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2.2 Measures

Definition 27 (measure) µ is a (non-negative) measure on the measurable
space (Ω,F) where F is a sigma-algebra of subsets of Ω if it is a countably
additive (non-negative) set function µ();F → [0,∞].

A measure µ satisfies the following conditions

(i) µ(A) ≥ 0 for all A.

(ii) If Ak disjoint, µ(∪∞k=1Ak) =
∑∞

k=1 µ(Ak)

(iii) µ(φ) = 0

(iv) (monotone) A ⊂ B implies µ(A) ≤ µ(B).

(v) (subadditive) µ(∪kAk) ≤
∑

k µ(Ak)

(vi) ( inclusion-exclusion). For finitely many sets,

µ(∪n
k=1Ak) =

∑

k

µ(Ak)−
∑

i<j

µ(Ai ∩Aj) + ....

(vii) If Ak converges (i.e. is nested increasing or decreasing)

µ(limnAn) = limnµ(An)

where lim
n
An =

{ ∪nAn if An increasing

∩nAn if An decreasing

Definition 28 (Measure space)The triple (Ω,F ,µ) is called a measure space.

Measures do exist which may take negative values as well but we leave dis-
cussion of these for later. Such measures we will call signed measures. For the
present, however, we assume that every measure takes non-negative values only.

Definition 29 (Probability measure) A Probability measure is a measure P
satisfying P (Ω) = 1.

(Additional property) A probability measure also satisfies

(viii) P (Ac) = 1− P (A)

Definition 30 (Probability space) When the measure P is a probability mea-
sure, the triple (Ω,F ,P) is called a probability space.

Theorem 31 (Conditional Probability) For B ∈ F with P (B) > 0, Q(A) =
P (A|B) = P (A ∩B)/P (B) is a probability measure on the same space (Ω,F).
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2.3 Extending a measure from an algebra

Although measures generally need to be supported by sigma-algebras of sets,
two probability measures are identical if they are identical on an algebra. The
following Theorem is fundamental to this argument, and to the construction of
Lebesgue measure on the real line.

Theorem 32 (Caratheodory Extension) Suppose F0 is a (Boolean) algebra
and µ0 a countably additive set function from F0 into [0,∞]. Then there is
an extension of µ0 to a measure µ defined on all of σ(F0). Furthermore, if
the total measure µ0(Ω) <∞ then the extension is unique.

Proof. We do not provide a complete proof-details can be found in any
measure theory text (e.g. Rosenthal, p.10-14.) Rather we give a short sketch of
the proof. We begin by defining the outer measure of any set E ⊂ Ω (note it
does not have to be in the algebra or sigma-algebra) by the smallest sum of the
measures of sets in the algebra which cover the set E, i.e.

µ∗(E) = inf{
∞∑

n=1

µ0(An);E ⊂ ∪∞n=1An, An ∈ F0}.

Notice that the outer measure of a set in the algebra is the measure itself
µ∗(E) = µ0(E) if E ∈ F0. Therefore, this outer measure is countably additive
when restricted to the algebra F0. Generally, however, this outer measure is only
subadditive; the measure of a countable union of disjoint events is less than or
equal to the sum of the measures of the events. If it were additive, then it
would satisfy the property;

µ∗(E) = µ∗(EQ) + µ∗(EQc). (2.1)

However, let us consider the class F of all sets Q for which the above equation
(2.1) does hold. The rest of the work in the proof consists of showing that the
class of sets F forms a sigma algebra and when restricted to this sigma algebra,
the outer measure µ∗ is countably additive, so is a measure.

The last condition in the extension theorem can be replaced by a weaker
condition, that the measure is sigma-finite. In other words it suffices that we
can write the whole space as a countable union of subsets Ai ( i.e. Ω = ∪∞i=1Ai)
each of which has finite measure µ0(Ai) < ∞. Lebesgue measure on the real
line is sigma-finite but not finite.

Example 33 Lebesgue measure Define F0 to be the set of all finite unions of
intervals (open, closed or half and half) such as

A = (a0, a1] ∪ (a2, a3] ∪ ... ∪ (an−1, an]

where −∞ ≤ a0 ≤ ... ≤ an ≤ ∞. For A of the above form, define µ(A) =∑
i(a2i+1−a2i). Check that this is well-defined. Then there is a unique extension

of this measure to all B , the Borel subsets of R. This is called the Lebesgue
measure.
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It should be noted that in the proof of Theorem 11, the sigma algebra F
may in fact be a larger sigma algebra than σ(F0) generated by the algebra. For
example in the case of measures on the real line, we may take F0 to be all finite
union of intervals. In this case σ(F0) is the class of all Borel subsets of the
real line but it is easy to check that F is a larger sigma algebra having the
property of completeness, i.e. for any A ∈ F such that µ(A) = 0, all subsets
of A are also in F (and of course also have measure 0).

Example 34 (the Cantor set) This example is useful for dispelling the notions
that closed sets must either countain intervals or consist of a countable selection
of points. Let Ω = [0, 1] with P Lebesgue measure. Define A1 = Ω\{( 13 , 23 )}
and A2 = A\{( 19 , 29 )∪ ( 79 ,

8
9 )} etc. In each case, Anis obtained from An−1 by

deleting the open interval in the middle third of each interval in An−1. Define
A = ∩∞n=1An. Then A is a closed, uncountable set such that P (A) = 0 and A
contains no nondegenerate intervals.

2.4 Independence

Definition 35 (Independent Events) A family of events C is (mutually) in-
dependent if

P (Aλ1
∩Aλ2

....Aλn) = P (Aλ1
)P (Aλ2

)....P (Aλn) (*)

for all n, Aλi ∈ C and for distinct λi.

Properties: Independent Events

1. A,B independent implies A,Bc independent.

2. Any Aλ can be replaced by Ac
λ in equation (*).

Definition 36 Families of sigma-algebras {Fλ; λ ∈ Λ} are independent if
for any Aλ ∈ Fλ , the family of events{Aλ;λ ∈ Λ} are mutually independent.

Example 37 (Pairwise independence does not imply independence) Two fair
coins are tossed. Let A = first coin is heads, B = second coin is heads,
C = we obtain exactly one heads. Then A is independent of B and A is
independent of C but A, B, C are not mutually independent.

2.4.1 The Borel Cantelli Lemmas

Clearly if events are individually too small, then there little or no probability
that their lim sup will occur, i.e. that they will occur infinitely often.

Lemma 38 For an arbitrary sequence of events An ,
∑

n P (An) <∞ implies
P [An i.o.] = 0.
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Proof. Notice that

P (∩∞n=1 ∪∞m=n Am) ≤ P (∪∞m=nAm) ≤
∞∑

m=n

P (Am) for each n = 1, 2, .....

For any ε > 0, since the series
∑∞

m=1 P (Am) converges we can find a value
of n sufficiently large that

∑∞
m=n P (Am) < ε. Therefore for every positive ε,

P (∩∞n=1 ∪∞m=n Am) ≤ ε and so it must equal 0.
The converse of this theorem is false without some additional conditions.

For example suppose that Ω is the unit interval and the measure is Lebesgue.
Define An = [0, 1n ], n = 1, 2, ..... Now although

∑
P (An) = ∞, it is still true

that P (An i.o.) = 0. However if we add the condition that the events are
independent, we do have a converse as in the following.

Lemma 39 For a sequence of independent events An,
∑

n P (An) = ∞ im-
plies P [An i.o] = 1.

Proof. We need to show that P (Ac
n a.b.f.o.) = 0. This is

P (∪∞n=1 ∩∞m=n A
c
m) ≤

∞∑

n=1

P (∩∞m=nA
c
m)

≤
∞∑

n=1

Nn∏

m=n

(1− P (Am)) for any sequence Nn

≤
∞∑

n=1

exp{−
Nn∑

m=n

P (Am)}

where we have used the inequality (1 − P (Am)) ≤ exp(−P (Am)). Now if
the series

∑∞
m=1 P (Am) diverges to ∞ then we can choose the sequence Nn

so that
∑Nn

m=n P (Am) > nln2 − lnε in which case the right hand side above is
less than or equal to ε. Since this holds for arbitrary ε > 0, this verifies that
P (∪∞n=1 ∩∞m=n A

c
m) = 0.

Definition 40 (Almost surely)A statement S about the points in Ω holds
almost surely(a.s.) or with probability one if the set of ω such that the statement
holds has probability one. Thus Lemma 13 above states that An occurs infinitely
often almost surely (a.s.) and Lemma 12 that Ac

n occurs all but finitely often
(a.s.).

2.4.2 Kolmogorov’s Zero-one law

For independent events An, put

F = ∩∞n=1σ(An, An+1, ...)

(call this the tail sigma-algebra). Events that are determined by the sequence
{A1, A2, ...} but not by a finite number such as {A1, ...AN} are in the tail
sigma-algebra. This includes events such as [lim sup An], [lim inf An], [lim sup
A2n ], etc.
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Theorem 41 (zero-one law) Any event in the tail sigma-algebra F has
probability either 0 or 1.

Proof. Define Fn = σ(A1, A2, ..., An) and suppose B ∈ Fn for fixed n. Then
B is independent of F because it is independent of all sets in the larger sigma
algebra σ(An+1, An+2, ...). This means that every set A ∈ F is independent
of every set in each Fn and therefore A is independent of each member of the
Boolean Algebra of sets ∪∞n=1Fn. Therefore A is independent of σ( ∪∞n=1Fn).
But since

∩∞n=1σ(An, Xn+1, ...) ⊂ σ(∪∞n=1Fn)

A is independent of itself, implying it has probability either 0 or 1 (see problem
18).

2.5 Problems.

1. Give an example of a family of subsets of the set {1, 2, 3, 4} that is a
π−system but NOT a Boolean algebra of sets.

2. Consider the space <2and define the family of all rectangles with sides
parallel to the axes. Show that this family is a π-system.

3. Let Ω be the real line and let Fn be the sigma-algebra generated by the
subsets

[0, 1), [1, 2), ..., [n− 1, n)

Show that the sigma-algebras are nested in the sense that F1⊂ F2. How
do you know if a given set is in Fn? Show that ∪100n=1Fn is a sigma-algebra.

4. As above, let Ω be the real line and let Fn be the sigma-algebra
generated by the subsets

[0, 1), [1, 2), ..., [n− 1, n)

Show that ∪∞n=1 Fn is not a sigma-algebra.

5. How do we characterise the open subsets of the real line <? Show that the
Borel sigma algebra is also generated by all sets of the form (∞, x], x ∈ <.

6. For an arbitrary sequence of events Ak , give a formula for the event
Bk = [ the first of the Aj ’s to occur is Ak].

7. Write in set-theoretic terms the event that exactly two of the events
A1, A2, A3, A4, A5 occur.

8. Prove that if Ak is a nested sequence of sets (increasing or decreas-
ing), then lim supAn = lim inf An and both have probability equal to
limnP (An).
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9. Prove Bayes Rule:

If P (∪nBn) = 1 for a disjoint finite or countable sequence of events
Bn all with positive probability, then

P (Bk|A) =
P (A|Bk)P (Bk)∑
n P (A|Bn)P (Bn)

10. Prove that if A1, ...., An are independent events, then the same is true with
any number of Ai replaced by their complement Ac

i . This really implies
therefore that any selection of one set from each of σ(A1), σ(A2), . . . σ(An)
is a set of mutually independent events.

11. Find an example such that A,B are independent and B,C are indepen-
dent but P (A ∪B|C) 6= P (A ∪B) .

12. Prove that for any sequence of events An ,

P (lim inf An) ≤ lim inf P (An)

13. Prove the multiplication rule. That if A1 . . . An are arbitrary events,

P (A1A2 . . . An) = P (A1)P (A2|A1)P (A3|A2A1) . . . P (An|A1A2 . . . An−1)

14. Consider the unit interval with Lebesgue measure defined on the Borel
subsets. For any point x in the interval, let 0.x1x2x3 . . . denote its
decimal expansion (terminating wherever possible) and suppose A is the
set of all points x such that xi 6= 5, i = 1, 2, . . ..

(a) Prove that the set A is Borel measurable and find the measure of the
set A.

(b) Is the set A countable?

15. Give an example of a sequence of sets An, n = 1, 2, ... such that lim sup An =
lim inf An but the sequence is not nested. Prove in this case that
P (lim sup An) = limP (An).

16. In a given probability space, every pair of distinct events are independent
so if B 6= A , then

P (A ∩B) = P (A)P (B)

What values for the probabilities P (A) are possible? Under what circum-
stances is it possible that

P (A ∩B) ≤ P (A)P (B)

for all A 6= B?

17. Prove that a λ−system does not need to be closed under general unions or
finite intersections. For example let F consist of all subsets of {1, 2, 3, 4}
which have either 0 or 2, or 4 elements.
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18. Suppose F0 is a Boolean algebra of sets and A ∈ σ(F0) has the property
that A is independent of every set in F0. Prove that P (A) = 0 or 1.

19. Prove: If F is both a π-system and a λ-system then it is a sigma-field.

20. Is the family consissting of all countable subsets of a space Ω and their
complements a sigma-algebra?

21. Find lim supAn and lim inf An where An = ( 1n ,
2
3 − 1

n ), n = 1, 3, 5, ....
and An = ( 13 − 1

n , 1 +
1
n ), n = 2, 4, 6, ....

22. Consider a measure µ0 defined on a Boolean algebra of sets F0 satisfying
the conditions of Theorem 11. For simplicity assume that µ0(Ω) = 1.
Consider the class of sets F defined by

F = {A ⊂ Ω;µ∗(AE) + µ∗(AcE) = µ∗(E) for all E ⊂ Ω}.

Prove that F is a Boolean algebra.

23. Consider F as in Problem 22. Prove that if A1, A2, .... disjoint subsets of F
then µ∗(∪∞i=1Ai) =

∑∞
i=1 µ

∗(Ai) so that this outer measure is countably
additive.

24. Consider F as in Problem 22. Prove that F is a sigma-algebra.

25. Consider F as in Problem 22. Prove that if A ∈ F0 then µ∗(A) = µ(A).

26. Prove or disprove: the family consisting of all finite subsets of a space Ω
and their complements is a sigma-algebra.

27. Prove or disprove: the family consisting of all countable subsets of a space
Ω and their complements is a sigma-algebra.

28. Find two sigma-algebras such that their union is not a sigma algebra.

29. Suppose P and Q are two probability measures both defined on the same
sample space Ω and sigma algebra F . Suppose that P (A) = Q(A) for
all events A ∈ F such that P (A) ≤ 1

2 . Prove that P (A) = Q(A) for all
events A. Show by counterexample that this statement is not true if we
replace the condition P (A) ≤ 1

2 by P (A) < 1
2 .



Chapter 3

Random Variables and
Measurable Functions.

3.1 Measurability

Definition 42 (Measurable function) Let f be a function from a measurable
space (Ω,F) into the real numbers. We say that the function is measurable if
for each Borel set B ∈ B , the set {ω; f(ω) ∈ B} ∈ F .

Definition 43 ( random variable) A random variable X is a measurable func-
tion from a probability space (Ω,F ,P) into the real numbers <.

Definition 44 (Indicator random variables) For an arbitrary set A ∈ F define
IA(ω) = 1 if ω ∈ A and 0 otherwise. This is called an indicator random
variable.

Definition 45 (Simple Random variables) Consider events Ai ∈ F , i = 1, 2, 3, ..., n
such that ∪n

i=1 Ai = Ω. Define X(ω) =
∑n

i=1 ciIAi(ω) where ci ∈ <. Then
X is measurable and is consequently a random variable. We normally assume
that the sets Ai are disjoint. Because this is a random variable which can
take only finitely many different values, then it is called simple and any random
variable taking only finitely many possible values can be written in this form.

Example 46 (binomial tree) A stock, presently worth $20, can increase each
day by $1 or decrease by $1. We observe the process for a total of 5 days. Define
X to be the value of the stock at the end of five days. Describe (Ω,F) and
the function X(ω) . Define another random variable Y to be the value of the
stock after 4 days.

Define X−1(B) = {ω;X(ω) ∈ B}. We will also sometimes denote this event
[X ∈ B] . In the above example, define the events X−1(B) and Y −1(B) where
B = [20,∞).

13
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Then we have the following properties.
For any Borel sets Bn ⊂ <, and any random variable X,

1. X−1(∪nBn) = ∪nX
−1(Bn)

2. X−1(∩nBn) = ∩nX
−1(Bn)

3. [X−1(B)]c = X−1(Bc)

These three properties together imply that for any class of sets C, X−1(σ(C)) =
σ(X−1(C)). So X is measurable if, for all x, {ω;X(ω) ≤ x} ∈ F (see Theorem
16 and Problem 3.16).

BEWARE: The fact that we use notation X−1 does not imply that the
function X has an inverse in the usual sense. For example, if X(ω) = sin(ω)
for ω ∈ <, then what is X−1([.5, 1])?

Theorem 47 (combining random variables) Suppose Xi, i = 1, 2, . . . are all
(measurable) random variables. Then so are

1. X1 +X2 +X3 + . . . Xn

2. X2
1

3. cX1 for any c ∈ R

4. X1X2

5. inf {Xn;n ≥ 1}

6. lim inf Xn

7. sup{Xn;n ≥ 1}

8. lim supn→∞Xn

Proof. For 1. notice that [X1 + X2 > x] if and only if there is a rational
number q in the interval X1 > q > x−X2 so that [X1 > q] and [X2 > x− q].
In other words

[X1+X2 > x] = ∪q[X1 > q]∩[X2 > x−q]where the union is over all rational numbers q.

For 2, note that for x ≥ 0,

[X2
1 ≤ x] = [X1 ≥ 0] ∩ [X1 ≤

√
x] ∪ [X1 < 0] ∩ [X1 ≥ −

√
x].

For 3, in the case c > 0, notice that

[cX1 ≤ x] = [X1 ≤
x

c
].

Finally 4 follows from properties 1, 2 and 3 since

X1X2 =
1

2
{(X1 +X2)

2 −X2
1 −X2

2}
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For 5. note that [infXn ≥ x] = ∩∞n=1[Xn ≥ x].
For 6. note that [lim inf Xn ≥ x] = [Xn > x − 1/m a.b.f.o.] for all

m = 1, 2, ... so

[lim infXn ≥ x] = ∩∞m=1 lim inf[Xn > x− 1/m].

The remaining two properties follow by replacing Xn by −Xn.

Definition 48 (sigma-algebra generated by random variables) For X a random
variable, define σ(X) = {X−1(B);B ∈ B}.

σ(X) is the smallest sigma algebra F such that X is a measurable function
into <. The fact that it is a sigma-algebra follows from Theorem 16. Similarly,
for a set of random variables X1, X2, . . . Xn , the sigma algebra σ(X1, . . . Xn)
generated by these is the smallest sigma algebra such that all Xi are measurable.

Theorem 49 σ(X) is a sigma-algebra and is the same as σ{[X ≤ x], x ∈ <}.

Definition 50 A Borel measurable function f from < → < is a function such
that f−1(B) ∈ B for all B ∈ B.

For example if a function f(x) is a continuous function from a subset of <
into a subset of < then it is Borel measurable.

Theorem 51 Suppose fi, i = 1, 2, . . . are all Borel measurable functions.
Then so are

1. f1 + f2 + f3 + . . . fn

2. f21

3. cf1 for any real number c.

4. f1f2

5. inf{fn;n ≥ 1}

6. lim inf fn

7. sup{fn;n ≥ 1}

8. limn→∞ fn

Theorem 52 If X and Y are both random variables, then Y can be written as
a Borel measurable function of X, i.e. Y = f(X) for some Borel measurable f
if and only if

σ(Y ) ⊂ σ(X)
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Proof. Suppose Y = f(X). Then for an arbitrary Borel set B, [Y ∈ B] =
[f(X) ∈ B] = [X ∈ f−1(B)] = [X ∈ B2] for Borel set B2 ∈ B. This shows that
σ(Y ) ⊂ σ(X).

For the converse, we assume that σ(Y ) ⊂ σ(X) and we wish to find a
Borel measurable function f such that Y = f(X). For fixed n consider the set
Am,n = {ω;m2−n ≤ Y (ω) < (m + 1)2−n} for m = 0,±1, .... Since this set is
in σ(Y ) it is also in σ(X) and therefore can be written as {ω;X(ω) ∈ Bm,n}
for some Borel subset Bm,n of the real line. Consider the function fn(x) =∑

mm2−nI(x ∈ Bm,n). Clearly this function is defined so that fn(X) is close
to Y, and indeed is within 1

2n units of Y. The function we seek is obtained by
taking the limit

f(x) = lim
n→∞

fn(x).

We require two results, first that the limit exists and second that the limit
satisfies the property f(X) = Y. Convergence of the sequence follows from the
fact that for each x, the sequence fn(x) is monotonically increasing (this is
Problem 22). The fact that Y = f(X) follows easily since for each n, fn(X) ≤
Y ≤ fn(X) + 1

2n . Taking limits as n→∞ gives f(X) ≤ Y ≤ f(X).

Example 53 Consider Ω = [0, 1] with Lebesgue measure and define a ran-
dom variable X(ω) = a1, a2, a3 (any three distinct real numbers) for ω ∈
[0, 1/4], (1/4, 1/2], (1/2, 1] respectively. Find σ(X). Now consider a random
variable Y such that Y (ω) = 0 or 1 as ω ∈ [0, 1/2], (1/2, 1] respectively. Verify
that σ(Y ) ⊂ σ(X) and that we can write Y = f(X) for some Borel measurable
function f(.).

3.2 Cumulative Distribution Functions

Definition 54 The cumulative distribution function (c.d.f.) of a random vari-
able X is defined to be the function F (x) = P [X ≤ x], for x ∈ <. Similarly, if
µ is a measure on <, then the cumulative distribution function is defined to be
F (x) = µ(−∞, x] . Note in the latter case, the function may take the value ∞.

Theorem 55 ( Properties of the Cumulative Distribution Function)

1. A c.d.f. F (x) is non-decreasing. i.e. F (y) ≥ F (x) whenever y ≥ x.

2. F (x)→ 0, as x→ −∞.

3. When F (x) is the c.d.f. of a random variable, F (x)→ 1, as x→∞.

4. F (x) is right continuous. i.e. F (x) = limF (x+ h) as h decreases to 0.

Proof.

1. If x ≤ y then X ≤ x implies X ≤ y or in set theoretic terms [X ≤ x] ⊂
[X ≤ y]. Therefore P (X ≤ x) ≤ P (X ≤ y).
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2. If X is a real-valued random variable then [X = −∞] = ϕ the empty set.
Therefore for any sequence xn decreasing to −∞,

limF (xn) = limP (X ≤ xn)

= P (∩∞n=1[X ≤ xn]) (since the sequence is nested)

= P (ϕ) = 0

3. Again if X is a real-valued random variable then [X < ∞] = Ω and for
any sequence xn increasing to ∞,

limF (xn) = limP (X ≤ xn)

= P (∪∞n=1[X ≤ xn]) (since the sequence is nested)

= P (Ω) = 1.

4. For any sequence hn decreasing to 0,

limF (x+ hn) = limP (X ≤ x+ hn)

= P (∩∞n=1[X ≤ x+ hn]) (since the sequence is nested)

= P (X ≤ x) = F (x)

Theorem 56 (existence of limits) Any bounded non-decreasing function has at
most countably many discontinuities and possesses limits from both the right
and the left. In particular this holds for cumulative distribution functions.

Suppose we denote the limit of F (x) from the left by F (x−) = limhF (x−h)
as h decreases to 0. Then P [X < x] = F (x−) and P [X = x] = F (x)−F (x−),
the jump in the c.d.f. at the point x.

Definition 57 Let xi be any sequence of real numbers and pi a sequence of
non-negative numbers such that

∑
i pi = 1. Define

F (x) =
∑

{i;xi≤x}
pi. (3.1)

This is the c.d.f. of a distribution which takes each value xi with probability
pi. A discrete distribution is one with for which there is a countable set S with
P [X ∈ S] = 1. Any discrete distribution has cumulative distribution function
of the form (3.1).

Theorem 58 If F (x) satisfies properties 1-4 of Theorem 19, then there exists a
probability space (Ω,F , P ) and a random variable X defined on this probability
space such that F is the c.d.f. of X.
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Proof. We define the probability space to be Ω = (0, 1) with F the
Borel sigma algebra of subsets of the unit interval and P the Borel measure.
Define X(ω) = sup{z;F (z) < ω}. Notice that for any c , X(ω) > c implies
ω > F (c) . On the other hand if ω > F (c) then since F is right continuous,
for some ε > 0, ω > F (c+ ε) and this in turn implies that X(ω) ≥ c+ ε > c.
It follows that X(ω) > c if and only if ω > F (c) . Therefore P [X(ω) > c] =
P [ω > F (c)] = 1 − F (c) and so F is the cumulative distribution function of
X.

3.3 Problems

1. If Ω = [0, 1] and P is Lebesgue measure, find X−1(C) where C = [0, 12 )
and X(ω) = ω2.

2. Define Ω = {1, 2, 3, 4} and the sigma algebra F = {φ,Ω, {1}, {2, 3, 4}}.
Describe all random variables that are measurable on the probability space
(Ω,F).

3. Let Ω = {−2,−1, 0, 1, 2} and consider a random variable defined by
X(ω) = ω2. Find σ(X),the sigma algebra generated by X.Repeat if
X(ω) = |ω| or if X(ω) = ω + 1.

4. Find two different random variables defined on the space Ω = [0, 1] with
Lebesgue measure which have exactly the same distribution. Can you
arrange that these two random variables are independent of one another?

5. If Xi; i = 1, 2, ... are random variables, prove that maxi≤nXi is a
random variables and that limsup 1n

∑
iXi is a random variable.

6. If Xi; i = 1, 2, ... are random variables, prove that X1X2...Xn is a
random variable.

7. Let Ω denote the set of all outcomes when tossing an unbiased coin three
times. Describe the probability space and the random variable X =
the number of heads observed. Find the cumulative distribution function
P [X ≤ x].

8. A number x is called a point of increase of a distribution function F if
F (x + ε) − F (x − ε) > 0 for all ε > 0 . Construct a discrete distribu-
tion function such that every real number is a point of increase. (Hint:
Can you define a discrete distribution supported on the set of all rational
numbers?).

9. Consider a stock price process which goes up or down by a constant factor
(e.g. St+1 = Stu or Std (where u > 1 and d < 1) with probabilities p
and 1− p respectively (based on the outcome of the toss of a biased coin).
Suppose we are interested in the path of the stock price from time t = 0
to time t = 5. What is a suitable probability space? What is σ(S3)?
What are the advantages of requiring that d = 1/u?
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10. Using a Uniform random variable on the interval [0, 1], find a random
variable X with distribution F (x) = 1 − pbxc,x > 0, where bxc denotes
the floor or integer part of. Repeat with F (x) = 1− e−λx, x > 0, λ > 0.

11. Suppose a coin with probability p of heads is tossed repeatedly. Let
Ak be the event that a sequence of k or more consecutive heads occurs
amongst tosses numbered 2k, 2k+1, . . . , 2k+1−1. Prove that P [Ak i.o.] =
1 if p ≥ 1/2 and otherwise it is 0.

(Hint: Let Ei be the event that there are k consecutive heads beginning
at toss numbered 2k + (i− 1)k and use the inclusion-exclusion formula.)

12. The Hypergeometric Distribution Suppose we have a collection (the popu-
lation) of N objects which can be classified into two groups S or F
where there are r of the former and N−r of the latter. Suppose we take
a random sample of n items without replacement from the population.
Show the probability that we obtain exactly x S’s is

f(x) = P [X = x] =

(
r
x

)(
N−r
n−x

)
(
N
n

) , x = 0, 1, . . .

Show in addition that as N →∞ in such a way that r/N → p for some
parameter 0 < p < 1 , this probability function approaches that of the
Binomial Distribution

f(x) = P [X = x] =

(
n

x

)
px(1− p)n−x, x = 0, 1, . . . n

13. The Negative Binomial distribution

The binomial distribution is generated by assuming that we repeated trials
a fixed number n of times and then counted the total number of successes
X in those n trials. Suppose we decide in advance that we wish a fixed
number ( k ) of successes instead, and sample repeatedly until we obtain
exactly this number. Then the number of trials X is random. Show that
the probability function is:

f(x) = P [X = x] =

(
x− 1

k − 1

)
pk(1− p)x−k, x = k, k + 1, . . .

14. Let g(u) be a cumulative distribution function on [0, 1] and F (x) be the
cumulative distribution function of a random variable X. Show that we
can define a deformed cumulative distribution function such that G(x) =
g(F (x)) at at all continuity points of g(F (x)). Describe the effect of this
transformation when

g(u) = Φ
(
Φ−1(u)− α

)

for Φ the standard normal cumulative distribution function. Take a spe-
cial case in which F corresponds to the N(2, 1) cumulative distribution
function.
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15. Show that if X has a continuous c.d.f. F (x) then the random variable
F (X) has a uniform distribution on the interval [0, 1].

16. Show that if C is a class of sets which generates the Borel sigma algebra
in R and X is a random variable then σ(X) is generated by the class of
sets

{X−1(A);A ∈ C}.

17. Suppose that X1, X2, ....are independent Normal(0,1) random variables
and Sn = X1 +X2 + ... +Xn. Use the Borel Cantelli Lemma to prove
the strong law of large numbers for normal random variables. i.e. prove
that for and ε > 0,

P [Sn > nε i.o.] = 0.

Note: you may use the fact that if Φ(x) and φ(x) denote the standard
normal cumulative distribution function and probability density function
respectively, 1 − Φ(x) ≤ Cxφ(x) for some constant C. Is it true that
P [Sn >

√
nε i.o.] = 0?

18. Show that the following are equivalent:

(a) P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) for all x, y

(b) P (X ∈ A, Y ∈ B) = P (X ∈ A)P (X ∈ B) for all Borel subsets of
the real numbers A,B.

19. Let X and Y be independent random variables. Show that for any Borel
measurable functions f, g on R, the random variables f(X) and g(Y )
are independent.

20. Show that if A is an uncountable set of non-negative real numbers, then
there is a sequence of elements of A, a1, a2, ... such that

∑∞
i=1 ai =∞.

21. Mrs Jones made a rhubarb crumble pie. While she is away doing heart
bypass surgery on the King of Tonga, her son William (graduate student
in Stat-Finance) comes home and eats a random fraction X of the pie.
Subsequently her daughter Wilhelmina (PhD student in Stat-Bio) returns
and eats a random fraction Y of the remainder. When she comes home,
she notices that more than half of the pie is gone. If one person eats
more than a half of a rhubard-crumble pie, the results are a digestive
catastrophe. What is the probability of such a catastrophe if X and Y
are independent uniform on [0, 1]?

22. Suppose for random variables Y and X, σ(Y ) ⊂ σ(X). Define sets by

Am,n = {ω;m2−n ≤ Y (ω) < (m+ 1)2−n for m = 0,±1, ...

and define a function fn by

fn(x) =
∑

m

m2−2I(x ∈ Bm,n)
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where

[X ∈ Bm,n] = Am,n.

Prove that the sequence of functions fn is non-decreasing in n.

23. Let (Ω, F, P ) be the unit interval [0, 1] together with the Borel subsets
and Borel measure. Give an example of a function from [0, 1] into R which
is NOT a random variable.

24. Let (Ω, F, P ) be the unit interval [0, 1] together with the Borel subsets
and Borel measure. Let 0 ≤ a < c < c < d ≤ 1 be arbitrary real numbers.
Give and example of a sequence of events An, n = 1, 2, ... such that the
following all hold:

P (lim inf An) = a

lim inf P (An) = b

lim supP (An) = c

P (lim supAn) = d

25. Let An, n = 1, 2, ... be a sequence of events such that Ai and Aj are
independent whenever

|i− j| ≥ 2

and
∑

n P (An) =∞. Prove that

P (lim supAn) = 1

26. For each of the functions below find the smallest sigma-algebra for which
the function is a random variable. Ω = {−2,−2, 0, 1, 2} and

(a) X(ω) = ω2

(b) X(ω) = ω + 1

(c) X(ω) = |ω|

27. Let Ω = [0, 1] with the sigma-algebra F of Borel subsets B contained in
this unit interval which have the property that B = 1−B.

(a) Is X(ω) = ω a random variable with respect to this sigma-algebra?

(b) Is X(ω) = |ω − 1
2 | a random variable with respect to this sigma-

algebra?

28. Suppose Ω is the unit square in two dimensions together with Lebesgue
measure and for each ω ∈ Ω, we define a random variable X(ω) = mini-
mum distance to an edge of the square. Find the cumulative distribution
function of X and its derivative.
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29. Suppose that X and Y are two random variables on the same probability
space with joint distribution

P (X = m,Y = n) =

{
1

2m+1 if m ≥ n
0 if m < n

.

Find the marginal cumulative distribution functions of X and Y.



Chapter 4

Integration

4.1 Great Expections

An indicator random variable IA takes two values, the value 1 with probability
P (A) and the value 0 otherwise. Its expected value, or average over many trials
would therefore be 0(1 − P (A)) + 1P (A) = P (A). This is the simplest case
of an integral or expectation. It is also the basic building block from which
expected value in general (or the Lebesgue integral) is constructed. We begin,
however, with an example illustrating the problems associated with the Rieman
integral, usually defined by approximating the integral with inner and outer
sums of rectangles.

Example 59 So what’s so wrong with the Riemann integral anyway? Let
f(x) = 1 for x irrational and in the interval [0, 1] , otherwise f(x) = 0.

What is the Riemann integral
∫ 1
0
f(x)dx? What should this integral be?

Recall that a simple random variable takes only finitely many possible val-
ues, say c1, ....cn on sets A1, ..., An in a partition of the probability space.
The definition of the integral or expected value for indicator random variables
together with the additive properties expected of integrals leads to only one
possible definition of integral for simple random variables:

Definition 60 (Expectation of simple random Variables) A simple random vari-
able can be written in the form X =

∑n
i=1 ciIAi . In this case, we define

E(X) =
∑n

i=1 ciP (Ai) . Note: we must show that this is well-defined; i.e. that
if there are two such representations of the same random variable X then both
lead to the same value of E(X).

4.1.1 Properties of the Expected Value for Simple Ran-
dom Variables

Theorem 61 For simple random variables X, Y ,

23
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1. X(ω) ≤ Y (ω) for all ω implies E(X) ≤ E(Y ).

2. For real numbers α, β, E(αX + βY ) = αE(X) + βE(Y ).

Proof. Suppose X =
∑

i ciIAi ≤
∑

j djIBj where Ai forms a disjoint
partition of the space Ω (i.e. are disjoint sets with ∪i Ai = Ω) and Bj also
forms a disjoint partition of the space. Then ci ≤ dj whenever AiBj 6= φ.
Therefore

E(X) =
∑

i

ciP (Ai) =
∑

i

ci
∑

j

P (AiBj)

≤
∑

i

∑

j

djP (AiBj) =
∑

j

djP (Bj) = E(Y )

For the second part, note that αX + βY is also a simple random variable
that can be written in the form

∑
i

∑
j(αci+βdj)IAiBj where the sets AiBj

form a disjoint partition of the sample space Ω. Now take expectation to verify
that this equals α

∑
i ciP (Ai) + β

∑
j djP (Bj).

4.1.2 Expectation of non-negative measurable random vari-
ables.

Suppose X is a non-negative random variable so that X(ω) ≥ 0 for all ω ∈ Ω.
Then we define

E(X) = sup{E(Y ); Y is simple and Y ≤ X}.

The supremum is well-defined, although it might be infinite. There should be
some concern, of course, as to whether this definition will differ for simple ran-
dom variables from the one listed previously, but this is resolved in property
1 below.

4.1.3 Some Properties of Expectation.

Assume X, Y are non-negative random variables. Then ;

1. If X =
∑

i ciIAi simple, then E(X) =
∑

i ciP (Ai).

2. If X(ω) ≤ Y (ω) for all ω, then E(X) ≤ E(Y ).

3. If Xn is increasing to X pointwise, then E(Xn) increases to E(X) (this
is usually called the Monotone Convergence Theorem).

4. For non-negative numbers α, and β,

E(αX + βY ) = αE(X) + βE(Y ).
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Proof. Proof of Properties.

1. If Z ≤ X and Z is a simple function, then E(Z) ≤ E(X) . It follows
that since X is a simple function and we take the supremum over all
simple functions Z , that this supremum is E(X).

2. Suppose Z is a simple function and Z ≤ X. Then Z ≤ Y . It follows
that the set of Z satisfying Z ≤ X is a subset of the set satisfying
Z ≤ Y and therefore sup{E(Z);Z is simple,Z ≤ X} ≤ sup{E(Z);Z is
simple,Z ≤ Y }.

3. Since Xn ≤ X if follows from property (2) that E(Xn) ≤ E(X). Similarly
E(Xn) is monotonically non-decreasing and it therefore converges. Thus
it converges to a limit satisfying

limE(Xn) ≤ E(X).

We will now show that lim E(Xn) ≥ E(X) and then conclude equality
holds above. Suppose ε > 0 is arbitrary and Y =

∑
i ciIAi where Y ≤ X

is a simple random variable. Define Bn = {ω;Xn(ω) ≥ (1 − ε)Y (ω)}
Note that as n → ∞ , this sequence of sets increases to a set containing
{ω;X(ω) ≥ (1 − ε/2)Y (ω)} and since X ≥ Y the latter is the whole
space Ω. Therefore,

E(Xn) ≥ E(XnIBn) ≥ (1− ε)E(Y IBn).

But
E(Y IBn) =

∑

i

ciP (AiBn)→
∑

i

ciP (Ai)

as n→∞. Therefore

limE(Xn) ≥ (1− ε)E(Y )

whenever Y is a simple function satisfying Y ≤ X. Note that the
supremum of the right hand side over all such Y is (1 − ε)E(X). We
have now shown that for any ε > 0 , limE(Xn) ≥ (1 − ε)E(X) and it
follows that this is true also as ε→ 0.

4. Take two sequences of simple random variables Xn increasing to X
and Yn increasing to Y . Assume α and β are non-negative. Then by
Property 2. of 4.1.1,

E(αXn + βYn) = αE(Xn) + βE(Yn)

By monotone convergence, the left side increases to the limit E(αX+βY )
while the right side increases to the limit αE(X) + βE(Y ). We leave the
more general case of a proof to later.
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Definition 62 (General Definition of Expected Value) For an arbitrary random
variable X , define X+ = max(X, 0), and X− = max(0,−X). Note that
X = X+−X−. Then we define E(X) = E(X+)−E(X−). This is well defined
even if one of E(X+) or E(X−) are equal to ∞ as long as both or not infinite
since the form ∞−∞ is meaningless.

Definition 63 (integrable) If both E(X+) < ∞ and E(X−) < ∞ then we say
X is integrable.

Notation;

E(X) =
∫
X(ω)dP

∫
A
X(ω)dP = E(XIA) for A ∈ F .

4.1.4 Further Properties of Expectation.

In the general case, expectation satisfies 1-4 of 4.1.3. above plus the the addi-
tional property:

5. If P (A) = 0,
∫
A
X(ω)dP = 0.

Proof. (property 5)
Suppose the non-negative random variable Z =

∑n
i=1 ciIBi is simple and

Z ≤ XIA. Then for any i, ciIBi ≤ XIA which implies either ci = 0 or Bi ⊂ A.
In the latter case, P (Bi) ≤ P (A) = 0. Therefore E(Z) =

∑n
i=1 ciP (Bi) = 0.

Since this holds for every simple random variable Z ≤ XIA it holds for the
supremum

E(XIA) = sup{E(Z);Z is simple, Z ≤ XIA} = 0.

Theorem 64 ( An integral is a measure) If X is non-negative r.v. and we
define µ(A) =

∫
A
X(ω)dP , then µ is a (countably additive) measure on F .

Proof. Note that by property 5 above, µ(ϕ) = 0 and since XIA ≥ 0,
E(XIA) ≥ 0 by property 2 of the integal. Note also that the set function µ is
finitely additive. In particular if A1 and A2 are disjoint events,

µ(A1 ∪A2) = E(XIA1∪A2
) = E(X(IA1

+ IA2
)) = µ(A1) + µ(A2).

This shows that the set function is additive. By induction we can easily prove
that it is finitely additive; that for disjoint sets Ai, i = 1, 2, ...

µ(∪n
i=1Ai) =

n∑

i=1

µ(Ai).
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To show that the set function is countably additive, define Bn = ∪n
i=1Ai. Notice

that the random variables XIBn form a non-decreasing sequence converging to
XIB where B = limn→∞Bn (recall that the limit of a nested sequence of sets
is well-defined and in this case equals the union). Therefore by the monotone
convergence theorem (property 3 above),

n∑

i=1

µ(Ai) = E(XIBn)→ E(XIB) = µ(∪∞i=1Ai).

Therefore, the set function is countably additive, i.e.

µ(∪∞i=1Ai) =
∞∑

i=1

µ(Ai).

Consequently the set function satisfies the conditions of a measure. If E(X) <
∞ then this measure is finite. Otherwise, if we define events Cn = [X ≤ n], then
notice that µ(Cn) ≤ n. Moreover, Ω = ∪nCn. This shows that the measure is
sigma-finite (i.e. it is the countable union of sets Cn each having finite measure).

Lemma 65 (Fatou’s lemma: limits of integrals) If Xn is a sequence of non-
negative r.v., ∫

[lim infXn]dP ≤ lim inf

∫
XndP

Proof. Define Yn(ω) = inf{m;m≥n}Xm(ω) . Note that Yn is a non-
decreasing sequence of random variables and limYn = lim inf Xn = X, say.
Therefore by monotone convergence, E(Yn) → E(X). Since Yn ≤ Xn for all
n ,

E(X) = limE(Yn) ≤ lim inf E(Xn).

Example 66 (convergence a.s. implies convergence in expectation?) It is pos-
sible for Xn(ω) → X(ω) for all ω but E(Xn) does not converge to E(X) .
Let Ω = (0, 1) and the probability measure be Lebesgue measure on the inter-
val. Define X(ω) = n if 0 < ω < 1/n and otherwise X(ω) = 0 . Then
Xn(ω)→ 0 for all ω but E(Xn) = 1 does not converge to the expected value
of the limit.

Theorem 67 (Lebesgue dominated convergence Theorem) If Xn(ω)→ X(ω)
for each ω, and there exists integrable Y with |Xn(ω)| ≤ Y (ω) for all n, ω,
then X is integrable and E(Xn)→ E(X).

(Note for future reference: the Lebesgue Dominated Convergence Theorem
can be proven under the more general condition that Xn converges in distri-
bution to X )
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Proof. Since Y ≥ |Xn| the random variables Y +Xn are non-negative.
Therefore by Fatou’s lemma,

E[lim inf(Y +Xn)] ≤ lim inf E(Y +Xn)

or E(Y )+E(X) ≤ E(Y )+lim inf E(Xn) or E(X) ≤ lim inf E(Xn) . Similarly,
applying the same argument to the random variables Y −Xn results in

E[lim inf(Y −Xn)] ≤ lim inf E(Y −Xn)

or E(Y )−E(X) ≤ E(Y )− lim supE(Xn) or

E(X) ≥ lim supE(Xn).

It follows that E(X) = limE(Xn).

4.2 The Lebesgue-Stieltjes Integral

Suppose g(x) is a Borel measurable function < → <. By this we mean that
{x; g(x) ∈ B} is a Borel set for each Borel set B ⊂ <. Suppose F (x) is a
Borel measurable function satisfying two of the conditions of 3.2.2, namely

1. F (x) is non-decreasing. i.e. F (x) ≥ F (y) whenever x ≥ y.

2. F (x) is right continuous. i.e. F (x) = limF (x+h) as h decreases to 0.

Notice that we can use F to define a measure µ on the real line; for example
the measure of the interval (a, b] we can take to be µ((a, b]) = F (b)−F (a). The
measure is extended from these intervals to all Borel sets in the usual way, by
first defining the measure on the algebra of finite unions of intervals, and then
extending this measure to the Borel sigma algebra generated by this algebra.
We will define

∫
g(x)dF (x) or

∫
g(x)dµ exactly as we did expected values in

section 4.1 but with the probability measure P replaced by µ and X(ω)
replaced by g(x) . In particular, for a simple function g(x) =

∑
i ciIAi(x), we

define
∫
g(x)dF =

∑
i ciµ(Ai) .

4.2.1 Integration of Borel measurable functions.

Definition 68 Suppose g(x) is a non-negative Borel measurable function so
that g(x) ≥ 0 for all x ∈ <. Then we define

∫
g(x)dµ = sup{

∫
h(x)dµ; h simple, h ≤ g}.

Definition 69 (General Definition: integral) As in Definitions 62 and 63, for
a general function f(x) we write f(x) = f+(x)− f−(x) where both f+ and
f− are non-negative functions. We then define

∫
fdµ =

∫
f+dµ −

∫
f−dµ

provided that this makes sense (i.e. is not of the form ∞−∞). Finally we say
that f is integrable if both f+ and f− have finite integrals, or equivalently, if∫
|f(x)|dµ <∞.
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4.2.2 Properties of integral

For arbitrary Borel measurable functions f(x), g(x),

1. f(x) ≤ g(x) for all x implies
∫
f(x)dµ ≤

∫
g(x)dµ.

2. For real numbers α, β,
∫
(αf + βg)dµ = α

∫
fdµ+ β

∫
gdµ.

3. If fn increasing to f , then
∫
fndµ increases to

∫
fdµ ( called the Mono-

tone Convergence Theorem).

The monotone convergence theorem holds even if the limiting function f is
not integrable, i.e. if

∫
fdµ = ∞. In this case it says that

∫
fndµ → ∞ as

n→∞.

Example 70 Consider a discrete function defined for non-negative constants
pj , j = 1, 2, ... and real numbers xj , j = 1, 2, ... by

F (x) =
∑

{j;xj≤x}
pj

Then ∫ ∞

−∞
g(x)dF =

∑

j

g(xj)pj .

If the constants pj are probabilities, i.e. if
∑

pj = 1, then this equals E[g(X)]
where X is a random variable having c.d.f. F .

Example 71 (completion of Borel sigma algebra) The Lebesgue measure λ is
generated by the function F (x) = x. Thus we define λ((a, b]) = b − a for all
a, b, and then extend this measure to a measure on all of the Borel sets. A
sigma-algebra L is complete with respect to Lebesgue measure λ if whenever
A ∈ L and λ(A) = 0 then every subset of A is also in L. The completion of
the Borel sigma algebra with respect to Lebesgue measure is called the Lebesgue
sigma algebra. The extension of the measure λ above to all of the sets in L is
called Lebesgue measure.

Definition 72 (absolutely continuous) A measure µ on < is absolutely con-
tinuous with respect to Lebesgue measure λ ( denoted µ << λ) if there is an
integrable function f(x) such that µ(B) =

∫
B
f(x)dλ for all Borel sets B.

The function f is called the density of the measure µ with respect to λ.

Intuitively, two measures µ, λ on the same measurable space (Ω,F) (not
necessarily the real line) satisfy µ << λ if the support of the measure λ in-
cludes the support of the measure µ. For a discrete space, the measure µ simply
reweights those points with non-zero probabilities under λ. For example if λ
represents the discrete uniform distribution on the set Ω = {1, 2, 3, ..., N} (so
that λ(B) is N−1×the number of integers in B ∩ {1, 2, 3, ..., N}) and f(x) = x,
then if µ(B) =

∫
B
f(x)dλ,we have µ(B) =

∑
x∈B∩{1,2,3,...,N} x. Note that the

measure µ assigns weights 1
N ,

2
N , ...1 to the points {1, 2, 3, ..., N} respectively.
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4.2.3 Notes on absolute continuity

The so-called continuous distributions such as the normal, gamma, exponential,
beta, chi-squared, student’s t, etc. studied in elementary statistics should have
been called absolutely continuous with respect to Lebesgue measure.

Theorem 73 (The Radon-Nykodym Theorem); For arbitrary measures µ and
λ defined on the same measure space, the two conditions below are equivalent:

1. µ is absolutely continuous with respect to λ so that there exists a function
f(x) such that

µ(B) =

∫

B

f(x)dλ

2. For all B, λ(B) = 0 implies µ(B) = 0.

The first condition above asserts the existence of a “density function” as
it is usually called in statistics but it is the second condition above that is
usually referred to as absolute continuity. The function f(x) is called the
Radon Nikodym derivative of µ w.r.t. λ. We sometimes write f = dµ

dλ but f is
not in general unique. Indeed there are many f(x) corresponding to a single µ,
i.e. many functions f satisfying µ(B) =

∫
B
f(x)dλ for all Borel B. However,

for any two such functions f1, f2, λ{x; f1(x) 6= f2(x)} = 0. This means that
f1 and f2 are equal almost everywhere (λ).

The so-called discrete distributions in statistics such as the binomial distri-
bution, the negative binomial, the geometric, the hypergeometric, the Poisson
or indeed any distribution concentrated on the integers is absolutely continuous
with respect to the counting measure λ(A) =number of integers in A.

If the measure induced by a c.d.f. F (x) is absolutely continuous with respect
to Lebsegue measure, then F (x) is a continuous function. However it is possible
that F (x) be a continuous function without the corresponding measure being
absolutely continuous with respect to Lebesgue measure.

Example 74 Consider F (x) to be the cumulative distribution of a random vari-
able uniformly distributed on the Cantor set. In other words, if Xi are indepen-
dent Bernoulli (1/2) random variables, define

X =

∞∑

i=1

2Xi

3i

and F (x) = P [X ≤ x]. Then it is not hard to see that the measure corre-
sponding to this cumulative distribution function is continuous but not absolutely
continuous with respect to Lebesgue measure. In fact if C is the Cantor set,
µ(C) = P (X ∈ C) = 1 but λ(C) = 0 so condition 2 of the Theorem above fails.
On the other hand the cumulative distribution function is a continuous function
because for any real number x ∈ [0, 1] we have

P [X = x] = 0.
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The measure µ(B) = P (X ∈ B) is an example of one that is singular with
respect to Lebesgue measure. This means in effect that the support of the two
measures µ and λ is non-overlapping.

Definition 75 Measures µ and λ defined on the same measurable space are
mutually singular if they have disjoint supports; i.e. if there are disjoint sets A
and Ac such that µ(A) = 0 and λ(Ac) = 0.

Proof. (Radon-Nykodym Theorem.) The fact that condition 1. implies
condition 2. is the result of 4.1.4 property 5. so we need only prove the reverse.
Assume both measures are defined on the measure space (Ω,F) and that for
all B ∈ F, λ(B) = 0 imples µ(B) = 0. Also assume for simplicity that both
measures are finite and so λ(Ω) < ∞, µ(Ω) < ∞. Define a class of measurable
functions C by

C = {g; g(x) ≥ 0,

∫

E

gdλ ≤ µ(E) for all E ∈ F}.

We wish to show that there is a function f ∈ C that is maximal in the sense
that ∫

Ω

fdλ = sup{
∫

Ω

gdλ; g ∈ C} =α, say.

and that this function has the properties we need. First, note that if two
functions g1, g2 ∈ C, then max(g1, g2) ∈ C. This is because we can write

∫

E

min(g1, g2)dλ =

∫

EA

g1dλ+

∫

EAc
g2dλ where A = {ω; g1(ω) > g2(ω)}

≤ µ(EA) + µ(EAc)

≤ µ(E)

Similarly the maximum of a finite number of elements of C is also in C.Suppose,
for each n, we choose gn such that

∫
Ω
gndλ ≥ α− 1

n . Then the sequence

fn = max(g1, ..., gn)

is an increasing sequence and by monotone convergence it converges to a function
f ∈ C for which

∫
Ω
fdλ = α. If we can show that α = µ(Ω) then the rest of

the proof is easy. Define a new measure by µs(E) = µ(E) −
∫
E
fdλ. Suppose

that there is a set A such that λ(A) > 0 and assume for the moment that the
measures µs, λ are not mutually singular. Then by problem 25 there exists
ε > 0 and a set A with λ(A) > 0 such that

ελ(E) ≤ µs(E)
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for all measurable sets E ⊂ A.Consequently for all E,

∫

E

(f + εIA)dλ =

∫

E

fdλ+ ελ(A ∩ E)

≤
∫

E

fdλ+ µs(A ∩ E)

≤
∫

E

fdλ+ µ(AE)−
∫

AE

fdλ

≤
∫

E\A
fdλ+ µ(AE)

≤ µ(E\A) + µ(AE) = µ(E).

In other words, f + εIA ∈ C. This contradicts the fact that f is maximal, since∫
Ω
(f + εIA)dλ = α + ελ(A) > α. Therefore, by contradiction, the measures

µsand λ must be mutually singular. This implies that there is a set B such
that µs(B) = 0 and λ(Bc) = 0. But since µ << λ, µ(Bc) = 0 and µs(B

c) ≤
µ(Bc) = 0 which shows that the measure µs is identically 0. This now shows
that

µ(E) =

∫

E

fdλ for all E, as was required.

Definition 76 Two measures µ and λ defined on the same measure space are
said to be equivalent if both µ << λ and λ << µ.

Two measures µ, λ on the same measurable space are equivalent if µ(A) = 0
if and only if λ(A) = 0 for all A.Intuitively this means that the two measures
share exactly the same support or that the measures are either both positive on
a given event or they are both zero an that event.

4.2.4 Distribution Types.

There are three different types of probability distributions, when expressed in
terms of the cumulative distribution function.

1. Discrete: For countable xn, pn, F (x) =
∑
{n;xn≤x} pn. The correspond-

ing measure has countably many atoms.

2. Continuous singular. F (x) is a continuous function but for some Borel set
B having Lebesgue measure zero, λ(B) = 0, we have P (X ∈ B) = 1. (
For example, the uniform distribution on the Cantor set is singular since
it is supported entirely by a set of Lebesgue measure 0 . We will later
denote P (X ∈ B) as obtained from its cumulative distribution function F
by
∫
B
F (dx)).
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3. Absolutely continuous (with respect to Lebesgue measure).

F (x) =

∫ x

−∞
f(x)dλ

for some function f called the probability density function.

There is a general result called the Lebesgue decomposition which asserts
that any any cumulative distribution function can be expressed as a mixture of
those of the above three types. In terms of measures, any sigma-finite measure
µ on the real line can be written

µ = µd + µac + µs,

the sum of a discrete measure µd, a measure µac absolutely continuous with
respect to Lebesgue measure and a measure µs that is continuous singular. For
a variety of reasons of dubious validity, statisticians concentrate on absolutely
continuous and discrete distributions, excluding, as a general rule, those that
are singular.

4.3 Moments and the Moment Generating Func-
tion

Many of the properties of a random variableX are determined from its moments.
The k′th moment of X is E(Xk). If the first moment µ = E(X), the k′th
central moment is E[(X −µ)k]. For example the variance is the second central
moment var(X) = σ2 = E[(X − µ)2]. We also define the skewness

E[(X − µ)3]

σ3

and the Kurtosis
E[(X − µ)4]

σ4
.

The normal distribution is often taken as the standard against which skewness
and kurtosis is measured and for the normal distribution (or any distribution
symmetric about its mean with third moments), skewness = 0 . Similarly for
the normal distribution kurtosis = 3 . Moments are often most easily obtained
from the moment generating function of a distribution. Thus if X has a given
c.d.f. F (x), the moment generating function is defined as

mX(t) = E[exp{Xt}] =
∫ ∞

−∞
extdF, t ∈ <.

Since this is the expected value of a non-negative quantity it is well-defined but
might, for some t, take the value ∞. The domain of the moment generating
function, the set of t for which this integral is finite, is often a proper subset of
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the real numbers. For example consider the moment generating function of an
exponential random variable with probability density function

f(x) =
1

4
exp(−x

4
), for x > 0.

The moments are easily extracted from the moment generating function since

mX(t) =

∞∑

j=0

tjE(Xj)

j!

provided that this series converges absolutely in an open neighbourhood of t = 0.
Differentating n times and then setting t = 0 recovers the moment, viz.

E(Xn) = m
(n)
X (0).

The moment generating function of the normal (µ, σ) distribution is m(t) =

exp{µt+ σ2t2

2 }.

Definition 77 (convex function) A function g(x) on an interval of the real
line is said to be convex if for every pair of points x, y in the interval, and
every point 0 < p < 1,

g(px+ (1− p)y) ≤ pg(x) + (1− p)g(y).

This can be restated as “ the graph of the function always lies below any chord”
or alternatively “ the function of a weighted average is less than the weighted
average of the function”. In view of the last statement, since expected value is
a form of weighted average, the following theorem is a natural one.

Theorem 78 (Jensen’s Inequality) If g(x) is a convex function and both X
and g(X) are integrable, then

g(EX) ≤ E[g(X)]

Proof. Let us denote the point (EX, g(EX)) by p0 = (x0, g0). Since g is
convex, it is not difficult to show that there exists a line l(x) through the point
p0 such that the graph of g lies on or above this line. In particular, with

l(x) = g0 + k(x− x0)

we have g(x) ≥ l(x) for all x. Therefore

E(g(X)) ≥ E(l(X)) = g0 + k(EX −EX) = g(E(X)),

thus proving Jensen’s inequality.
For example the functions g1(x) = x2 and g2(x) = etX , t > 0 are both

convex functions and so [E(X)]2 ≤ E[X2] and etEX ≤ E[etX ].
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4.4 Problems

1. Prove that a c.d.f F (x) can have at most a countable number of discon-
tinuities (i.e. points x such that F (x) > F (x−)).

2. A stock either increases or decreases by 5 % each day with probability p ,
each day’s movement independent of the preceding days. Find p so that
the expected rate of return matches that of a risk free bond whose return
is a constant r units per day. Give an expression for the probability
that the stock will more than double in price in 50 days. Use the normal
approximation to the Binomial distribution to estimate this probability
when r = .01%.

3. One of the fundamental principals of finance is the no-arbitrage principle,
which roughly states that all financial products should be priced in such
a way that it is impossible to earn a positive return with probability one.
To take a simple example, suppose a market allows you to purchase or
borrow any amount of a stock and an interest free bond, both initially
worth $1. It is known that at the end of the next time interval the stock
will either double or halve its value to either $2.00 or $0.50. Suppose you
own an option which pays you exactly $1.00 if the stock goes up, zero oth-
erwise. Construct a portfolio of stocks and bonds which is identical to this
option and thereby determine the value of the option. Note that its value
was determined without knowing the probabilities with which the stock
increased or decreased. Repeat this calculation if the bond pays interest r
per unit time. Note that the no-arbitrage principle generates probabilities
for the branches. Although these may not be the true probabilities with
which movements up or down occur, they should nevertheless be used in
valuing a derivative.

4. Suppose a stock moves in increments of ± 1 and Sn is the stock price
on day n so that Sn+1 = Sn ± 1. If we graph the possible values of Sn

as n = 0, 1, 2, . . . N we obtain a binomial tree. Assume on day n the
interest rate is rn so that 1 dollar invested on day n returns (1 + rn)
on day n + 1. Use the above no-arbitrage principle to determine the
probabilities of up and down movements throughout the binomial tree.
Use these probabilities in the case N = 6 to determine the initial value
of derivative that will pay SN − 14 if this is positive, and otherwise pay
0 asssuming Sn = 10. Assume constant interest rate rn = .01.

5. (A constructive definition of the integral) For a given non-negative random

variable X , define a simple random variable Xn =
∑n2n

i=1 ciIAi where

ci = (i− 1)/2n, Ai = [(i− 1)/2n ≤ X < i/2n], i < n2n,

and

An2n = [(n2n − 1)/2n ≤ X].
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Prove that Xn is an increasing function and that E(X) = lim E(Xn).
This is sometimes used as the definition of the integral.

6. Show that if X is integrable, then |E(X)| ≤ E(|X|). Similarly, show
|E(X)| ≤

√
E(|X|2) .

7. Suppose Xn is a sequence of random variables such that for some event
A with P (A) = 1 and for all ω ∈ A , Xn(ω) increases to X(ω) . Prove
that E(Xn) increases to E(X).

8. Show that if X, Y are two integrable random variables for which P [X 6=
Y ] = 0, then

∫
A
XdP =

∫
A
Y dP for all A ∈ F .

9. Show that if X ≥ 0 is integrable and X ≥ |Y | then Y is integrable.

10. Prove property 5, page 37: if P (A) = 0,
∫
A
X(ω)dP = 0.

11. IfX is non-negative r.v., µ(A) =
∫
A
X(ω)dP defines a (countably additive)

measure on F . (proved as Theorem 22)

12. Restate the theorems in section 4.1 for the Lebesgue-Stieltjes integral of
functions. Give simple conditions on the functions gn under which

lim

∫
gn(x)dλ =

∫
lim gn(x)dλ

13. Suppose X is a random variable with c.d.f. F (x) . Show that E(X)
as defined in section 4.1 is the same as

∫
xdF as defined in section 4.2.

14. Suppose X is a non-negative random variable. Show that E(X) =∫∞
0

(1 − F (x))dx. Why not use this as the definition of the (Lebesgue)
integral, since 1− F (x) is Riemann integrable?

15. Chebyshev’s inequality. Suppose that Xp is integrable for p ≥ 1. Then
show that for any constant a ,

P [|X − a| ≥ ε] ≤ E|X − a|p
εp

16. Is Chebyschev’s inequality sharp? That is can we find a random variable
X so that we have equality above, i.e. so that

P [|X − a| ≥ ε] =
E|X − a|p

εp

17. Show that if C is the class of all random variables defined on some proba-
bility space (say the unit interval with the Borel sigma algebra),

(a) if ε > 0, inf{P (|X| > ε);X ∈ C, E(X) = 0, var(X) = 1} = 0 and

(b) if y ≥ 1, inf{P (|X| > y);X ∈ C, E(X) = 1, var(X) = 1} = 0
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18. A random variable Z has the Standard normal distribution if its density
with respect to Lebesgue measure is given by

φ(x) =
1√
2π

e−x2/2.

Then the price of a very simple non-dividend paying stock at time T is
taken to be a random variable of the form

ST = S0exp{µT +
√
TσZ}

where µ = r − 1
2σ
2, r is the risk-free interest rate, σ the volatility or

standard deviation per unit time, and Z is a random variable having the
standard normal distribution.

(a) Find E(ST ). Explain your answer.

(b) Find E((ST−K)+) for a constant K. This is the price of a European
call option having strike price K. (Hint: Check that for for any
choice of numbers a, b, σ,

E(eσZ − eσa)+ = eσ
2/2H(a− σ)− eσaH(a)

where H(x) is P [Z > x]. )

19. Show that for any value of t > 0 and a random variable X with moment
generating function mX ,

P [X > c] ≤ e−tcmX(t)

20. A coin is tossed 5 times. Describe an appropriate probability space (Ω,F ,P).
Define random variables X =number of heads in first 3 tosses and Y =
min(5, number of tails before first head). Describe σ(X) and σ(X,Y ) and
show that σ(X) ⊂ σ(X,Y ). Determine the expected value and variance
of Y −X.

21. Suppose you hold 1 option on a stock whose price at time T (the expiry
date) is ST with distribution given by

ST = S0exp{µT +
√
TσZ}

as in Question 18. We assume that the value of this option E(ST−K)+ =
V (S0, T ) is a function of the time to expiry and the current value of the
stock. You wish also to hold −∆ units of the stock (∆ may be positive
or negative). Find the value of ∆ which minimizes the variance of the
change in the portfolio; i.e. minimizing

var[δV −∆δS].
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where δV is the change in the value of the option V (ST , 0) − V (S0, T )
and δS is the change in the value of the stock ST − S0.

Approximate δV by two terms of a Taylor series expansion δV =
∂

∂S0
V (S0, T )δS − ∂

∂T V (S0, T )T and find an approximate value for the
optimal choice of ∆. Suppose the linear approximation to δV is inade-
quate and we wish to use a quadratic approximation of the form

δV ≈ aT + bT (ST − EST ) + cT (S
2
T − ES2T )

Then show that the optimal value of ∆ is

∆ = bT + cT
√
V ar(ST ) Skewness(ST ).

22. Bernstein polynomials. If g(p) is a continuous function on [0, 1] , then we
may define Bn(p) = E[g(Xnp/n)] where Xnp ∼ Bin(n, p) . Show that
Bn(p)→ g(p) uniformly as p→∞. Note that the function Bn(p) is a
polynomial of degree n in p. This shows that any continuous function on
a finite interval can be approximated uniformly by a polynomial. (Hint: a
continuous function on a compact interval [0, 1] is uniformly continuous).

23. In 1948 in a fundamental paper, C.E. Shannon defines the notion of en-
tropy of a distribution as follows: Let X be a random variable with prob-
ability function or continuous probability density function f(x). Suppose
that the expectation H(f) = E{− log(f(X))} exists and is finite.

(a) Prove that if g is the probability function of some function h(X) of
a discrete random variable X, then H(g) ≤ H(f).

(b) Prove that H(f) ≥ 0.

24. Let µ be the measure on < induced by the Poisson distribution with pa-
rameter 2. In other words if pn = P [X = n] where X has this Poisson
distribution, define µ(A) =

∑{pn;n ∈ A} for every Borel set A ⊂ <. Let
λ be a similarly defined measure but with Poisson parameter 1. Show that
µ << λ and find a function f(x) such that

µ(B) =

∫

B

f(x)dλ (4.1)

for all Borel sets B. Is this function unique as a function on R? How
may it be modified while leaving property (4.1) unchanged?

25. Suppose two finite measures µ, λ defined on the same measurable space
are not mutually singular. Prove that there exists ε > 0 and a set A with
λ(A) > 0 such that

ελ(E) ≤ µ(E)

for all measurable sets E ⊂ A.Hint : Solve this in the following steps:
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(a) Consider the signed measure µ− n−1λ for each value of n = 1, 2, ....
You may assume that you can decompose the probability space into
disjoint sets A−n and A+n such that µ(B)−n−1λ(B) ≤ 0 or≥ 0 asB ⊂
A−n or B ⊂ A+n respectively (this is called the Hahn decomposition).
Define

M = ∪A+n
M c = ∩A−n .

Show that µ(M c) = 0.

(b) Show λ(M) > 0 and this implies λ(A+n ) > 0 for some n.

(c) Finally conclude that 1
nλ(E) ≤ µ(E) for all E ⊂ A+n .

26. (a) Find the moment generating function of a Binomial distribution.

(b) Show that if the moment generating function has sufficiently many
derivatives in a neighbourhood of the origin, we can use it to obtain the
moments of X as follows:

E(Xp) = m
(p)
X (0), p = 1, 2, . . .

Show that the moments of the standard normal distribution are given by

E(Z) = 0, E(Z2) = 1, E(Z3) = 0, E(Z4) = 3, E(Z2n) =
(2n)!

n!2n
.

What is E(Z2k)?

27. Prove using only the definition of the expected value for simple random
variables that if ∑

ciIAi =
∑

djIBj

then ∑
ciP (Ai) =

∑
djP (Bj)

28. Find an example of a random variable such that the k′th moment exists
i.e.

E(|X|k) <∞
but any higher moment does not, i.e.

E(|X|k+ε) =∞ for all ε > 0.

29. A city was designed entirely by probabilists so that traffic lights stay green
for random periods of time (say Xn, n = 1, 2, ...) and then red for random
periods (say Yn, n = 1, 2, ...). There is no amber. Both X and Y have an
exponential distribution with mean 1 minute and are independent. What
is your expected delay if you arrive at the light at a random point of time?
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30. Suppose that a random variable X has a moment generating function
mX(t) which is finite on an interval t ∈ [−ε, ε] for ε > 0. Prove rigorously
that

E(X) = m′X(0)

by interchanging a limit and an expected value.

31. A fair coin is tossed repeatedly. For each occurence of heads (say on
the k′th toss) you win 2

3k
, whereas for each occurrence of tails, you win

nothing. Let

X = total gain after infinitely many tosses.

(a) What is the distribution of X. Is it discrete, absolutely continuous,
or a mixture of the two?

(b) Find E(X).



Chapter 5

Joint Distributions and
Convergence

5.1 Product measures and Independence

In this section we duscuss the problem of constructing measures on a Cartesian
product space and the properties that these measures possess. Such a discussion
is essential if we wish to determine probabilities that depend on two or more
random variables; for example calculating P [|X−Y | > 1] for random variables
X, Y . First consider the analogous problem in <2. Given Lebesgue measure
λ on < how would we construct a similar measure, compatible with the notion
of area in two-dimensional Euclidean space? Clearly we can begin with the
measure of rectangles or indeed any product set of the form A×B = {(x, y);x ∈
A, y ∈ B} for arbitrary Borel sets A ⊂ <, B ⊂ <. Clearly the measure of a
product set µ(A×B) = λ(A)λ(B). This defines a measure for any product set
and by the extension theorem, since the product sets form a Boolean algebra,
we can extend this measure to the sigma algebra generated by the product sets.

More formally, suppose we are given two measure spaces (M,M, µ) and
(N,N , ν) . Define the product space to be the space consisting of pairs of objects,
one from each of M and N ,

Ω = M ×N = {(x, y); x ∈M, y ∈ N}.

The Cartesian product of two sets A ⊂ M, B ⊂ N is denoted A × B =
{(a, b); a ∈ A, b ∈ B}. This is the analogue of a rectangle, a subset ofM×N , and
it is easy to define a measure for such sets as follows. Define the product measure
of product sets of the above form by π(A × B) = µ(A)ν(B). The following
theorem is a simple consequence of the Caratheodory Extension Theorem.

Theorem 79 The product measure π defined on the product sets of the form
{A × B;A ∈ N , B ∈M} can be extended to a measure on the sigma algebra

41
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σ{A×B;A ∈ N ,B ∈M} of subsets of M ×N .

There are two cases of product measure of importance. Consider the sigma
algebra on <2 generated by the product of the Borel sigma algebras on <.
This is called the Borel sigma algebra in <2. We can similarly define the Borel
sigma algebra on <n.

In an analogous manner, if we are given two probability spaces (Ω1,F1, P1)
and (Ω2,F2, P2) we can construct a product measure Q on the Cartesian
product space Ω1×Ω2 such that Q(A×B) = P1(A)P2(B) for all A ∈ F1, B ∈
F2.This guarantees the existence of a product probability space in which events
of the form A × Ω2 are independent of events of the form Ω1 × B for A ∈
F1, B ∈ F2.

Definition 80 (Independence, identically distributed) A sequence of random
variables X1, X2, . . . is independent if the family of sigma-algebras σ(X1), σ(X2), . . .
are independent. This is equivalent to the requirement that for every finite set
Bn, n = 1, . . . N of Borel subsets of <, the events [Xn ∈ Bn], n = 1, ..., N form a
mutually independent sequence of events. The sequence is said to be identically
distributed every random variable Xn has the same c.d.f.

Lemma 81 If X,Y are independent integrable random variables on the same
probability space, then XY is also integrable and

E(XY ) = E(X)E(Y ).

Proof. Suppose first that X and Y are both simple functions, X =∑
ciIAi , Y =

∑
djIBj . ThenX and Y are independent if and only if P (AiBj) =

P (Ai)P (Bj) for all i, j and so

E(XY ) = E[(
∑

ciIAi)(
∑

djIBj )]

=
∑∑

cidjE(IAiIBj )

=
∑∑

cidjP (Ai)P (Bj)

= E(X)E(Y ).

More generally suppose X,Y are non-negative random variables and consider
independent simple functions Xn increasing to X and Yn increasing to Y. Then
XnYn is a non-decreasing sequence with limit XY. Therefore, by monotone
convergence

E(XnYn)→ E(XY ).

On the other hand,

E(XnYn) = E(Xn)E(Yn)→ E(X)E(Y ).

Therefore E(XY ) = E(X)E(Y ). The case of general (positive and negative
random variables X,Y we leave as a problem.
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5.1.1 Joint Distributions of more than 2 random variables.

Suppose X1, ..., Xn are random variables defined on the same probability space
(Ω,F , P ). The joint distribution can be characterised by the joint cumulative
distribution function, a function on <n defined by

F (x1, ..., xn) = P [X1 ≤ x1, ..., Xn ≤ xn] = P ([X1 ≤ x1] ∩ .... ∩ [Xn ≤ xn]).

Example 82 Suppose n = 2. Express the probability

P [a1 < X1 ≤ b1, a2 < X2 ≤ b2]

using the joint cumulative distribution function.

Notice that the joint cumulative distribution function allows us to find
P [a1 < X1 ≤ b1, ..., an < Xn ≤ bn]. Using inclusion-exclusion,

P [a1 < X1 ≤ b1, ..., an < Xn ≤ bn] (5.1)

= F (b1, b2, . . . bn)−
∑

j

F (b1, ..., aj , bj+1, ...bn)

+
∑

i<j

F (b1, ..., ai, bi+1...aj , bj+1, ...bn)− ...

As in the case n = 1 , we may then build a probability measure on an algebra
of subsets of <n. This measure is then extended to the Borel sigma-algebra on
<n.

Theorem 83 The joint cumulative distribution function has the following prop-
erties:

(a) F (x1, ..., xn) is right-continuous and non-decreasing in each argument
xi when the other arguments xj , j 6= i are fixed.

(b) F (x1, ..., xn) → 1 as min(x1, ..., xn) → ∞ and F (x1, ..., xn) → 0 as
min(x1, ..., xn)→ −∞.

(c) The expression on the right hand side of (5.1) is greater than or equal
to zero for all a1, . . . an, b1, . . . , bn.

The joint probability distribution of the variables X1, ..., Xn is a measure
on Rn. It can be determined from the cumulative distribution function since
(5.1) gives the measure of rectangles, these form a pi-system in Rn and this
permits extension first to an algebra and then the sigma algebra generated by
these intervals. This sigma algebra is the Borel sigma algebra in Rn. Therefore,
in order to verify that the random variables are mutually independent, it is
sufficient to verify that the joint cumulative distribution function factors;

F (x1, ..., xn) = F1(x1)F2(x2)...Fn(xn) = P [X1 ≤ x1] . . . P [Xn ≤ xn]
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for all x1, ...., xn ∈ <.
The next theorem is an immediate consequence of Lemma 28 and the fact

that X1, ..., Xn independent implies that g1(X1), g2(X2), ..., gn(Xn) are inde-
pendent for arbitrary measurable functions gi, i = 1, ..., n.

Theorem 84 If the random variables X1, ..., Xn are mutually independent,
then

E[
∏

gj(Xj)] =
∏

E[gj(Xj)]

for any Borel measurable functions g1, . . . , gn.

We say an infinite sequence of random variables X1, X2, . . . is mutually
independent if every finite subset is mutually independent.

5.2 Strong (almost sure) Convergence

Definition 85 Let X and Xn, n = 1, 2, . . . be random variables all defined on
the same probability space (Ω,F). We say that the sequence Xn converges
almost surely (or with probability one) to X (denoted Xn → X a.s.) if the
event

{ω;Xn(ω)→ X(ω)} = ∩∞m=1[|Xn −X| ≤ 1

m
a.b.f.o.]

has probability one.

In order to show a sequence Xn converges almost surely, we need that Xn

are (measurable) random variables for all n, and to show that there is some
measurable random variable X for which the set {ω;Xn(ω) → X(ω)} is mea-
surable and hence an event, and that the probability of this event P [Xn → X]
is 1.Alternatively we can show that for each value of ε > 0, P [|Xn − X| > ε
i.o.] = 0. It is sufficient, of course, to consider values of ε of the form ε = 1/m,
m=1,2,... above.

The law of large numbers (sometimes called the law of averages) is the single
most immportant and well-known result in probability. There are many versions
of it but the following is sufficient, for example, to show that the average of
independent Bernoulli random variables, or Poisson, or negative binomial, or
Gamma random variables, to name a few, converge to their expected value with
probability one.

Theorem 86 (Strong Law of Large Numbers) If Xn, n = 1, 2, . . . is a sequence
of independent identically distributed random variables with E|Xn| < ∞, (i.e.
they are integrable) and E(Xn) = µ, then

1

n

n∑

i=1

Xi → µ a.s. as n→∞
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Proof. We shall prove this result in the special case E(X4) < ∞. The
more general proof will be left for later. First note that, by replacing Xi by
Xi − µ we may assume that µ = 0 without any loss of generality. Now note
that with Sn =

∑n
i=1Xi, and letting var(Xi) = σ2 and E(X4

i ) = K, we
have

E(S4n) = nK + 3n(n− 1)σ4 = dn, say.

Therefore for each ε > 0 , we have by Chebyschev’s inequality

P{|Sn

n
| > ε} ≤ E(S4n)

ε4n4
=

dn
ε4n4

Note that since
∑

n
dn
n4 <∞ we have by the first Borel Cantelli Lemma,

P{|Sn

n
| > ε i.o.} = 0.

Since this holds for all ε > 0 it follows that the probability that Sn
n does not

converge to 0 is 0 and so the probability that it does converge is 1.

5.3 Weak Convergence (Convergence in Distri-
bution)

Consider random variables that are constants; Xn = 1 + 1
n . By any sensible

definition of convergence, Xn converges to X = 1 as n→∞. Does the cumula-
tive distribution function of Xn, Fn,say, converge to the cumulative distribution
function of X pointwise? In this case it is true that Fn(x)→ F (x) at all values
of x except the value x = 1 where the function F (x) has a discontinuity. Con-
vergence in distribution (weak convergence, convergence in Law) is defined as
pointwise convergence of the c.d.f. at all values of x except those at which F (x)
is discontinuous. Of course if the limiting distribution is absolutely continuous
(for example the normal distribution as in the Central Limit Theorem), then
Fn(x)→ F (x) does hold for all values of x.

Definition 87 (Weak Convergence) If Fn(x), n = 1, . . . is a sequence of cu-
mulative distribution functions and if F is a cumulative distribution function,
we say that Fn converges to F weakly or in distribution if Fn(x)→ F (x)
for all x at which F (x) is continuous. We will sometimes denote weak con-
vergence of a sequence of random variables Xn whose c.d.f. converges in the
above sense by Xn ⇒ X.

Example 88 (Maximum of independent exponential( α)) Suppose (X1, ...., Xn)
are independent exponentially distributed random variables all with the exponen-
tial cumulative distribution function

F (x) = 1− e−αx.
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Define Mn = max(X1, ...., Xn) . Then the c.d.f. of Mn − (log n)/α is

FMn
(x) = (1− e−(αx+log n))n → F (x) = e−e−αx

Proof. Note that for arbitrary x ∈ R

P [Mn −
lnn

α
≤ x] = P [Mn ≤ x+

lnn

α
] = [F (x+

lnn

α
)]n

= (1− e−αx−lnn)n = (1− 1

n
e−αx)n

→ exp(−e−αx) as n→∞.

For any independent identically distributed random variables such that the
cumulative distribution function satisfies 1−F (x) ∼ e−αx, the same result holds.
The limiting distribution whose cumulative distribution function is of the form
F (x) = exp(−e−αx) is called an extreme value distribution and is commonly
used in environmental, biostatistical and engineering applications of statistics.
The corresponding probability density function is

d

dx
e−e−αx = α exp

(
−αx− e−αx

)
,−∞ < x <∞

and is shaped like a slightly skewed version of the normal density function (see
Figure 1 for the case α = 2).

This example also shows approximately how large a maximum will be since
Mn − (ln n)/α converges to a proper distribution. Theoretically, if there were
no improvement in training techniques over time, for example, we would expect
that the world record in the high jump or the shot put at time t (assuming
the number of competitors and events occurred at a constant rate) to increase
like ln(t). However, records in general have increased at a much higher rate,
indicating higher levels of performance, rather than just the effect of the larger
number of events over time. Similarly, record high temperatures since records
in North America were begun increase at a higher rate than this, providing
evidence of global warming.
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Example 89 Suppose 1 − F (x) ∼ x−α for α > 0. Then the cumulative

distribution function of n−1/αMn converges weakly to F (x) = e−x−α , x > 0

(The distribution with the cumulative distribution function F (x) = e−x−α is
called the Weibull distribution).

Proof. The proof of the convergence to a Weibull is similar to that for the
extreme value distribution above.

P [n−1/αMn ≤ x] = [F (n1/αx)]n

= [1− (n1/αx)−α + o(n−1)]n

= [1− 1

n
x−α + o(n−1)]n

→ exp(−x−α) as n→∞

We have used a slight extension of the well-known result that (1+c/n)n → ec

as n→∞. This result continues to hold even if we include in the bracket and
additional term o(n−1) which satisfies no(n−1)→ 0. The extension that has
been used (and is easily proven) is (1 + c/n+ o(n−1))n → ec as n→∞.

Example 90 Find a sequence of cumulative distribution functions Fn(x) →
F (x) for some limiting function F (x) where this limit is not a proper c.d.f.

There are many simple examples of cumulative distribution functions that
converge pointwise but not to a genuine c.d.f. All involve some of the mass of
the distribution “excaping” to infinity. For example consider Fn the N(0, n)
cumulative distribution function. Of more simply, use Fn the cumulative distri-
bution function of a point mass at the point n. However there is an additional
condition that is often applied which insures that the limiting distribution is a
“proper” probability distribution (i.e. has total measure 1). This condition is
called tightness.

Definition 91 A sequence of probability measures Pn on a measurable metric
space is tight if for all ε > 0, there exists a compact set K such that Pn(K

c) ≤ ε
for all n.

A sequence of cumulative distribution functions Fn is tight if it corresponds
to a sequence of tight probability measures on R. This is equivalent to the
requirement that for every ε > 0, there is a value of M < ∞ such that the
probabilities outside the interval [−M,M ] are less than ε. In other words if

Fn(−M−) + (1− Fn(M)) ≤ ε for all n = 1, 2, ...

If a sequence Fn converges to some limiting right-continuous function F at
continuity points of F and if the sequence is tight, then F is a c.d.f. of
a probability distribution and the convergence is in distribution or weak (see
Problem 6).
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Lemma 92 If Xn ⇒ X, then there is a sequence of random variables Y, Yn
on some other probability space (for example the unit interval) such that Yn

has the same distribution as Xn and Y has the same distribution as X but
Yn → Y almost surely.

Proof. Suppose we take a single uniform[0,1] random variable U. Recall the
definition of pseudo inverse used in Theorem 20, F−1(y) = sup{z;F (z) < y}.
Define Yn = F−1n (U) and Y = F−1(U) where Fn and F are the cumulative
distribution functions of Xn and X respectively. We need to show that if
Fn(x) → F (x) at all x which are continuity points of the function F, then
F−1n (U) → F−1(U) almost surely. First note that the set of y ∈ [0, 1] such
that F−1(y) is NOT a

point of increase of the function has Lebesgue measure 0. For any point x
which is a continuity point and a point of increase of F, we can find a closed
neighbourhood around x, say of the form [x − b, x + b] such that convergence
hold uniformly in this neighbourhood. This means that for any ε > 0, there
is a value of N so that |Fn(z) − F (z)| ≤ ε whenever n > N. This in
turn implies that, with y = F (x), that |F−1n (y) − F−1(y)| ≤ δ where δ =
max(x−F−1(y− ε), F−1(y+ ε)−x). It follows that F−1n (U) converges almost
surely to F−1(U)

Theorem 93 Suppose Xn ⇒ X and g is a Borel measurable function. Define
Dg = {x; g discontinuous at x}. If P [X ∈ Dg] = 0, then g(Xn)⇒ g(X).

Proof. We prove this result assuming the last lemma which states that we
can find a sequence of random variables Yn and a random varaible Y which
have the same distribution as Xn, X respectively but such that Yn converges
almost surely (i.e. with probability one) to Y. Note that in this case

g(Yn(ω))→ g(Y (ω))

provided that the function g is continuous at the point Y (ω) or in other words,
provided that Y (ω) /∈ Dg. Since P [Y (ω) /∈ Dg] = 1, we have that

g(Yn)→ g(Y ) a.s.

and therefore convergence holds also in distribution (you may either use Theo-
rems 35 and 36 or prove this fact seperately). But since Yn and Xn have the
same distribution, so too do g(Yn) and g(Xn) implying that g(Xn) converges
in distribution to g(X).

In many applications of probability, we wish to consider stochastic processes
Xn(t) and their convergence to a possible limit. For example, suppose Xn(t)
is defined to be a random walk on discrete time, with time steps 1/n and we
wish to consider a limiting distribution of this process as n → ∞. Since Xn

is a stochastic process, not a random variable, it does not have a cumulative
distribution function, and any notion of weak convergence must not rely on
the c.d.f. In this case, the following theorem is used as a basis for defining
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weak convergence. In general, we say that Xn converges weakly to X if
E[f(Xn)]→ E[f(X)] for all bounded continuous functions f . This is a more
general definition of weak convergence.

Definition 94 (general definition of weak convergence) A sequence of random
elements of a metric space Xn converges weakly to X i.e. Xn ⇒ X if and
only if E[f(Xn)]→ E[f(X)] for all bounded continuous functions f .

Theorem 95 If Xn and X are random variables, Xn converges weakly to X
if and only if Fn(x)→ F (x) for all x /∈ DF .

Proof. The proof is based on lemma 32. Consider a sequence Yn such
that Yn and Xn have the same distribution but Yn → Y almost surely. Since
f(Yn) is bounded above by a constant (and the expected value of a constant
is finite), we have by the Dominated Convergence Theorem Ef(Yn)→ Ef(Y ).
(We have used here a slightly more general version of the dominated convergence
theorem in which convergence holds almost surely rather than pointwise at all
ω.) For the converse direction, assume E[f(Xn)] → E[f(X)] for all bounded
continuous functions f . Suppose we take the function

fε(t) =





1, t ≤ x
0, t > x+ ε
x+ε−t

ε , x < t < x+ ε

Assume that x is a continuity point of the c.d.f. of X. Then E[fε(Xn)] →
E[fε(X)] . We may now take ε→ 0 to get the convergence of the c.d.f.

5.4 Convergence in Probability

Definition 96 We say a sequence of random variables Xn → X in probability
if for all ε > 0 , P [|Xn −X| > ε] → 0 as n→∞.

Convergence in probability is in general a somewhat more demanding con-
cept than weak convergence, but less demanding than almost sure convergence.
In other words, convergence almost surely implies convergence in probability
and convergence in probability implies weak convergence.

Theorem 97 If Xn → X almost surely then Xn → X in probability.

Proof. Because we can replace Xn by Xn −X , we may assume without
any loss of generality that X = 0. Then the set on which Xn converges almost
surely to zero is

{ω;Xn(ω)→ 0} = ∩∞m=1 ([|Xn| ≤ 1/m]a.b.f.o.)

and so for each ε = 1/m > 0 , we have, since Xn converges almost surely,

P ([|Xn| ≤ ε]a.b.f.o.) = 1.
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or
1 = P (∪∞j=1 ∩∞n=j [|Xn| ≤ ε]) = limj→∞P (∩∞n=j [|Xn| ≤ ε]).

Since P (∩∞n=j [|Xn| ≤ ε]) ≤ P [|Xj | ≤ ε] it must follow that
P [|Xj | ≤ ε]→ 1 as j →∞.

Convergence in probability does not imply convergence almost
surely. For example let Ω = [0, 1] and for each n write it uniquely in the
form n = 2m+ j for 0 ≤ j < 2m. Define Xn(ω) = 1 if j/2m ≤ ω ≤ (j+1)/2m

so that Xn is the indicator of the interval [j/2m, (j+1)/2m]. Then Xn converges
in probability to 0 but P [Xn → 0] = 0.

Theorem 98 If Xn → X in probability, then Xn ⇒ X.

Proof. Assuming convergence in probability, we need to show that P [Xn ≤
x]→ P [X ≤ x] whenever x is a continuity point of the function on the right
hand side. Note that

P [Xn ≤ x] ≤ P [X ≤ x+ ε] + P [|Xn −X| > ε]

for any ε > 0. Taking limits on both sides as n→∞, we obtain

limsupn→∞P [Xn ≤ x] ≤ P [X ≤ x+ ε].

By a similar argument

liminfn→∞P [Xn ≤ x] ≥ P [X ≤ x− ε].

Now since ε > 0 was arbitrary, we may take it as close as we wish to 0. and
since the function F (x) = P [X ≤ x] is continuous at the point x , the limit
as ε→ 0 of both P [X ≤ x+ ε] and P [X ≤ x− ε] is F (x). It follows that

F (x) ≤ liminfP [Xn ≤ x] ≤ limsupP [Xn ≤ x] ≤ F (x)

and therefore P [Xn ≤ x]→ F (x) as n→∞.

Theorem 99 If Xn ⇒ c i.e. in distribution for some constant c then
Xn → c in probability.

Proof. Since the c.d.f. of the constant c is F (x) = 0, x < c, F (x) =
1, x ≥ c , and is continuous at all points except the point x = c , we have, by
the convergence in distribution,

P [Xn ≤ c+ ε]→ 1 and P [Xn ≤ c− ε]→ 0

for all ε > 0. Therefore,

P [|Xn − c| > ε] ≤ (1− P [Xn ≤ c+ ε]) + P [Xn ≤ c− ε]→ 0.
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Theorem 100 If Xn, n = 1, . . . and Yn, n = 1, . . . are two sequences of
random variables such that Xn ⇒ X and Yn −Xn ⇒ 0 , then Yn ⇒ X.

Proof. Assume that F (x) , the c.d.f of X is continuous at a given point
x. Then for ε > 0,

P [Yn ≤ x− ε] ≤ P [Xn ≤ x] + P [|Xn − Yn| > ε].

Now take limit supremum as n→∞ to obtain

limsupP [Yn ≤ x− ε] ≤ F (x).

A similar argument gives

liminfP [Yn ≤ x+ ε] ≥ F (x).

Since this is true for ε arbitrarily close to 0, P [Yn ≤ x]→ F (x) as n→∞.

Theorem 101 (A Weak Law of Large Numbers) If Xn, n = 1, 2, . . . is
a sequence of independent random variables all with the same expected value
E(Xn) = µ, and if their variances satisfy 1

n2

∑n
i=1 var(Xi) → 0 , then

1
n

∑n
i=1Xi → µ in probability.

Proof. By Chebyschev’s inequality,

P [|
∑n

i=1Xi

n
− µ| ≥ ε] ≤

∑n
i=1 var(Xi)

ε2n2

and this converges to 0 by the assumptions.

5.5 Fubini’s Theorem and Convolutions.

Theorem 102 (Fubini’s Theorem) Suppose g(x, y) is integrable with respect
to a product measure π = µ× ν on M ×N . Then

∫

M×N

g(x, y)dπ =

∫

M

[

∫

N

g(x, y)dν]dµ =

∫

N

[

∫

M

g(x, y)dµ]dν.

We can dispense with the assumption that the function g(x, y)is integrable
in Fubini’s theorem (permiting infinite integrals) if we assume instead that
g(x, y) ≥ 0.

Proof. First we need to identify some measurability requirements. Suppose
E is a set measurable with respect to the product sigma-algebra on M ×N. We
need to first show that the set Ey = {x ∈ M ; (x, y) ∈ E} is a measurable set
in M. Consider the class of sets

C = {E; {x ∈M ; (x, y) ∈ E} is measurable in the product sigma algebra}
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It is easy to see that C contains all product sets of the form A×B and that it
satisfies the properties of a sigma-algebra. Therefore, since the product sigma
algebra is generated by {A × B;A ∈ N , B ∈ M}, it is contained in C. This
shows that sets of the form Ey are measurable. Now define the measure of these
sets h(y) = µ(Ey). The function h(y) is a measurable function defined on N
(see Problem 23).

Now consider a function g(x, y) = IE where E ∈ F . The above argument
is needed to show that the function h(y) =

∫
M
g(x, y)dµ is measurable so that

the integral
∫
N
h(y)dν potentially makes sense. Finally note that for a set E

of the form A×B,
∫
IEdπ = π(A×B) = µ(A)ν(B) =

∫

N

(

∫

M

IE(x, y)dµ)dν

and so the condition
∫
IEdπ =

∫
N
(
∫
M
IE(x, y)dµ)dν holds for sets E that are

product sets. It follows that this equality holds for all sets E ∈ F(see problem
24). Therefore this holds also when IE is replaced by a simple function. Finally
we can extend this result to an arbitrary non-negative function g by using the
fact that it holds for simple functions and defining a sequence of simple functions
gn ↑ g and using monotone convergence.

Example 103 The formula for integration by parts is
∫

(a,b]

G(x)dF (x) = G(b)F (b)−G(a)F (a)−
∫

(a,b]

F (x)dG(x)

Does this formula apply if F (x) is the cumulative distribution function of a of
a constant z in the interval (a, b] and the function G has a discontinuity at
the point z?

Lemma 104 (Integration by Parts) If F,G are two monotone right continuous
functions on the real line having no common discontinuities, then

∫

(a,b]

G(x)dF (x) = G(b)F (b)−G(a)F (a)−
∫

(a,b]

F (x)dG(x)

5.5.1 Convolutions

Consider two independent random variables X, Y , both having a discrete
distribution. Suppose we wish to find the probability function of the sum Z =
X + Y . Then

P [Z = z] =
∑

x

P [X = x]P [Y = z − x] =
∑

x

fX(x)fY (z − x).

Similarly, if X, Y are independent absolutely continuous distributions with
probability density functions fX , fY respectively, then we find the probability
density function of the sum Z = X + Y by

fZ(z) =

∫ ∞

−∞
fX(x)fY (z − x)dx
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In both the discrete and continuous case, we can rewrite the above in terms of
the cumulative distribution function FZ of Z. In either case,

FZ(z) = E[FY (z −X)] =

∫

<
FY (z − x)FX(dx)

We use the last form as a more general definition of a convolution between two
cumulative distribution functions F,G . We define the convolution of F and
G to be F ∗G(x) =

∫∞
−∞ F (x− y)dG(y) .

5.5.2 Properties.

(a) If F, G are cumulative distributions functions, then so is F ∗G (Problem
5.25)

(b) F ∗G = G ∗ F (Problem 6.3)

(c) If either F or G are absolutely continuous with respect to Lebesgue mea-
sure, then F ∗G is absolutely continuous with respect to Lebesgue mea-
sure.

The convolution of two cumulative distribution functions F ∗ G represents
the c.d.f of the sum of two independent random variables, one with c.d.f. F and
the other with c.d.f. G. The next theorem says that if we have two independent
sequences Xn independent of Yn and Xn =⇒ X, Yn =⇒ Y, then the pair
(Xn, Yn) converge weakly to the joint distribution of two random variables
(X,Y ) where X and Y are independent. There is an easier proof available
using the characteristic functions in Chapter 6.

Theorem 105 If Fn ⇒ F and Gn ⇒ G, then Fn ∗Gn ⇒ F ∗G.

Proof.
First suppose that X,Xn, Y, Yn have cumulative distribution functions given

by F, Fn, G,Gn respectively and denote the set of points at which a function
such as F is discontinuous by DF . Recall that by Lemma 32, we may redefine
the random variables Yn and Y so that Yn → Y almost surely. Now choose
a point z /∈ DF∗G. We wish to show that

Fn ∗Gn(z)→ F ∗G(z)

for all such z. Note that since F ∗ G is the cumulative distribution function of
X + Y, z /∈ DF∗G implies that

0 = P [X + Y = z] ≥
∑

xεDF

P [Y = z − x]P [X = x].

so P [Y = z − x] = 0 whenever P [X = x] > 0, implying P [Y ∈ z −DF ] = 0.
Therefore the set [Y /∈ z − DF ] has probability one, and on this set, since
z − Yn → z − Y almost surely, we also have Fn(z − Yn) → F (z − Y ) almost
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surely. It follows from the dominated convergence theorem (since Fn(z − Yn)
is bounded above by 1) that

Fn ∗Gn(z) = E(Fn(z − Yn))→ E(F (z − Y )) = F ∗G(z)

5.6 Problems

1. Prove that ifX,Y are independent random variables, E(XY ) = E(X)E(Y )(Lemma
28). Are there are random variables X,Y such that E(XY ) = E(X)E(Y )
but X,Y are not independent? What if X and Y only take two possible
values?

2. Find two absolutely continuous random variables such that the joint dis-
tribution (X,Y ) is not absolutely continuous.

3. If two random variables X,Y has joint probability density function f(x, y)
show that the joint density function of U = X + Y and V = X − Y is

fU,V (u, v) =
1

2
fX,Y (

u+ v

2
,
u− v

2
).

4. If Xn is a sequence of non-negative random variables, show that the set
of

{ω;Xn(ω) converges} = ∩∞m=1 ∪∞N=1 ∩∞j=N ∩∞n=N [|Xn −Xj | ≤
1

m
]

5. Give an example of a sequence of random variables Xn defined on Ω =
[0, 1] which converges in probability but does not converge almost surely.
Is there an example of the reverse (i.e. the sequence converges almost
surely but not in probability)? If Xn is a Binomial (n, p) random variable
for each n, in what sense does n−1Xn converge to p as n→∞?

6. Suppose that Fn is a sequence of c.d.f.’s converging to a right continuous
function F at all continuity points of F . Prove that if the sequence
has the property that for every ε > 0 there exists M < ∞ such that
Fn(−M)+1−Fn(M) < ε for all n, then F must be a proper cumulative
distribution function.

7. Prove directly (using only the definitions of almost sure and weak conver-
gence) that if Xn is a sequence of random variables such that Xn → X
almost surely, then Xn =⇒ X (convergence holds weakly).

8. Prove that if Xn converges in distribution (weakly) to a constant c > 0
and Yn ⇒ Y for a random variable Y , then Yn/Xn ⇒ Y/c. Show also
that if g(x, y) is a continuous function of (x, y), then g(Xn, Yn)⇒ g(c, Y ).
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9. Prove that if Xn ⇒ X then there exist random variables Yn, Y with the
same distribution as Xn, X respectively such that Yn → Y a.s. (Lemma
32).

10. Prove that if Xn converges with probability 1 to a random variable X
then it converges in distribution to X (Theorem 36).

11. Suppose Xi, i = 1, 2, ... are independent identically distributed random
variables with finite mean and variance var(Xi) = σ2.LetXn = 1

n

∑n
i=1Xi.

Prove that

1

n− 1

∑
(Xi −Xn)

2 → σ2 almost surely as n→∞.

12. A multivariate c.d.f. F (x) of a random vector X = (X1, ....,Xn) is
discrete if there are countably many points yj such that

∑

j

P [X = yj] = 1.

Prove that a multivariate distribution function is discrete if and only if its
marginal distribution functions are all discrete.

13. Let Xn, n = 1, 2, . . . be independent positive random variables all
having a distribution with probability density function f(x), x > 0.
Suppose f(x)→ c > 0 as x→ 0. Define the random variable

Yn = min(X1, X2, . . . Xn).

(a) Show that Yn → 0 in probability.

(b) Show that nYn converges in distribution to an exponential distri-
bution with mean 1/c.

14. Continuity Suppose Xt is, for each t ∈ [a, b], a random variable defined
on Ω. Suppose for each ω ∈ Ω, Xt(ω) is continuous as a function of t
for t ∈ [a, b].

If for all t ∈ [a, b] , |Xt(ω)| ≤ Y (ω) for all ω ∈ Ω, where Y is some
integrable random variable, prove that g(t) = E(Xt) is a continuous
function of t in the interval [a, b].

15. Differentiation under Integral. Suppose for each ω ∈ Ω that the derivative
d
dtXt(ω) exists and | d

dtXt(ω)| ≤ Y (ω) for all t ∈ [a, b], where Y is an
integrable random variable. Then show that

d

dt
E(Xt) = E[

d

dt
Xt]
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16. Find the moment generating function of the Gamma distribution having
probability density function

f(x) =
xα−1e−x/β

βαΓ(α)
, x > 0

and show that the sum of n independent identically distributed Gamma
(α, β) random variables is Gamma (nα, β). Use this fact to show that
the moment generating function of the random variable

Z∗ =

∑n
i=1Xi − nαβ√

nαβ2

approaches the moment generating function of the standard normal dis-
tribution as n→∞ and thus that Z∗ ⇒ Z ∼ N(0, 1).

17. Let X1, . . . Xn be independent identically distributed random variables
with the uniform distribution on the interval [0, b]. Show convergence in
distribution of the random variable

Yn = n min(X1, X2, . . . , Xn)

and identify the limiting distribution.

18. Assume that the value of a stock at time n is given by

Sn = c(n)exp{2Xn}

where Xn has a binomial distribution with parameters (n, p) and c(n)
is a sequence of constants. Find c(n) so that the expected value of the
stock at time n is the risk-free rate of return ern . Consider the present
value of a call option on this stock which has exercise price K.

V = e−rnE{max(Sn −K, 0)}.

Show, using the weak convergence of the binomial distribution to the
normal, that this expectation approaches a similar quantity for a normal
random variable.

19. The usual student t-statistic is given by a form

tn =

√
n(X̄n − µ)

sn

where X̄n, sn are the sample mean and standard deviation respectively.
It is known that

zn =

√
n(X̄n − µ)

σ

converges in distribution to a standard normal (N(0,1)) and that sn → σ
in probability. Show that tn converges in distribution to the standard
normal.
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20. Let X1, X2, . . . , X2n+1 be independent identically distributed U [0, 1]
random variables . Define Mn = median (X1, X2, . . . , X2n+1). Show that
Mn → 1

2 in probability and almost surely as n→∞.

21. We say that Xn → X in Lp for some p ≥ 1 if

E(|Xn −X|p)→ 0

as n→∞. Show that if Xn → X in Lp then Xn → X in probability. Is
the converse true?

22. If Xn → 0 in probability, show that there exists a subsequence nk such
that Xnk → 0 almost surely as k →∞.

23. Consider the product space {M×N,F , π) of two measure spaces (M,M, µ)
and (N,N , ν). Consider a set E ∈ F and define Ey = {x ∈ M ; (x, y) ∈
E}.This is a measurable set in M. Now define the measure of these sets
g(y) = µ(Ey). Show that the function g(y) is a measurable function de-
fined on N .

24. Consider the product space {M×N,F , π) of two measure spaces (M,M, µ)
and (N,N , ν). Suppose we verify that for all E = A×B,

π(E) =

∫

N

(

∫

M

IE(x, y)dµ)dν. (5.2)

Prove that (5.2) holds for all E ∈ F .

25. Prove that if F,G are cumulative distributions functions, then so is F ∗G.

26. Prove: If either F or G are absolutely continuous with respect to
Lebesgue measure, then F ∗ G is absolutely continuous with respect to
Lebesgue measure.
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Chapter 6

Characteristic Functions
and the Central Limit
Theorem

6.1 Characteristic Functions

6.1.1 Transforms and Characteristic Functions.

There are several transforms or generating functions used in mathematics, prob-
ability and statistics. In general, they are all integrals of an exponential func-
tion, which has the advantage that it converts sums to products. They are all
functions defined on t ∈ <. In this section we use the notation i =

√
−1. For

example;

1. (Probability) Generating function. g(s) = E(sX).

2. Moment Generating Function. m(t) = E[etX ] =
∫
etxdF

3. Laplace Transform. L(t) = E[e−tX ] =
∫
e−txdF

4. Fourier Transform. E[e−itX ] =
∫
e−itxdF

5. Characteristic function. ϕX(t) = E[eitX ] =
∫
eitxdF

Definition 106 (Characteristic Function) Define the characteristic function of
a random variable X or or its cumulative distribution function FX to be the
complex-valued function on t ∈ <

ϕX(t) = E[eitX ] =

∫
eitxdF = E(cos(tX)) + iE(sin(tX))

59
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The main advantage of the characteristic function over transforms such as the
Laplace transform, probability generating function or the moment generating
function is property (a) below. Because we are integrating a bounded function;
|eitx| = 1 for all x, t ∈ <, the integral exists for any probability distribution.

6.1.2 Properties of Characteristic Function.

(a) ϕ exists for any distribution for X.

(b) ϕ(0) = 1 .

(c) |ϕ(t)| ≤ 1 for all t .

(d) ϕ is uniformly continuous . That is for all ε > 0 , there exists δ > 0
such that |ϕ(t)− ϕ(s)| ≤ ε whenever |t− s| ≤ δ.

(e) The characteristic function of a+ bX is eiatϕ(bt).

(f) The characteristic function of −X is the complex conjugate ϕ̄(t).

(g) A characteristic function ϕ is real valued if and only if the distribution of
the corresponding random variable X has a distribution that is symmetric
about zero, that is if and only if P [X > z] = P [X < −z] for all z ≥ 0.

(h) The characteristic function of a convolution F ∗G is ϕF (t)ϕG(t).

Proofs.

(a) Note that for each x and t, |eitx|2 = sin2(tx) + cos2(tx) = 1 and the
constant 1 is integrable. Therefore

E|eitX |2 = 1.

It follows that

E|eitX | ≤
√
E|eitX |2 = 1

and so the function eitx is integrable.

(b) eitX = 1 when t = 0 . Therefore ϕ(0) = Ee0 = 1.

(c) This is included in the proof (a).

(d) Let h = s− t. Assume without loss of generality that s > t. Then

|ϕ(t)− ϕ(s)| = |EeitX(eihX − 1) |
≤ E[|eitX(eihX − 1)|]
≤ E[|eitX ||eihX − 1|]
≤ E[|eihX − 1|].



6.1. CHARACTERISTIC FUNCTIONS 61

But as h→ 0 the function eihX − 1 converges to 0 for each ω ∈ Ω and
it is dominated by the constant 2. Therefore, by the Lebesgue Dominated
Convergence theorem, E[|eihX −1|]→ 0 as h→ 0. So for a given ε > 0,
we chan choose h sufficiently small, for example h = |s − t| ≤ δ such
that |ϕ(t)− ϕ(s)| ≤ ε.

(e) By definition, Eeit(a+bX) = eitaE[eitbX ] = eiatϕ(bt).

(f) Recall that the complex conjugate of a + bi is a − bi and of eiz is e−iz

when a, b, and z are real numbers. Then

E[eit(−X)] = E[e−itX ] = E[cos(tX)+isin(−tX)] = E[cos(tX)−isin(tX)] = ϕ̄(t).

(g) The distribution of the corresponding random variable X is symmetric if
and only if X has the same distribution as does −X. This is true if and
only if they have the same characteristic function. By properties (f) and
the corollary below, this is true if and only if ϕ(t) = ϕ̄(t) which holds if
and only if the function ϕ(t) takes on only real values.

(h) Put H = F ∗G. Then

∫
eitxH(dx) =

∫
eitx

∫
F (dx− y)G(dy)

=

∫ ∫
eit(z+y)F (dz)G(dy),with z = x− y,

and this is ϕF (t)ϕG(t).

The major reason for our interest in characteristic functions is that they
uniquely describe the distribution. Probabilities of intervals can be recovered
from the characteristic function using the following inversion theorem.

Theorem 107 ( Inversion Formula). If X has characteristic function ϕX(t),
then for any interval (a, b),

P [a < X < b] +
P [X = a] + P [X = b]

2
= limT→∞

1

2π

∫ T

−T

e−ita − e−itb

it
ϕX(t)dt

Proof. Consider the integral

1

2π

∫ T

−T

e−ita − e−itb

it
ϕ(t)dt =

1

2π

∫ T

−T

e−ita − e−itb

it

∫

<
eitxF (dx)dt

=

∫ T

−T

∫

<

eit(x−a) − eit(x−b)

2πit
F (dx)dt =

∫

<

∫ T

−T

eit(x−a) − eit(x−b)

2πit
dtF (dx).
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Note that for real c we have

∫ T

−T

eitc

2it
dt =

∫ T

0

sin(tc)

t
dt

and so we obtain from above

1

2π

∫ T

−T

e−ita − e−itb

it
ϕ(t)dt =

∫

<

1

π
{
∫ T

0

sin(t(x− a))

t
dt−

∫ T

0

sin(t(x− b))

t
dt}F (dx).

But as T →∞, it is possible to show that the integral (this is known as the sine
integral function)

1

π

∫ T

0

sin(t(x− a))

t
dt→




− 12 , x < a
1
2 , x > a
0, x = a

Substituting this above and taking limits through the integral using the Lebesgue
Dominated Convergence Theorem, the limit is the integral with respect to
F (dx) of the function

g(x) =





1
2 , x = a
1
2 , x = b
1, a < x < b
0, elswhere

and this integral equals

P [a < X < b] +
P [X = a] + P [X = b]

2
.

Corollary 108 If the characteristic function of two random variables X and
Y agree, then X and Y have the same distribution.

Proof. This follows immediately from the inversion formula above.
We have seen that if a sequence of cumulative distribution functions Fn(x)

converges pointwise to a limit, the limiting function F (x) is not necessarily
a cumulative distribution function. To ensure that it is, we require that the
distributions are “tight”. Similarly if a sequence of characteristic functions
converge for each t, the limit is not necessarily the characteristic function of
a probability distribution. However, in this case the tightness of the sequence
translates to a very simple condition on the limiting characteristic function.

Theorem 109 (Continuity Theorem) If Xn has characteristic function ϕn ,
then Xn converges weakly if and only if there exists a function ϕ which is
continuous at 0 such that ϕn(t)→ ϕ(t) for each t . Note: In this case ϕ is
the characteristic function of the limiting random variable X .
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Proof. Suppose Xn ⇒ X. Then since the function eitx is a continuous
bounded function of x, then

E(eitXn)→ E(eitX).

Conversely, suppose that ϕn(t) → ϕ(t) for each t and ϕ is a continuous
function at t = 0. First prove that for all ε > 0 there exists a c < ∞ such
that P [|Xn| > c] ≤ ε for all n. This is Problem 11 below. This shows that the
sequence of random variables Xn is “tight” in the sense that any subsequence
of it contains a further subsequence which converges in distribution to a proper
cumulative distribution function. By the first half of the proof, ϕ(t) is the
characteristic function of the limit. Thus, since every subsequence has the same
limit, Xn ⇒ X.

Example 110 Suppose Xn ∼ U [−n, n] . Then the characteristic function
of Xn is ϕn(t) = (sin tn)/tn. Does this converge as n → ∞? Is the limit
continuous at 0?

Example 111 Suppose X1, . . . Xn . . . are independent Cauchy distributed
random variables with probability density function

f(x) =
1

π(1 + x2)
, x ∈ <.

Then the sample mean X̄ has the same distribution as X1.

Note: We may use the integral formula

∫ ∞

0

cos(tx)

b2 + x2
dx =

π

2b
e−tb, t ≥ 0

to obtain the characteristic function of the above Cauchy distribution

ϕ(t) = e−|t|.

6.1.3 Characteristic function of N(µ, σ2) .

The characteristic function of a random variable with the distribution N(µ, σ2)
is

ϕ(t) = exp{iµt− σ2t2

2
}.

(Note: Recall that for any real constant c,

∫ ∞

−∞
e−(x−c)2/2dx =

√
2π.

Use the fact that this remains true even if c = it).
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6.2 The Central Limit Theorem

Our objective is to show that the sum of independent random variables, when
standardized, converges in distribution to the standard normal distribution. The
proof usually used in undergraduate statistics requires the moment generating
function. However, the moment generating function exists only if moments of
all orders exist, and so a more general result, requiring only that the random
variables have finite mean and variance, needs to use characteristic functions.
Two preliminary lemmas are used in the proof.

Lemma 112 For real x ,

eix − (1 + ix− x2

2
) = r(x)

where |r(x)| ≤ min[x2, |x|
3

6 ]. Consequently,

ϕ(t) = 1 + itE(X)− t2

2
E(X2) + o(t2)

where o(t2)
t2 → 0 as t→ 0.

Proof. By expanding eix in a Taylor series with remainder we obtain

eix − 1

i
= x+ i

x2

2
+ i2

b2
2

where bn(x) =
∫ x

0
(x − s)neisds, and a crude approximation provides |b2| ≤∫ x

0
s2ds = x3/3. Integration by parts shows that b2 =

2b1−x2

i and substituting
this provides the remaining bound on the error term.

Lemma 113 For any complex numbers wi, zi, if |zi| ≤ 1, |wi| ≤ 1 , then
|∏i zi −

∏
i wi| ≤

∑
i |zi − wi|.

Proof. This is proved by induction using the fact that

n∏

i=1

zi−
n∏

i=1

wi = (zn−wn)(

n−1∏

i=1

zi)+wn(

n−1∏

i=1

zi−
n−1∏

i=1

wi) ≤ |zn−wn|+|(
n−1∏

i=1

zi−
n−1∏

i=1

wi)|.

This shows the often used result that

(1− c

n
+ o(

1

n
))n − (1− c

n
)n → 0

and hence that

(1− c

n
+ o(

1

n
))n → e−c as n→∞.
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Theorem 114 (Central Limit Theorem) If Xi are independent identically
distributed random variables with E(Xi) = µ, var(Xi) = σ2 , then

S∗n =
1

σ
√
n

n∑

i=1

(Xi − µ)

converges weakly to N(0, 1).

Proof. Suppose we denote the characteristic function of Xi−µ
σ by ϕ(t) .

By Lemma 112, ϕ(t) = 1 − t2

2 + r(t) where r(t)
t2 → 0 as t → 0. Then the

characteristic function of S∗n is

ϕn(t/
√
n) = {1− t2

2n
+ o(t2/n)}n.

Note that by Lemma 113,

|{1− t2

2n
+ o(t2/n)}n − (1− t2

2n
)n| ≤ n o(t2/n)→ 0

and the second term (1− t2

2n )
n → e−t2/2. Since this is the characteristic function

of the standard normal distribution, it follows that S∗n converges weakly to the
standard normal distribution.

6.3 Problems

1. Find the characteristic function of the normal(0,1) distribution. Prove
using characteristic functions that if F is the N(µ, σ2) c.d.f. then G(x) =
F (µ+ σx) is the N(0, 1) c.d.f.

2. Let F be a distribution function and define

G(x) = 1− F (−x−)

where x− denotes the limit from the left. Prove that F ∗G is symmetric.

3. Prove that F ∗G = G ∗ F.

4. Prove using characteristic functions that if Fn ⇒ F and Gn ⇒ G, then
Fn ∗Gn ⇒ F ∗G.

5. Prove that convolution is associative. That

(F ∗G) ∗H = F ∗ (G ∗H).

6. Prove that if ϕ is a characteristic function, so is |ϕ(t)|2.
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7. Prove that any characteristic function is non-negative definite:

n∑

i=1

n∑

j=1

ϕ(ti − tj)ziz̄j ≥ 0

for all real t1, ...tn and complex z1, ..., zn.

8. Find the characteristic function of the Laplace distribution with density
on <

f(x) =
1

2
e−|x|. (6.1)

What is the characteristic function of X1 +X2 where Xi are independent
with the probability density function (6.1)?

9. (Stable Laws) A family of distributions of importance in financial mod-
elling is the symmetric stable family. These are unimodal densities, sym-
metric about their mode, and roughly similar in shape to the normal or
Cauchy distribution (both special cases α = 2 or 1 respectively). They
are of considerable importance in finance as an alternative to the normal
distribution, because they tend to fit observations better in the tail of the
distribution than does the normal. However, this is a more complicated
family of densities to work with; neither the density function nor the cu-
mulative distribution function can be expressed in a simple closed form.
Both require a series expansion. They are most easily described by their
characteristic function, which, upon setting location equal to 0 and scale
equal to 1 is EeiXt = e−|t|

α

. The parameter 0 < α ≤ 2 indicates what
moments exist, for except in the special case α = 2 (the normal distribu-
tion), moments of order less than α exists while moments of order α or
more do not. Of course, for the normal distribution, moments of all or-
ders exist. The stable laws are useful for modelling in situations in which
variates are thought to be approximately normalized sums of independent
identically distributed random variables. To determine robustness against
heavy-tailed departures from the normal distribution, tests and estimators
can be computed with data simulated from a symmetric stable law with
α near 2. The probability density function does not have a simple closed
form except in the case α = 1 (the Cauchy distribution) and α = 2 (the
Normal distribution) but can, at least theoretically, be determined from
the series expansion of the probability density

fc(x) =

∞∑

k=0

(−1)k Γ((k + 1)/2)

πcαk!
cos(

kπ

c
)(
x

c
)k.

Let X1, ..., Xn be independent random variables all with a symmetric sta-
ble (α) distribution. Show that n−1/α

∑n
i=1Xi has the same Stable dis-

tribution. (If a stock price process follows a stable random walk with
α < 2, large jumps in the process are more likely than in the case of nor-
mal returns. See for example the graph below of a stable random walk,
α = 1.7).
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Figure 6.1: Stable Random Walk with α = 1.7

10. Let Ω be the unit interval and P the uniform distribution and suppose we
express each ω ∈ [0, 1] in the binary expansion which does not terminate
with finitely many terms. If ω = .ω1ω2...., define Rn(ω) = 1 if ωn = 1 and
otherwise Rn(ω) = −1. These are called the Rademacher functions. Prove
that they are independent random variables with the same distribution.

11. For the Rademacher functions Rn defined on the unit interval, Borel sets
and Lebesgue measure, let

Y1 = R1/2 +R3/2
2 +R6/2

3....

Y2 = R2/2 +R4/2
2 +R7/2

3 + ....

Y3 = R5/2 +R8/2
2 +R12/2

3 + ....

Prove that the Yi are independent identically distributed and find their
distribution.

12. Find the characteristic function of:

(a) The Binomial distribution

(b) The Poisson distribution

(c) The geometric distribution

Prove that suitably standardized, both the binomial distribution and the
Poisson distribution approaches the standard normal distribution as one
of the parameters →∞.

13. (Families Closed under convolution.) Show that each of the following
families of distributions are closed under convolution. That is suppose
X1, X2 are independent and have a distribution in the given family.
Then show that the distribution of X = X1 +X2 is also in the family
and identify the parameters.
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(a) Bin(n, p), with p fixed.

(b) Poisson ( λ ).

(c) Normal (µ, σ2).

(d) Gamma (α, β), with β fixed.

(e) Chi-squared.

(f) Negative Binomial, with p fixed.

14. Suppose that a sequence of random variables Xn has characteristic func-
tions ϕn(t) → ϕ(t) for each t and ϕ is a continuous function at t = 0.
Prove that the distribution of Xn is tight, i.e. for all ε > 0 there exists a
c <∞ such that P [|Xn| > c] ≤ ε for all n.

15. Prove, using the central limit theorem, that

n∑

i=0

nie−n

i!
→ 1

2
, as n→∞.

16. (Negative binomial) Suppose we decide in advance that we wish a fixed
number ( k ) of successes in a sequence of Bernoulli trials, and sample
repeatedly until we obtain exactly this number. Then the number of trials
X is random and has probability function

f(x) =

(
x− 1

k − 1

)
pk(1− p)x−k, x = k, k + 1, . . . .

Use the central limit theorem to show that this distribution can be approx-
imated by a normal distribution when k is large. Verify the central limit
theorem by showing that the characteristic function of the standardized
Negative binomial approaches that of the Normal.

17. Consider a random walk built from independent Bernoulli random vari-
ables Xi = 1 with probability p = µ/

√
n and otherwise Xi = 0. Define

the process

Bn(t) =
1√
n

[nt]∑

i=1

Xi

for all 0 ≤ t ≤ 1. Find the limiting distribution of B(t) and the limiting
joint distribution of B(s), B(t)−B(s) for 0 < s < t < 1.



Chapter 7

CONDITIONAL
EXPECTATION AND
MARTINGALES

7.1 Conditional Expectation.

Throughout this section we will assume that random variables X are defined on
a probability space (Ω,F , P ) and have finite second moments so E(X2) <∞.
This allows us to define conditional expectation through approximating one
random variable by another, measurable with respect to a more coarse (i.e.
made up of larger sets ) or less informative sigma-algebra. We begin with the
coursest sigma algebra of all, the trivial one {Ω, ϕ}, with respect to which only
constants are measurable.

What constant is the best fit to a random variable in the sense of smallest
mean squared error? In other words, what is the value of c solving

min
c
E[(X − c)2]?

Expanding,
E[(X − c)2] = var(X) + (EX − c)2

and so the minimum is achieved when we choose c = EX.
A constant is, of course, a random variable but a very basic one, measurable

with respect to the trivial sigma-field {Ω, ϕ}. Now suppose that we wished to
approximate the value of a random variable X, not with a constant, but with
another random variable Z, measurable with respect to some other sigma field
G ⊂ σ(X). How course or fine the sigma algebra G is depends on how much
information we have pertinent to the approximation of X. How good is our
approximation will be measured using the mean squared error

E[(X − Z)2]

69
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and we wish to minimize this over all possible G−random variables Z. The
minimizing value of Z is the conditional expected value of X.

Theorem 115 (conditional expectation as a projection)

Let G ⊂ F be sigma-algebras andX a random variable on (Ω,F , P ). Assume
E(X2) <∞. Then there exists a G-measurable Y such that

E[(X − Y )2] = infZE(X − Z)2 (7.1)

where the infimum is over all G-measurable random variables.

Definition 116 We denote the minimizing Y by E(X|G).

The next result assures us that the conditional expectation is unique, al-
most surely. In other words two random variables Y which solve the above
minimization problem differ on a set of probability zero.

Theorem 117 For two such minimizing Y1, Y2 , i.e. random variables Y
which satisfy (7.1), we have P [Y1 = Y2] = 1. This implies that conditional
expectation is almost surely unique.

Proof. Suppose both Y1 and Y2 are G-measurable and both minimize E[(X−
Y )2]. Then for any A ∈ G it follows from property (d) below that

∫

A

Y1dP =

∫

A

Y2dP

or ∫

A

(Y1 − Y2)dP = 0.

Choose A = [Y1 − Y2 ≥ 0] and note that

∫
(Y1 − Y2)IAdP = 0

and the integrand (Y1−Y2)IA is non-negative together imply that (Y1−Y2)IA =
0 almost surely. Similarly on the set A = [Y1 − Y2 < 0] we can show that
(Y1 − Y2)IA = 0 almost surely. It follows that Y1 = Y2 almost surely.

Example 118 Suppose G = {ϕ,Ω}. What is E(X|G)?

The only random variables which are measurable with respect to the trivial
sigma-field are constants. So this leads to the same minimization discussed
above, mincE[(X−c)2] = minc{var(X)+(EX−c)2} which results in c = E(X).

Example 119 Suppose G = {ϕ,A,Ac,Ω} for some event A. What is E(X|G)?
Consider the special case: X = IB.
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In this case suppose the random variable Z takes the value a on A and b on
the set Ac. Then

E[(X − Z)2] = E[(X − a)2IA] + E[(X − b)2IAc ]

= E(X2IA)− 2aE(XIA) + a2P (A)

+ E(X2IAc)− 2bE(XIAc) + b2P (Ac).

Minimizing this with respect to both a and b results in

a = E(XIA)/P (A)

b = E(XIAc)/P (Ac).

These values a and b are usually referred to in elementary probability as E(X|A)
and E(X|Ac) respectively. Thus, the conditional expectated value can be
written

E(X|G)(ω) =
{
E(X|A) if ω ∈ A

E(X|Ac) if ω ∈ Ac

As a special case consider X to be an indicator random variable X = IB . Then
we usually denote E(IB |G) by P (B|G) and

P (B|G)(ω) =
{
P (B|A) if ω ∈ A

P (B|Ac) if ω ∈ Ac

Note: Expected value is a constant, but the conditional expected value
E(X|G) is a random variable measurable with respect to G. Its value on the
atoms of G is the average of the random variable X over these atoms.

Example 120 Suppose G is generated by a finite partition {A1, A2, ..., An} of
the probability space Ω.. What is E(X|G)?

In this case, any G-measurable random variable is constant on the sets in
the partition Aj , j = 1, 2, ..., n and an argument similar to the one above shows
that the conditional expectation is the simple random variable:

E(X|G)(ω) =
n∑

i=1

ciIAi(ω)

where ci = E(X|Ai) =
E(XIAi)

P (Ai)

Example 121 Consider the probability space Ω = (0, 1] together with P =
Lebesgue measure and the Borel Sigma Algebra. Suppose the function X(ω)
is Borel measurable. Assume that G is generated by the intervals ( j−1n , j

n ] for
j = 1, 2, ...., n. What is E(X|G)?

In this case

E(X|G)(ω) = n

∫ j/n

(j−1)/n
X(s)ds when ω ∈ (

j − 1

n
,
j

n
]

= average of X values over the relevant interval.
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For the purpose of the following properties, we say that a random variable X
and a sigma-field G are independent if for any Borel set B the event [X ∈ B]
is independent of all events in G. We also remind the reader that all random
variables appearing in this section are assumed to have finite variance although
most of these properties can be extended to more general integrable random
variables.

7.1.1 Properties of Conditional Expectation.

(a) If a random variable X is G-measurable, E(X|G) = X.

(b) If a random variableX and a sigma-field G are independent, then E(X|G) =
E(X).

(c) For any square integrable G-measurable Z, E(ZX) = E[ZE(X|G)].
(d) (special case of (c)):

∫
A
XdP =

∫
A
E(X|G]dP for all A ∈ G.

(e) E(X) = E[E(X|G)].
(f) If a G-measurable random variable Z satisfies E[(X − Z)Y ] = 0 for all

other G-measurable random variables Y , then Z = E(X|G).
(g) If Y1, Y2 are distinct G−measurable random variables both minimizing

E(X − Y )2, then P (Y1 = Y2) = 1.

(h) Additive E(X + Y |G) = E(X|G) + E(Y |G).
Linearity E(cX + d|G) = cE(X|G) + d.

(i) If Z is G−measurable, E(ZX|G) = ZE(X|G) a.s.
(j) If H ⊂ G are sigma-algebras, E[E(X|G)|H] = E(X|H).

(k) If X ≤ Y , E(X|G) ≤ E(Y |G) a.s.
(l) Conditional Lebesgue Dominated Convergence. If Xn → X a.s. and

|Xn| ≤ Y for some integrable random variable Y , then E(Xn|G) →
E(X|G) in distribution

Proof. (Proof of the above properties)

(a) Notice that for any random variable Z that is G-measurable, E(X−Z)2 ≥
E(X − X)2 = 0 and so the minimizing Z is X ( by definition this is
E(X|G)).

(b) Consider a random variable Y measurable with respect G and therefore
independent of X. Then

E(X − Y )2 = E[(X − EX + EX − Y )2]

= E[(X − EX)2] + 2E[(X − EX)(EX − Y )] + E[(EX − Y )2]

= E[(X − EX)2] + E[(EX − Y )2] by independence

≥ E[(X − EX)2].
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It follows that E(X − Y )2 is minimized when we choose Y = EX and so
E(X|G) = E(X).

(c) for any G−measurable square integrable random variable Z, we may define
a quadratic function of λ by

g(λ) = E[(X − E(X|G)− λZ)2]

By the definition of E(X|G), this function is minimized over all real values
of λ at the point λ = 0 and therefore g′(0) = 0. Setting its derivative
g′(0) = 0 results in the equation

E(Z(X − E(X|G))) = 0

or E(ZX) = E[ZE(X|G)].

(d) If in (c) we put Z = IA where A ∈ G, we obtain
∫
A
XdP =

∫
A
E(X|G]dP.

(e) Again this is a special case of property (c) corresponding to Z = 1.

(f) Suppose a G-measurable random variable Z satisfies E[(X − Z)Y ] = 0
for all other G-measurable random variables Y . Consider in particular
Y = E(X|G)− Z and define

g(λ) = E[(X − Z − λY )2]

= E((X − Z)2 − 2λE[(X − Z)Y ] + λ2E(Y 2)

= E(X − Z)2 + λ2E(Y 2)

≥ E(X − Z)2 = g(0).

In particular g(1) = E[(X − E(X|G))2] ≥ g(0) = E(X − Z)2 and by
Theorem 117, Z = E(X|G) almost surely.

(g) This is just deja vu (Theorem 117) all over again.

(h) Consider, for an arbitrary G−measurable random variable Z,

E[Z(X + Y − E(X|G)− E(Y |G))] = E[Z(X − E(X|G))] + E[Z(Y − E(Y |G))]
= 0 by property (c).

It therefore follows from property (f) that E(X + Y |G) = E(X|G) +
E(Y |G).
By a similar argument we may prove E(cX + d|G) = cE(X|G) + d.

(i) This is Problem 2.

(j) This is Problem 4 (sometimes called the tower property of conditional
expectation: If H ⊂ G are sigma-algebras, E[E(X|G)|H] = E(X|H)).

(k) If X ≤ Y , E(X|G) ≤ E(Y |G) a.s.
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(l) Conditional Lebesgue Dominated Convergence. If Xn → X a.s. and
|Xn| ≤ Y for some integrable random variable Y , then E(Xn|G) →
E(X|G) in probability.

Notes. In general, we define E(X|Z) = E(X|σ(Z)) and conditional
variance var(X|G) = E{(X − E(X|G))2|G}. For results connected with
property (l) above providing conditions under which the conditional ex-
pectations converge, see Convergence in distribution of conditional expec-
tations, (1994) E.M. Goggin, Ann. Prob 22, 2. 1097-1114.

7.2 Conditional Expectation for integrable ran-
dom variables.

We have defined conditional expectation as a projection only for random vari-
ables with finite variance. It is fairly easy to extend this definition to random
variables X on a probability space (Ω,F , P ) for which E(|X|) <∞. We wish
to define E(X|G) where the sigma algebra G ⊂ F . First, for non-negative in-
tegrable X choose simple random variables Xn ↑ X. Since simple random
variables have only finitely many values, they have finite variance, and we can
use the definition above for their conditional expectation. Then E(Xn|G) ↑ and
so it converges. Define E(X|G) to be the limit. In general, for random variables
taking positive and negative values, we define E(X|G) = E(X+|G)−E(X−|G).
There are a number of details that need to be ironed out. First we need to
show that this new definition is consistent with the old one when the random
variable happens to be square integrable. We can also show that the proper-
ties (a)-(i) above all hold under this new definition of conditional expectation.
We close with the more common definition of conditional expectation found in
most probability and measure theory texts, essentially property (d) above. It
is, of course, equivalent to the definition as a projection in section 7.1 and the
definition above as a limit of the conditional expectation of simple functions.

Theorem 122 Consider a random variable X defined on a probability space
(Ω,F , P ) for which E(|X|) <∞. Suppose the sigma algebra G ⊂ F . Then there
is a unique (almost surely P ) G−measurable random variable Z satisfying

∫

A

XdP =

∫

A

ZdP for all A ∈ G

Any such Z we call the conditional expectation and denote by E(X|G).

7.3 Martingales in Discrete Time

In this section all random variables are defined on the same probability space
(Ω,F , P ). Partial information about these random variables may be obtained
from the observations so far, and in general, the “history” of a process up to time
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t is expressed through a sigma-algebra Ht ⊂ F . We are interested in stochastic
processes or sequences of random variables called martingales, intuitively, the
total fortune of an individual participating in a “fair game”. In order for the
game to be “fair”, the expected value of your future fortune given the history
of the process up to and including the present should be equal to your present
wealth. In a sense you are neither tending to increase or decrease your wealth
over time- any fluctuations are purely random. Suppose your fortune at time
s is denoted Xs . The values of the process of interest and any other related
processes up to time s generate a sigma-algebra Hs. Then the assertion that
the game is fair implies that the expected value of our future fortune given
this hisstory of the process up to the present is exactly our present wealth
E(Xt|Hs) = Xs for t > s.

Definition 123 {(Xt, Ht); t ∈ T} is a martingale if

(a) Ht is increasing (in t) family of sigma-algebras

(b) Each Xt is Ht− measurable and E|Xt| <∞.

(c) For each s < t, s, t ∈ T , E(Xt|Hs) = Xs a.s.

Example 124 Suppose Zt are independent random variables with expectation
0. Define Ht = σ(Z1, Z2, . . . Zt) and St =

∑t
i=1 Zi . Then {(St, Ht),

t = 1, 2, ....} is a martingale. Suppose that E(Z2t ) = σ2 < ∞. Then {(S2t −
tσ2, Ht), t = 1, 2, ...} is a martingale.

Example 125 Suppose Zt are independent random variables with Zt ≥ 0.
Define Ht = σ(Z1, Z2, . . . Zt) and Mt =

∏t
i=1 Zi . Suppose that E(Zλ

i ) =
φ(λ) <∞. Then

{( M
λ
t

φt(λ)
, Ht), t = 1, 2, ...}

is a martingale.

This is an example of a parametric family of martingales indexed by λ ob-
tained by multiplying independent random variables.

Example 126 Let X be any integrable random variable, and Ht an in-
creasing family of sigma-algebras. Put Xt = E(X|Ht) . Then (Xt, Ht) is a
martingale.

Definition 127 Let {(Mn, Hn);n = 1, 2, ...} be a martingale and An be a se-
quence of random variables measurable with respect to Hn−1. Then the sequence
An is called non-anticipating. (an alternate term is predictable)

In gambling, we must determine our stakes and our strategy on the n′th
play of a game based on the information available to use at time n − 1. Simi-
larly, in investment, we must determine the weights on various components in
our portfolio at the end of day (or hour or minute) n − 1 before the random
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marketplace determines our profit or loss for that period of time. In this sense
gambling and investment strategies must be determined by non-anticipating se-
quences of random variables (although both gamblers and investors often dream
otherwise).

Definition 128 (Martingale Transform). Let {(Mt, Ht), t = 0, 1, 2, ...} be a
martingale and let An be a bounded non-anticipating sequence with respect to
Hn. Then the sequence

M̃t = A1(M1 −M0) + ...+At(Mt −Mt−1) (7.2)

is called a Martingle transform of Mt.

The martingale transform is sometimes denoted A ◦M.

Theorem 129 {(M̃t, Ht), t = 1, 2, ...} is a martingale.

Proof.

E[M̃j − M̃j−1|Hj−1] = E[Aj(Mj −Mj−1)|Hj−1]

= AjE[(Mj −Mj−1)|Hj−1] since Aj is Hj−1 measurable

= 0 a.s.

Therefore
E[M̃j |Hj−1] = M̃j−1 a.s.

Consider a random variable τ that determines when we stop betting or
investing. Its value can depend arbitrarily on the outcomes in the past, as
long as the decision to stop at time τ = n depends only on the results at time
n, n− 1, ...etc. Such a random variable is called an optional stopping time.

Definition 130 A random variable τ taking values in {0, 1, 2, ...} ∪ {∞} is a
(optional) stopping time for a martingale (Xt, Ht) if for each n , [τ ≤ n] ∈
Hn .

If we stop a martingle at some random stopping time, the result continues
to be a martingale as the following theorem shows.

Theorem 131 Suppose that {(Mt, Ht), t = 0, 1, 2, ...} is a martingale and τ
is an optional stopping time with values on {0, 1, 2, ...}. Define Yn = Mn∧τ =
Mmin(n,τ). Then {(Yn, Hn), n = 0, 1, 2, ..} is a martingale.

Proof. Notice that

Mn∧τ = M0 +

n∑

j=1

(Mj −Mj−1)I(τ ≥ j).

Letting Aj = I(τ ≥ j) this is a bounded Hj−1−measurable sequence and
therefore

∑n
j=1(Mj −Mj−1)I(τ ≥ j) is a martingale transform. By Theorem

128 it is a martingale.
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Example 132 (Ruin probabilities). Consider a random walk Sn =
∑n

i=1Xi

where the random variables Xi are independent identically distributed with P (Xi =
1) = p, P (Xi = −1) = q, P (Xi = 0) = 1− p− q for 0 < p+ q ≤ 1, p 6= q. Then
Mn = (q/p)Sn is a martingale. Suppose that A < S0 < B and define the
optional stopping time τ as the first time we hit either of two barriers at A or
B. Then Mn∧τ is a martingale. Since E(Mτ ) = limn→∞E(Mn∧τ ) = (q/p)S0

by dominated covergence, we have

(q/p)ApA + (q/p)BpB = (q/p)S0 (7.3)

where pA and pB = 1− pA are the probabilities of hitting absorbing barriers at
A or B respectively. Solving, it follows that

((q/p)A − (q/p)B)pA = (q/p)S0 − (q/p)B (7.4)

or that

pA =
(q/p)S0 − (q/p)B

(q/p)A − (q/p)B
. (7.5)

In the case p = q, a similar argument provides

pA =
B − S0
B −A

. (7.6)

Definition 133 For an optional stopping time τ define

Hτ = {A ∈ H;A ∩ [τ ≤ n] ∈ Hn, for all n}. (7.7)

Theorem 134 Hτ is a sigma-algebra.

Proof. Clearly since the empty set ϕ ∈ Hn for all n, so is ϕ∩ [τ ≤ n] and
so ϕ ∈ Hτ . We also need to show that if A ∈ Hτ then so is the complement
Ac. Notice that for each n,

[τ ≤ n] ∩ {A ∩ [τ ≤ n]}c
= [τ ≤ n] ∩ {Ac ∪ [τ > n]}
= Ac ∩ [τ ≤ n]

and since each of the sets [τ ≤ n] and A ∩ [τ ≤ n] are Hn−measurable, so
must be the set Ac∩ [τ ≤ n]. Since this holds for all n it follows that whenever
A ∈ Hτ then so Ac. Finally, consider a sequence of sets Am ∈ Hτ for all
m = 1, 2, .... We need to show that the countable union ∪∞m=1Am ∈ Hτ . But

{∪∞m=1Am} ∩ [τ ≤ n] = ∪∞m=1{Am ∩ [τ ≤ n]}

and by assumption the sets {Am ∩ [τ ≤ n]} ∈ Hn for each n. Therefore

∪∞m=1{Am ∩ [τ ≤ n]} ∈ Hn

and since this holds for all n, ∪∞m=1Am ∈ Hτ .
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Definition 135 {(Xt, Ht); t ∈ T} is a submartingale if

(a) Ht is increasing (in t) family of sigma-algebras.

(b) Each Xt is Ht measurable and E|Xt| <∞.

(c) For each s < t,, E(Xt|Hs) ≥ Xs a.s.

Note that every martingale is a submartingale. There is a version of
Jensen’s inequality for conditional expectation as well as the one proved before
for ordinary expected value.

Theorem 136 (Jensen’s Inequality) Let φ be a convex function. Then for
any random variable X and sigma-field H,

φ(E(X|H)) ≤ E(φ(X)|H). (7.8)

Proof. Consider the set L of linear function L(x) = a+ bx that lie entirely
below the graph of the function φ(x). It is easy to see that for a convex function

φ(x) = sup{L(x);L ∈ L}.

For any such line,

E(φ(X)|H) ≥ E(L(X)|H)

≥ L(E(X)|H)).

If we take the supremum over all L ∈ L , we obtain

E(φ(X)|H) ≥ φ(E(X)|H)).

Example 137 Let X be any random variable and H be a sigma-field. Then
for 1 ≤ p ≤ k <∞

{E(|X|p|H)}1/p ≤ {E(|X|k|H)}1/k. (7.9)

In the special case that H is the trivial sigma-field, this is the inequality

||X||p ≤ ||X||k. (7.10)

Proof. Consider the function φ(x) = |x|k/p. This function is convex pro-
vided that k ≥ p and by the conditional form of Jensen’s inequality,

E(|X|k|H) = E(φ(|X|p)|H) ≥ φ(E(|X|p|H)) = |E(|X|p|H)|k/p a.s.
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Example 138 (Constructing Submartingales). Let Sn be a martingale with
respect to Hn. Then (|Sn|p, Hn) is a submartingale for any p ≥ 1 provided
that E|Sn|p <∞.

Proof. Since the function φ(x) = |x|p is convex for p ≥ 1, it follows from
the conditional form of Jensen’s inequaltiy that

E(|Sn+1|p|Hn) = E(φ(Sn+1)|Hn) ≥ φ(E(Sn+1|Hn)) = φ(Sn) = |Sn|p a.s.

Theorem 139 Let Xn be a submartingale and suppose φ is a convex nonde-
creasing function with Eφ(Xn) <∞. Then φ(Xn) is a submartingale.

Proof. Since the function φ(x) is convex ,

E(φ(Sn+1)|Hn) ≥ φ(E(Sn+1|Hn)) ≥ φ(Sn) a.s.

since E(Sn+1|Hn) ≥ Sn a.s. and the function φ is non-decreasing.

Corollary 140 Let (Xn, Hn) be a submartingale. Then ((Xn − a)+, Hn) is a
submartingale.

Proof. The function φ(x) = (x− a)+ is convex and non-decreasing.

Theorem 141 (Doob’s Maximal Inequality) Suppose (Mn, Hn) is a non-
negative submartingale. Then for λ > 0 and p ≥ 1,

P ( sup
0≤m≤n

Mm ≥ λ) ≤ λ−pE(Mp
n)

Proof. We prove this in the case p = 1. The general case we leave as a
problem. Define a stopping time

τ = min{m;Mm ≥ λ}

so that τ ≤ n if and only if the maximum has reached the value λ by time n
or

P [ sup
0≤m≤n

Mm ≥ λ] = P [τ ≤ n].

Now on the set [τ ≤ n], the maximum Mτ ≥ λ so

λI(τ ≤ n) ≤MτI(τ ≤ n) =

n∑

i=1

MiI(τ = i). (7.11)

By the submartingale property, for any i ≤ n and A ∈ Hi,

E(MiIA) ≤ E(MnIA).



80 CHAPTER 7. CONDITIONAL EXPECTATION AND MARTINGALES

Therefore, taking expectations on both sides of (7.11), and noting that for all
i ≤ n,

E(MiI(τ = i)) ≤ E(MnI(τ = i))

we obtain

λP (τ ≤ n) ≤ E(MnI(τ ≤ n)) ≤ E(Mn).

Theorem 142 (Doob’s Lp Inequality) Suppose (Mn, Hn) is a non-negative
submartingale and put M∗

n = sup0≤m≤nMn. Then for p > 1, and all n

||M∗
n||p ≤

p

p− 1
||Mn||p

One of the main theoretical properties of martingales is that they converge
under fairly general conditions. Conditions are clearly necessary. For example
consider a simple random walk Sn =

∑n
i=1 Zi where Ziare independent identi-

cally distributed with P (Zi = 1) = P (Zi = −1) = 1
2 . Starting with an arbitrary

value of S0, say S0 = 0 this is a martingale, but as n→∞ it does not converge
almost surely or in probability.

On the other hand, consider a Markov chain with the property that P (Xn+1 =
j|Xn = i) = 1

2i+1 for j = 0, 1, ..., 2i. Notice that this is a martingale and begin-
ning with a positive value, say X0 = 10, it is a non-negative martingale. Does
it converge almost surely? If so the only possible limit is X = 0 because the
nature of the process is such that P [|Xn+1 −Xn| ≥ 1|Xn = i] ≥ 2

3 unless i = 0.
The fact that it does converge a.s. is a consequence of the martingale conver-
gence theorem. Does it converge in L1 i.e. in the sense that E[|Xn −X|] → 0
as n → ∞? If so, then clearly E(Xn) → E(X) = 0 and this contradicts the
martingale property of the sequence which implies E(Xn) = E(X0) = 10. This
is an example of a martingale that converges almost surely but not in L1.

Lemma 143 If (Xt, Ht), t = 1, 2, ..., n is a (sub)martingale and if α, β are
optional stopping times with values in {1, 2, ..., n} such that α ≤ β then

E(Xβ |Hα) ≥ Xα

with equality if Xt is a martingale.

Proof. It is sufficient to show that
∫

A

(Xβ −Xα)dP ≥ 0

for all A ∈ Hα. Note that if we define Zi = Xi−Xi−1 to be the submartingale
differences, the submartingale condition implies

E(Zj |Hi) ≥ 0 a.s. whenever i < j.
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Therefore for each j = 1, 2, ...n and A ∈ Hα,

∫

A∩[α=j]

(Xβ −Xα)dP =

∫

A∩[α=j]

n∑

i=1

ZiI(α < i ≤ β)dP

=

∫

A∩[α=j]

n∑

i=j+1

ZiI(α < i ≤ β)dP

=

∫

A∩[α=j]

n∑

i=j+1

E(Zi|Hi−1)I(α < i)I(i ≤ β)dP

≥ 0 a.s.

since I(α < i) , I(i ≤ β) and A ∩ [α = j] are all measurable with respect to
Hi−1 and E(Zi|Hi−1) ≥ 0 a.s. If we add over all j = 1, 2, ..., n we obtain the
desired result.

The following inequality is needed to prove a version of the submartingale
convergence theorem.

Theorem 144 (Doob’s upcrossing inequality) Let Mn be a submartingale and
for a < b , define Nn(a, b) to be the number of complete upcrossings of the
interval (a, b) in the sequence Mj , j = 0, 1, 2, ..., n. This is the largest k such
that there are integers i1 < j1 < i2 < j2... < jk ≤ n for which

Mil ≤ a and Mjl ≥ b for all l = 1, ..., k.

Then
(b− a)ENn(a, b) ≤ E{(Mn − a)+ − (M0 − a)+}

Proof. By Corollary 140, we may replace Mn by Xn = (Mn − a)+ and
this is still a submartingale. Then we wish to count the number of upcrossings
of the interval [0, b′] where b′ = b− a. Define stopping times for this process by
α0 = 0,

α1 = min{j; 0 ≤ j ≤ n,Xj = 0}
α2 = min{j;α1 ≤ j ≤ n,Xj ≥ b′}
...

α2k−1 = min{j;α2k−2 ≤ j ≤ n,Xj = 0}
α2k = min{j;α2k−1 ≤ j ≤ n,Xj ≥ b′}.

In any case, if αk is undefined because we do not again cross the given boundary,
we define αk = n. Now each of these random variables is an optional stopping
time. If there is an upcrossing between Xαj and Xαj+1

(where j is odd) then
the distance travelled

Xαj+1
−Xαj ≥ b′.

If Xαj is well-defined (i.e. it is equal to 0) and there is no further upcrossing,
then Xαj+1

= Xn and

Xαj+1
−Xαj = Xn − 0 ≥ 0.



82 CHAPTER 7. CONDITIONAL EXPECTATION AND MARTINGALES

Similarly if j is even, since by the above lemma, (Xαj , Hαj ) is a submartingale,

E(Xαj+1
−Xαj ) ≥ 0.

Adding over all values of j, and using the fact that α0 = 0 and αn = n,

E

n∑

j=0

(Xαj+1
−Xαj ) ≥ b′ENn(a, b)

E(Xn −X0) ≥ b′ENn(a, b).

In terms of the original submartingale, this gives

(b− a)ENn(a, b) ≤ E(Mn − a)+ − E(M0 − a)+.

Doob’s martingale convergence theorem that follows is one of of the nicest
results in probability and one of the reasons why martingales are so frequently
used in finance, econometrics, clinical trials and lifetesting.

Theorem 145 (Sub)martingale Convergence Theorem. Let (Mn, Hn); n =
1, 2, . . . be a submartingale such that supn→∞EM+

n < ∞. Then there is an
integrable random variable M such that Mn →M a.s.

Proof. The proof is an application of the upcrossing inequality. Consider
any interval a < b with rational endpoints. By the upcrossing inequality,

E(Na(a, b)) ≤
1

b− a
E(Mn − a)+ ≤ 1

b− a
[|a|+ E(M+

n )]. (7.12)

Let N(a, b) be the total number of times that the martingale completes an up-
crossing of the interval [a, b] over the infinite time interval [1,∞) and note
that Nn(a, b) ↑ N(a, b) as n → ∞. Therefore by monotone convergence
E(Na(a, b))→ EN(a, b) and by (7.12)

E(N(a, b)) ≤ 1

b− a
lim sup[a+ E(M+

n )] <∞.

This imples

P [N(a, b) <∞] = 1.

Therefore,

P (lim infMn ≤ a < b ≤ lim supMn) = 0

for every rational a < b and this implies that Mn converges almost surely to
a (possibly infinite) random variable. Call this limit M.We need to show that
this random variable is almost surely finite. Because E(Mn) is non-decreasing,

E(M+
n )− E(M−

n ) ≥ E(M0)
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and so
E(M−

n ) ≤ E(M+
n )−E(M0).

But by Fatou’s lemma

E(M+) = E(lim infM+
n ) ≤ lim inf EM+

n <∞

Therefore E(M−) < ∞ and consequently the random variable M is finite
almost surely.

Theorem 146 (Lp martingale Convergence Theorem) Let (Mn, Hn); n =
1, 2, . . . be a martingale such that supn→∞E|Mn|p <∞, p > 1. Then there is
an random variable M such that Mn →M a.s. and in Lp.

Example 147 (The Galton-Watson process). Consider a population of Zn

individuals in generation n each of which produces a random number ξ of
offspring in the next generation so that the distribution of Zn+1 is that of
ξ1 + ....+ ξZn for independent identically distributed ξ. This process Zn, n =
1, 2, ... is called the Galton-Watson process. Let E(ξ) = µ. Assume we start
with a single individual in the population Z0 = 1 (otherwise if there are j
individuals in the population to start then the population at time n is the sum
of j independent terms, the offspring of each). Then

• The sequence Zn/µ
n is a martingale.

• If µ < 1, Zn → 0 and Zn = 0 for all sufficiently large n.

• If µ = 1 and P (ξ 6= 1) > 0, then Zn = 0 for all sufficiently large n.

• If µ > 1, then P (Zn = 0 for some n) = ρ where ρ is the unique value
< 1 satisfying E(ρξ) = ρ.

Definition 148 {(Xt, Ht); t ∈ T} is a supermartingale if

(a) Ht is increasing (in t) family of sigma-algebras.

(b) Each Xt is Ht measurable and E|Xt| <∞.

(c) For each s < t, with s, t ∈ T ,we have E(Xt|Hs) ≤ Xs a.s.

Theorem 149 Suppose An ≥ 0 is a predictable (non-anticipating) bounded se-
quence and Xn is a supermartingale, n = 0, 1, .... Then the supermartingale
transform X̃ = A ◦X defined by

X̃t = A1(X1 −X0) + ...+At(Xt −Xt−1) (7.13)

is a supermartingale.

Theorem 150 Let (Mn, Hn); n = 0, 1, 2, . . . be a supermartingale such that
Mn ≥ 0. Then there is a random variable M such that Mn → M a.s. with
E(M) ≤ E(M0).
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Example 151 Let Sn be a simple symmetric random walk with S0 = 1 and
define the optional stopping time N = inf{n;Sn = 0}. Then

Xn = Sn∧N

is a non-negative (super)martingale and therefore Xn → almost surely. The
limit must be 0 since otherwise, |Xn+1 − Xn| = 1 and so convergence is
impossible. However, in this case, E(Xn) = 1 whereas E(X) = 0 so the
convergence is not in L1.

Definition 152 {(Xt, Ht); t ∈ T} is a reverse martingale if

(a) Ht is decreasing (in t) family of sigma-algebras.

(b) Each Xt is Ht− measurable and E|Xt| <∞.

(c) For each s < t, E(Xs|Ht) = Xt a.s.

Example 153 Let X be any integrable random variable, Ht be any decreasing
family of sigma-algebras. Put Xt = E(X|Ht) . Then (Xt, Ht) is a reverse
martingale.

Theorem 154 (Reverse martingale convergence Theorem). If (Xn, Hn); n =
1, 2, . . . is a reverse martingale,

Xn → E(X1| ∩∞n=1 Hn) a.s. (7.14)

Example 155 (The Strong Law of Large Numbers) Let Yi be independent iden-
tically distributed, Hn = σ(Ȳn, Yn+1, Yn+2, ...) , where Ȳn = 1

n

∑n
i=1 Yi. Then

Hn is a decreasing family of sigma fields and Ȳn = E(Y1|Hn) is a reverse
martingale. It follows from the reverse martingale convergence theorem that
Ȳn → Y where Y is a random variable measurable with respect to ∩∞n=1Hn.
But ∩∞n=1Hn is in the tail sigma-field and so by the Hewitt-Savage 0-1 Law,
Y is a constant almost surely and Y = E(Yi).

Example 156 (Hewitt-Savage 0-1 Law) Suppose Yi are independent identically
distributed and A is an event in the tail sigma-field. Then P (A) = 0 or
P (A) = 1.

7.4 Uniform Integrability

Definition 157 A set of random variables {Xi, i = 1, 2, ....} is uniformly inte-
grable if

sup
i
E(|Xi|I(|Xi| > c)→ 0 as c→∞
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7.4.1 Some Properties of uniform integrability:

1. Any finite set of integrable random variables is uniformly integrable.

2. Any infinite sequence of random variables which converges in L1 is uni-
formly integrable.

3. Conversely if a sequence of random variables converges almost surely and
is uniformly integrable, then it also converges in L1.

4. If X is integrable on a probability space (Ω, H) and Ht any family of
sub-sigma fields, then {E(X|Ht)} is uniformly integrable.

5. If {Xn, n = 1, 2, ...}is uniformly integrable, then supnE(Xn) <∞.

Theorem 158 Suppose a sequence of random variables satisfies Xn → X in
probability. Then the following are all equivalent:

1. {Xn, n = 1, 2, ...} is uniformly integrable

2. Xn → X in L1.

3. E(|Xn|)→ E(|X|)

Theorem 159 Suppose Xn is a submartingale. Then the following are all
equivalent:

1. {Xn, n = 1, 2, ...} is uniformly integrable

2. Xn → X almost surely and in L1.

3. Xn → X in L1.

Theorem 160 Suppose Xn is a martingale. Then the following are all equiva-
lent:

1. {Xn, n = 1, 2, ...} is uniformly integrable

2. Xn → X almost surely and in L1.

3. Xn → X in L1.

4. There exists some integrable X such that Xn = E(X|Hn) a.s.
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7.5 Martingales and Finance

Let S(t) denote the price of a security at the beginning of period t = 0, 1, 2, ...T .
We assume that the security pays no dividends. Define the (cumulative) returns
process associated with this security by RS where

∆RS(t) = RS(t)−RS(t− 1) =
∆S(t)

S(t− 1)
=
S(t)− S(t− 1)

S(t− 1)
, RS(0) = 0.

Then 100∆RS(t)% is the percentage return in an investment in the stock in the
t− 1′st period. The returns process is a more natural characterisation of stock
prices than the original stock price process since it is invariant under artificial
scale changes such as stock splits etc. Note that we can write the stock price in
terms of the returns process;

S(t) = S(0)

t∏

i=1

(1 + ∆RS(i)).

Now consider another security, a riskless discount bond which pays no coupons.
Assume that the price of this bond at time t is B(t), B(0) = 1 and RB(t)
is the return process associated with this bond. Then ∆RB(t) = r(t) is the
interest rate paid over the t− 1’st period. It is usual that the interest paid over
the t−1st period should be declared in advance, i.e. at time t−1 so that if S(t)
is adapted to a filtration Ft, then r(t) is predictable , i.e. is Ft−1−measurable.
The discounted stock price process is the process given by

S∗(t) = S(t)/B(t).

Consider a trading strategy of the form (β(t), α(t)) representing the total
number of shares of bonds and stocks respectively held at the beginning of the
period (t − 1, t). Since our investment strategy must be determined by using
only the present and the past values of this and related processes, both β(t) and
α(t) are predictable processes. Then the value of our investment at time t− 1
is Vt−1 = β(t)B(t−1)+α(t)S(t−1) and at the end of this period, this changes
to β(t)B(t)+α(t)S(t) with the difference β(t)∆B(t)+α(t)∆S(t) representing
the gain over this period. An investment strategy is self-financing if the value
after rebalancing the portfolio is the value before- i.e. if all investments are
paid for by the above gains. In other words if Vt = β(t)B(t) + α(t)S(t) for
all t. An arbitrage opportunity is a trading strategy that makes money with no
initial investment; i.e. one such that V0 = 0, Vt ≥ 0 for all t = 1, . . . T and
E(VT ) > 0. The basic theorem of no-arbitrage pricing is the following:

7.5.1 Theorem

There are no arbitrage opportunities in the above economy if and only if there
is a measure Q equivalent to the underlying measure P i.e. P << Q and
Q << P such that under Q the discounted process is a martingale; i.e.
EQ(S

∗(t)|Ft−1] = S∗(t− 1) a.s. for all t ≤ T .
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Proof; See Pliska (3.19)) page 94.
Note: The measure Q is called the equivalent martingale measure and is used

to price derivative securities. For any attainable contingent claim X; (a for any
random variable X which can be written as a linear function of the avail-
able investments), the arbitrage-free price at time t is given by the conditional
expected value under Q of the discounted return X given Ft.

7.6 Problems

1. Let (Ω,F , P ) be the unit interval with the Borel sigma-algebra and
Lebesgue measure defined thereon. Define Fn to be the sigma field
generated by the intervals ( j−12n , j

2n ] , j = 1, 2, . . . 2n. Let X be a
bounded continuous function on the unit interval.

(a) Find E(X|Fn).

(b) Show Fn ⊂ Fn+1 for all n .

(c) Verify that E(X|Fn) converges pointwise and identify the limit.

(d) Verify directly that E{E(X|Fn)} = E(X).

(e) What could you conclude if X had countably many points of dis-
continuity?

2. Prove property (i), that if Z is G−measurable, E(ZX|G) = ZE(X|G)
a.s.

3. Suppose that X is integrable so that E(|X|) <∞. Prove for constants c, d
that E(cX+d|G) = cE(X|G)+d (First give the proof in case E(X2) <∞).

4. Prove property (j): if H ⊂ G are sigma-algebras, E[E(X|G)|H] =
E(X|H). Does the same hold if G ⊂ H?

5. Prove: if X ≤ Y , E(X|G) ≤ E(Y |G) a.s.

6. Prove: var(X) = E{var(X|G)}+ var{E(X|G)}.

7. Prove that if X and Y are simple random variables, X =
∑

ciIAi and
Y =

∑
j djIBj then

E(X|Y )(ω) =
∑

j

∑

i

ciP (Ai|Bj)IBj (ω).

8. Suppose X is a normal(0, 1) variate and Y = XI(X ≤ c). Find E(X|Y ).

9. Suppose X and Y are independent exponentially distributed random
variables each with mean 1. Let I be the indicator random variable
I = I(X > Y ). Find the conditional expectations

(a) E(X|I)
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(b) E(X + Y |I)

10. Suppose X is a random variable having the Poisson(λ) distribution and
define the indicator random variable I = I(X is even). Find E(X|I).

11. Consider the pair of random variables (Xn, Yn) where Xn = X, Yn =
(1/n)X for all n = 1, 2, . . .. Show that (Xn, Yn) converges almost surely
to some (X,Y ) but it is NOT true in general that E(Xn|Yn) → E(X|Y )
almost surely or that E(Xn|Yn)→ E(X|Y ) weakly.

12. Suppose Yi are independent identically distributed. Define Fn = σ(Y(1), ..., Y(n), Yn+1, Yn+2, ...) ,
where (Y(1), ..., Y(n)) denote the order statistics. Show Fn is a decreasing

family of sigma fields, find s2n = E( 12 (Y1−Y2)2|Fn) and show it is a reverse
martingale. Conclude a limit theorem.

13. Let X be an arbitrary absolutely continuous random variable with prob-
ability density function f(x). Let α(s) = f(s)/P [X ≥ s] denote the
hazard function. Show

Xt = I(X ≥ t)−
∫ min(X,t)

−∞
α(s)ds

is a martingale with respect to a suitable family of sigma-algebras.

14. Suppose (Xt,Ft) is a martingale and a random variable Y is independent
of every Ft . Show that we continue to have a martingale when Ft is
replace by σ(Y,Ft).

15. Suppose τ is an optional stopping time taking values in a interval {1, 2, ..., n}.
Suppose {(Xt,Ft); t = 1, 2, ..., n} is a martingale. Prove E(Xτ ) = E(X1).

16. Prove the general case of Doob’s maximal inequality, that for p > 1, λ > 0
and a non-negative submartingale Mn,

P ( sup
0≤m≤n

Mm ≥ λ) ≤ λ−pE(Mp
n)

17. Consider a stock price process S(t) and a riskless bond price process
B(t) and their associated returns process ∆RS(t) and ∆RB(t) = r(t).
Assume that the stock price takes the form of a binomial tree; S(t) =
S(t − 1)[d + (u − d)Xt] where Xt are independent Bernoulli random
variables adapted to some filtration Ft and where d < 1 < 1 + r(t) < u
for all t. We assume that under the true probability measure P , P (Xt = 0)
and P (Xt = 1) are positive for all t.

Determine a measure Q such that the discounted process S∗(t) = S(t)
B(t) is

a martingale under the new measure Q and such that Q is equivalent to
P i.e. P << Q and Q << P . Is this measure unique? What if we were
to replace the stock price process by one which had three branches at each
step, i.e. it either stayed the same, increased by a factor u or decreased
by factor d at each step (a trinomial tree)?
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18. Prove that if, under a measure Q, the expected return from a stock is the
risk-free interest rate; i.e. if

EQ[∆RS(t)|Ft−1] = r(t) a.s.

then the discounted price process S∗(t) is a martingale under Q.

19. Prove that for an optional stoping time τ, σ(τ) ⊂ Hτ .

20. Let X1, X2, ... be a sequence of independent random variables all with the
same expected value µ. Suppose τ is an optional stopping time with
respect to the filtration Ht = σ(X1, X2, ..., Xt), t = 1, 2, ... and assume
that

E(
τ∑

i=1

|Xi|) <∞.

Prove that

E(
τ∑

i=1

Xi) = µE(τ).

21. Find an example of a martingale Xt, t = 1, 2, .... and an optional stopping
time τ such that

P [τ <∞] = 1

but Xτ is not integrable.




