
Chapter 8

Martingales in Continuous
Time

We denote the value of (continuous time) stochastic process X at time t denoted
by X(t) or by Xt as notational convenience requires. For each t ∈ [0,∞)
let Ht be a sub sigma-Þeld of H such that Hs ⊂ Ht whenever s ≤ t. We
call such a sequence a Þltration. A stochastic process X is said to be adapted
to the Þltration if X(t) is measurable Ht for all t ∈ [0,∞).
We assume the existence of a Þltration and that all stochastic processes

under consideration are adapted to that Þltration Ht. We also assume that
the Þltration Ht is right continuous, i.e. that\

²>0

Ht+² = Ht. (8.1)

Without loss of generality, we can assume that a Þltration is right continuous
because if Ht is any Þltration, then we can make it right continuous by replacing
it with

Ht+ =
\
²>0

Ht+². (8.2)

We use the fact that the intersection of sigma Þelds is a sigma Þeld. Note that
any process that was adapted to the original Þltration is also adapted to the
new Þltration Ht+.We also typically assume, by analogy to the deÞnition of the
Lebesgue measureable sets, that if A is any set with P (A) = 0, then A ∈ H0.
These two conditions, that the Þltration is right continuous and contains the
P−null sets are referred to as the standard conditions.
If s and t are two time points in [0 , ∞) then we shall let s∧ t be the

minimum of s and t.

DeÞnition 161 Let X(t) be a continuous time stochastic process adapted to
a right continuous Þltration Ht, where 0 ≤ t < ∞. We say that X is a
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94 CHAPTER 8. MARTINGALES IN CONTINUOUS TIME

martingale if E|X(t)| <∞ for all t and

E [X(t)|Hs] = X(s) (8.3)

for all s < t. The process X(t) is said to be a submartingale (respectively a
supermartingale) if the equality is replaced by ≥ (respectively ≤ ).

DeÞnition 162 A random variable τ taking values in [0,∞] is a stopping time
for a martingale (Xt,Ht) if for each t ≥ 0 , [τ ≤ t] ∈ Ht.
DeÞnition 163 A set of random variables {Xt; t ≥ 0} is uniformly integrable
if, for all ² > 0, there is a c < ∞ such that E(|Xt|I(|Xt| > c)) < ² for all
t ≥ 0.
If a sequence of random variables converges in probability or almost surely

and it is uniformly integrable, then the sequence also converges in L1.

Lemma 164 Suppose there exists a function φ(x) such that limx→∞ φ(x)/x
=∞ and Eφ(|Xt|) ≤ B <∞ for all t ≥ 0. Then the set of random variables
{Xt; t ≥ 0} is uniformly integrable.

Lemma 165 If X is an integrable random variable, then there exists a convex
function φ(x) such that limx→∞ φ(x)/x =∞ and E(φ(|X|) <∞.
The combination of the two lemmas above contains the Lebesgue dominated

convergence theorem.

Lemma 166 Let (Mt,Ht) be a (right-)continuous martingale and assume that
the Þltration satisÞes the standard conditions. Then for any Þxed T <∞, the
set of random variables {Mt, t ≤ T} is uniformly integrable.

Theorem 167 Let (Mt,Ht) be a (right-)continuous martingale and assume
that the Þltration satisÞes the standard conditions. If τ is a stopping time,
then the process

Xt =Mt∧τ

is also a continuous martingale with respect to the same Þltration.

Theorem 168 (Doob�s Lp Inequality) Suppose (Mt,Ht) is a (right-)continuous
non-negative submartingale and put M∗

T = sup0≤t≤T Mt. Then for p ≥ 1, and
all T

λpP [M∗
T > λ] ≤ E[Mp

T ] and

||M∗
T ||p ≤

p

p− 1 ||MT ||p, if p > 1

Theorem 169 (Martingale Convergence Theorem) Suppose a (right-)continuous
martingale Mt satisÞes suptE(|Mt|p) <∞ for some p ≥ 1. Then there exists
a random variableM∞ such that Mt →M∞ a.s. If p > 1, then the convergence
also holds in Lp.
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8.1 The Brownian Motion Process

The single most important continuous time process in the construction of Þnan-
cial models is the Brownian motion process. A Brownian motion is the oldest
continuous time model used in Þnance and goes back to Bachelier around the
turn of the last century. It is also the most common building block for more
sophisticated continuous time models called diffusion processes.
The Brownian motion process is a random continuous time process W (t)

deÞned for t ≥ 0 such that W (0) takes some predetermined value, usually 0,
and for each 0 ≤ s < t, W (t) −W(s) has a normal distribution with mean
µ(t−s) and variance σ2(t−s). The parameters µ and σ are the drift and the
diffusion parameters of the Brownian motion and the special case µ = 0,σ = 1,
W (t) is often referred to as a standard Brownian motion or a Wiener process.
Further properties of the Brownian motion process that are important are:

A Brownian motion process exists such that the sample paths are each contin-
uous functions (with probability one)

The joint distribution of any Þnite number of incrementsW (t2)−W (t1),W (t4)−
W (t3), .....W (tk) −W (tk−1) are independent normal random variables
for 0 ≤ t1 ≤ t2... ≤ tk.

Some further properties of the (standard) Brownian Motion Process.

1. Cov(W (t),W(s)) = min(s, t)

2. If a Gaussian process has E(Xt) = 0 and Cov(X(t),X(s)) = min(s, t),
then it has independent increments. If it has continuous sample paths
and if X0 = 0, then it is standard Brownian motion.

DeÞne the triangular function

∆(t) =

 2t for 0 ≤ t ≤ 1
2

2(1− t) for 12 ≤ t ≤ 1
0 otherwise

and similar functions with base of length 2−j

∆j,k(t) = ∆(2
jt− k) for j = 1, 2, ...and k = 0, 1, ..., 2j − 1.

∆0,0(t) = 2t, 0 ≤ t ≤ 1

Theorem 170 (Wavelet construction of Brownian motion) Suppose the ran-
dom variables Zj,k are independent N(0, 1) random variables. Then series
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below converges uniformly (a.s.) to a Standard Brownian motion process B(t)
on the interval [0, 1].

B(t) =
∞X
j=0

2j−1X
k=0

2−j/2−1Zj,k∆j,k(t)

The standard Brownian motion process can be extended to the whole interval
[0,∞) by generating independent Brownian motion

processes B(n) on the interval [0, 1] and deÞning W (t) =
Pn
j=1B

(j)(1) +

B(n+1)(t− n) whenever n ≤ t < n+ 1.

Theorem 171 IfW (t) is a standard Brownian motion process on [0,∞), then
so are the processes Xt = 1√

a
W (at) and Yt = tW (1/t) for any a > 0.

Example 172 (Examples of continuous martingales) Let Wt be a standard
Brownian motion process. Then the processes

1. Wt

2. Xt =W 2
t − t

3. exp(αWt − α2t/2), α any real number

are all continuous martingales

Theorem 173 (Ruin probabilities for Brownian motion) If W (t) is a standard
Brownian motion and the stopping time τ is deÞned by

τ = inf{t;W (t) = −B or A}
where A and B are positive numbers, then P (τ <∞) = 1 and

P [Wτ = A) =
B

A+B

Theorem 174 (Hitting times) If W (t) is a standard Brownian motion and the
stopping time τ is deÞned by

τa = inf{t;W (t) = a}
where a > 0, then

1. P (τa <∞) = 1
2. τa has a Laplace Transform given by

E(e−λτa) = e−
√
2λ|a|.
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3. The probability density function of τa is

f(t) =
a

t3/2
φ(a/

√
t)

where φ is the standard normal probability density function.

4. The cumulative distribution function is given by

P [τa ≤ t] = 2P [B(t) > a] = 2[1−Φ( a√
t
)].

5. E(τa) =∞

Corollary 175 If B∗t = max{B(s); 0 < s < t} then for a ≥ 0,

P [B∗t > a] = P [τa ≤ t] = 2P [B(t) > a]

Proposition 176 (Reßection&Strong Markov Property) If τ is a stopping time
with respect to the usual Þltration of a standard Brownian motion B(t), then
the process

eB(t) = ½ B(t) t < τ
2B(τ)−B(t) t ≥ τ

is a standard Brownian motion.

Proposition 177 (Last return to 0) Consider the random time L = su p{t ≤ 1;
B(t) = 0}. Then L has c.d.f.

P [L ≤ s] = 2

π
arcsin(

√
s), 0 < s < 1

and corresponding probability density function

d

ds

2

π
arcsin(

√
s) =

1

π
p
s(1− s) , 0 < s < 1

The Ito Integral

8.2 Introduction to Stochastic Integrals

The stochastic integral arose from attempts to use the techniques of Riemann-
Stieltjes integration for stochastic processes. However, Riemann integration
requires that the integrating function have locally bounded variation in order
that the Riemann-Stieltjes sum converge. A function is said to have locally
bounded variation if it can be written as the difference of two increasing pro-
cesses. If the increasing processes are bounded then we say that their difference
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has Þnite variation. By constrast, many stochastic processes do not have paths
of bounded variation. Consider, for example, a hypothetical integral of the formZ T

0

fdW

where f is a nonrandom function of t ∈ [0, T ] and W is a standard Brownian
motion. The Riemann-Stieljes sum for this integral would be

nX
i=1

f(si)[W (ti)−W (ti−1)]

where 0 = t0 < t1 < t2 < ... < tn = T is a partition of [0, T ], and
ti−1 ≤ si ≤ ti. If we let the mesh of the partition go to zero then the Riemann-
Stieljes sum will not converge because the Brownian motion paths are not of
bounded variation. When f has bounded variation, we can circumvent this
difficulty by formally deÞning the integral using integration by parts. Thus if
we formally write Z T

0

fdW =

·
fW −

Z
Wdf

¸T
0

then the right hand side is well deÞned and can be used as the deÞnition of the
left hand side.
Integration by parts is too specialized for many applications. The integrand

f is commonly replaced by some function of W or another stochastic process
and is itself often not of bounded variation. Moreover, application of integration
by parts can lead to difficulties. For example, integration by parts to evaluate
the integral Z T

0

WdW

leads to
R T
0
WdW = W 2(T )/2. Consider for a moment the possible range of

limiting values of the Riemann Stieltjes sums

Iα =
nX
i=1

f(si)[W (ti)−W (ti−1)].

where si = ti−1+α(ti− ti−1) for some 0 ≤ α ≤ 1. If the Riemann integral were
well deÞned, then I1− I0 → 0 in probability. However when f(s) =W (s), this
difference

I1 − I0 =
nX
i=1

[W (ti)−W (ti−1)]2 → T

Iα − I0 → αT
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The Ito stochastic integral corresponds to α = 0 and approximates the inte-
gral with partial sums of the form

nX
i=1

W (ti−1)[W (ti)−W (ti−1)]

the limit of which is, as the mesh size decreases, 12(W
2(T )−T ) whereas evaluat-

ing the integrand at the right end point of the interval (i.e. taking α = 1) results
in 1

2(W
2(T ) + T ). Another natural choice is α = 1/2 (called the Stratonovich

integral) and note that this deÞnition gives the answer W 2(T )/2 which is the
same result obtained from the usual Riemann integration by parts. Which
deÞnition is �correct�? The Stratonovich integral has the advantage that it
satisÞes most of the traditional rules of deterministic calculus, for example if
the integral below is a Stratonovich integral,Z T

0

exp(Wt)dWt = exp(WT )− 1

While all deÞnitions of a stochastic integral are useful, the main applications
in Þnance are those in which the function f(s) are the weights on various
investments in a portfolio and the increment [W (ti)−W (ti−1)] represents the
changes in price of the components of that portfolio over the next interval of
time. Obviously one must commit to ones investments before observing the
changes in the values of those investments. For this reason the Ito integral
(α = 0 ) seems the most natural in this context.
The Ito deÞnition of a stochastic integral interprets the integral as a linear

isometry from a Hilbert space of predictable processes into the Hilbert space
of random variables. Notice that a stochastic integralZ T

0

f(ω, t)dW (t)

maps a function f on the product space Ω × [0, T ] into a space of random
variables. Of course we need to apply some measurability conditions on the
function f, and we will require two conditions below which permit a deÞnition
of the integral. This mapping

R
dW is said to be a linear isometry if it is

a linear mapping (so
R
(f + g)dW =

R
fdW +

R
gdW ) and it preserves inner

products. By this we mean that

E{
Z T

0

f(ω, t)g(ω, t)dt} = E{
Z T

0

f(ω, t)dW (t)

Z T

0

g(ω, t)dW (t)}.

The inner product on the right hand side is the usual L2(P ) inner product
between random variables. That on the left hand side is deÞned as the integral
of the product of the two functions over the product space Ω× [0, T ].
We now deÞne the class of functions f to which this integral will apply. We

assume that Ht is a standard Brownian Þltration and that the interval [0, T ] is
endowed with its Borel sigma Þeld. Let H2 be the set of functions f(ω, t) on
the product space Ω× [0, T ] such that
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1. f is measurable with respect to the product sigma Þeld on Ω× [0, T ].
2. For each t ∈ [0, T ], f(., t) is measurableHt. (in other words the stochastic
process f(., t) is adapted to Ht.

3. E[
R T
0
f2(ω, t)dt] <∞.

The set of processes H2 is the natural domain of the Ito integral. However,
before we deÞne the stochastic integral on H2 we need to deÞne it in the
obvious way on the subclass of step functions in H2. Let H20 be the subset of
H2 consisting of functions of the form

f(ω, t) =
n−1X
i=0

ai(ω)1(ti < t ≤ ti+1)

where the random variables ai are measurable with respect to Hti and 0 =
t0 < t1 < ... < tn = T. For such functions, the stochastic integral has only one
natural deÞnition:Z T

0

f(ω, t)dW(t) =
n−1X
i=0

ai(ω)(W(ti+1) −W (ti))

and note that considered as a function of T, this forms a continuous time L2

martingale.

Theorem 178 For functions f and g in H20,

E{
Z T

0

f(ω, t)g(ω, t)dt} = E{
Z T

0

f(ω, t)dW (t)

Z T

0

g(ω, t)dW (t)}.

and

E{
Z T

0

f2(ω, t)dt} = E(
Z T

0

f(ω, t)dW (t))2 (8.4)

These identities establish the isometry at least for functions in H20. The
norm on stochastic integrals deÞned by

||
Z
fdW ||2L(P ) = E(

Z T

0

f(ω, t)dW (t))2

agrees with the usual L2 norm on the space of random functions

||f ||2 = E{
Z T

0

f2(ω, t)dt}.

For this section, we will continue using the notation ||f ||2 = E{R T
0
f2(ω, t)dt}.
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Lemma 179 (Approximation lemma) For any f ∈ H2, there exists a sequence
fn ∈ H20 such that

||f − fn||2 → 0

The construction of a suitable approximating sequence fn is easy. In fact we
can construct a mesh ti = i

2nT for i = 0, 1, ...2n − 1 and deÞne

fn(ω, t) =
n−1X
i=0

ai(ω)1(ti < t ≤ ti+1) (8.5)

with

ai(ω) =
1

ti − ti−1

Z ti

ti−1
f(ω, s)ds

the average of the function over the previous interval. This mapping from f
to fn we will denote later as fn = An(f) since it is linear and a contraction in
the sense that ||An(f)|| ≤ ||f ||. Proving convergence of An(f) to f is done by
Þrst proving that ||f − gn|| → 0 where gn is deÞned similarly but using the
average of the function over the current interval. The proof follows from the
next two lemmas.

Lemma 180 Assume f ∈ H2 and f is bounded so that |f(ω, t)| < B < ∞
for all ω ∈ Ω and 0 ≤ t ≤ T. DeÞne ti = i

2nT for i = 0, 1, ...2n − 1 and

gn(ω, t) =
n−1X
i=0

bi(ω)1(ti < t ≤ ti+1) (8.6)

where

bi(ω) =
1

ti+1 − ti
Z ti+1

ti

f(ω, s)ds.

Then ||f − gn||→ 0 as n→∞.
Lemma 181 Suppose gm is of the form (8.6). Then

||An(gm)− gm||→ 0 as n→∞
where An is the mapping described in (8.5).

The deÞnition of a stochastic integral for any f ∈ H2 is now clear from the
approximation lemma above. Choose a sequence fn ∈ H20 such that ||f−fn||2 →
0. Since the sequence fn is Cauchy, the isometry property (8.4) shows that the
stochastic integrals

R T
0
fndW also forms a Cauchy sequence in L2(P ). Since

this space is complete (in the sense that Cauchy sequences converge to a random
variable in the space), we can deÞne

R
fdW to be the limit of the sequenceR T

0
fndW as n→∞.
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Proposition 182 The integral is well-deÞned. i.e. if fn ∈ H20 and f 0n ∈ H20
such that ||f − fn||2 → 0 and ||f − f 0n||→ 0, then

lim
n

Z
fndW = lim

n

Z
f 0ndW.

Proposition 183 (Ito Isometry) For functions f and g in H2,

E{
Z T

0

f(ω, t)g(ω, t)dt} = E{
Z T

0

f(ω, t)dW (t)

Z T

0

g(ω, t)dW (t)}.

Theorem 184 (Ito integral as a continuous martingale) For any f in H2,
there exists a continuous martingale Xt adapted to the standard Brownian Þl-
tration Ht such that

Xt =

Z T

0

f(ω, s)1(s ≤ t)dW (s) for all t ≤ T.

This continuous martingale we will denote by
R t
0 fdW.

Example 185 (
R
WtdW ). Show that

R T
0 WtdW = (W 2

T−T )/2 (almost surely).

8.3 Extending the Ito Integral to L2LOC
DeÞnition 186 Let L2LOC be the set of functions f(ω, t) on the product space
Ω× [0, T ] such that

1. f is measurable with respect to the product sigma Þeld on Ω× [0, T ].
2. For each t ∈ [0, T ], f(., t) is measurableHt. (in other words the stochastic
process f(., t) is adapted to Ht.

3. P (
R T
0 f

2(ω, s)ds <∞) = 1}

Clearly this space includesH2 and arbitrary continuous functions of a Brow-
nian motion.

DeÞnition 187 Let νn be an increasing sequence of stopping times such that

1. P [νn = T for some n] = 1

2. The functions fn(ω, t) = f(ω, t)1(t ≤ νn) ∈ H2 for each n.

Then we call this sequence a localizing sequence for the function f.
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Theorem 188 For any function in L2LOC , the sequence of stopping times

νn = min(T, inf{s;
Z s

0

f2(ω, t)dt ≥ n})

is a localizing sequence for f.

DeÞnition 189 For any function in L2LOC , let fn(ω, t) = f(ω, t)1(t ≤ νn)

and Xn,t =
R t
0 fn(ω, s )dWs where this is the version which is a continuous

martingale. We deÞne the Ito integral of fZ t

0

f(ω, s)dWs = lim
n→∞Xn,t

Theorem 190 The limit limn→∞Xn,t exists and is continuous.

The proof requires several lemmas

Lemma 191 Assume f ∈ H2 is bounded and for some stopping time ν we
have f(ω, t) = 0 almost surely on the set {ω; t ≤ ν(ω)}. ThenZ t

0

f(ω, s)dBs = 0 almost surely on {ω; t ≤ ν(ω)}.

Proof. Note that there is a bounded sequence fn ∈ H20 such that fn → f

(this means ||fn−f ||→ 0 where the norm is given by ||f ||2 = E{R T
0
f2(ω, t)dt}.

It follows that fn1(t ≤ ν)→ f1(t ≤ ν). Write

fn =
X

ai1(ti < t ≤ ti+1)
and

�fn =
X

ai1(ti ≤ ν)1(ti < t ≤ ti+1) ∈ H20
The proof follows the following steps: THIS LEMMA IS CURRENTLY UN-
DER REPAIR)

1. || �fn(t)− fn(t)1(t ≤ ν)||→ 0

2. Since fn(t)1(t ≤ ν)→ f(t)1(t ≤ ν) = 0 we have from 1 that �fn → 0.

3. Therefore by 1,
R T
0 fn(t)1(t ≤ ν)dWt → 0

Lemma 192 (persistence of identity) Assume f, g ∈ H2 and ν is a stopping
time such that

f(ω, s) = g(ω, s) almost surely on the set {ω; t ≤ ν(ω)}.
Then

R t
0
f(ω, s)dBs =

R t
0
g(ω, s)dBs almost surely on the set {ω; t ≤ ν(ω)}.
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Lemma 193 For f ∈ H2 and a localizing sequence νn, if we deÞne Xn,t =R t
0
f(ω, s)1(s ≤ νn)dWs to be the continuous martingale version of the integral,

then for m < n, we have Xn,t = Xm,t almost surely on the set {ω; t ≤ νm}.
Lemma 194 The deÞnition of the integral does not depend on the localizing
sequence.

Lemma 195 (persistence of identity in L2LOC ) Assume f, g ∈ L2LOC and ν
is a stopping time such that

f(ω, s) = g(ω, s) almost surely on the set {ω; t ≤ ν(ω)}.
Then

R t
0 f(ω, s)dBs =

R t
0 g(ω, s)dBs almost surely on the set {ω; t ≤ ν(ω)}.

Theorem 196 Suppose f is a continuous non-random function and ti =
iT/n, i = 0, 1, ..., n. Then the Riemann sumsX

f(Wti)(Wti+1 −Wti)→
Z T

0

f(Ws)dWs in probability.

Theorem 197 Suppose f is a continuous non-random function on [0, T ]. Then
the process

Xt =

Z t

0

f(s)dWs

is a zero mean Gaussian process with Cov(Xs,Xt) =
Rmin(s,t)
0 f2(u)du. More-

over the Riemann sums

X
f(si)(Wti+1 −Wti)→

Z T

0

f(s)dWs in probability

for any ti ≤ si ≤ tt+1.
Theorem 198 (time change to Brownian motion) Suppose f(s) is a contin-
uous non-random function on [0,∞) such thatZ ∞

0

f2(s)ds =∞.

DeÞne

τt = inf{u;
Z u

0

f2(s)ds ≥ t}.

Then

Yt =

Z τt

0

f(s)dWs

is a standard Brownian motion.
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DeÞnition 199 (local martingale) The process Mt is a local martingale with
respect to the Þltration Ht if there exists a non-decreasing sequence of stopping
times τk →∞ a.s. such that the processes

M
(k)
t =Mt∧τk −M0

are martingales with respect to the same Þltration.

Theorem 200 If f ∈ L2LOC, then there is a continuous local martingale Xt
such that

Xt =

Z t

0

f(ω, s)dWs all 0 ≤ t ≤ T almost surely.

Theorem 201 If Mt is a continuous local martingale with M0 = 0, and if

τ = inf{t;Mt = A or = −B}
is Þnite with probability 1, then E(Mτ ) = 0 and

P [Mτ = A] =
B

A+B

Theorem 202 If Mt is a local martingale and τ a stopping time, then Mt∧τ
is a local martingale with respect to the same Þltration.

Theorem 203 A bounded local martingale is a martingale.

Theorem 204 A non-negative local martingale Xt with E(|X0|) < ∞ is a
supermartingale. If E(XT ) = E(X0) it is a martingale.

DeÞnition 205 For a stopping time τ deÞne

Hτ = {A ∈ ∪THt;A ∩ [τ ≤ t] ∈ Ht, for all t}. (8.7)

We have already proved that Hτ is a sigma-algebra.

Theorem 206 If (Xt,Ht) is a bounded continuous martingale, τ is a stopping
time, and if A ∈ Hτ then

E(Xτ1A1{τ<s}) = E(Xs1A1{τ<s})

Theorem 207 If (Xt,Ht) is a bounded continuous martingale and ν ≤ τ are
stopping time, then

E(Xτ |Hν) = Xν a.s.

Theorem 208 If (Xt,Ht) is a bounded continuous martingale and τ a stopping
times, then

(Xτ∧t,Hτ∧t) is also a martingale.

Theorem 209 It τt is a non-decreasing family of stopping times, and Xt is a
continuous local martingale, then the stopped sequence X(τt) is a local martin-
gale.



106 CHAPTER 8. MARTINGALES IN CONTINUOUS TIME

8.4 Ito�s Formula

Introduce the differential notation

dXt = g(t,Wt)dt+ f(t,Wt)dWt

to mean (this is its only possible meaning) the analogue of this equation written
in integral form:

Xt = X0 +

Z t

0

g(s,Ws)ds+

Z t

0

f(s,Ws)dWs

where we assume that the functions g and f are such that these two integrals,
one a regular Riemann integral and the other a stochastic integral, are well-
deÞned.

Theorem 210 (Ito�s formula) For a function f with continuous second deriva-
tive,

df(Wt) = f
0(Wt)dWt +

1

2
f 00(Wt)dt.

This result allows us to deÞne the stochastic integral on the right side path-
wise (i.e. for each ω). In other wordsZ t

0

f 0(Ws)dWs = f(Wt)− f(0)− 1
2

Z t

0

f 00(Ws)ds

Putting f 0(x) = x we obtain the previous resultZ t

0

WsdWs =
W 2
t − t
2

.

Theorem 211 (More general version:Ito�s formula); Suppose f(t, x) is once
continously differentiable in t and twice in x. Denote its derivatives by

f1(t, x) =
∂f

∂t
, f22(t, x) =

∂2f

∂x2
, etc

Then

df(t,Wt) = {f1(t,Wt) +
1

2
f22(t,Wt)}dt+ f2(t,Wt)dWt.

Corollary 212 Suppose the function satisÞes

∂f

∂t
= −1

2

∂2f

∂x2
.

Then f(t,Xt) is a local martingale and moreover if E
R T
0 f

2
2 (t,Wt)dt <∞, then

it is a martingale.
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The above condition ∂f
∂t = −1

2
∂2f
∂x2 is much like the heat equation usually

written as

∂f

∂t
= λ

∂2f

∂x2
where úλ > 0.

Indeed in the direction of reversed time this is a special case of the heat equation.

Example 213 Consider f(t, x) = tx − x3/3. Then f(t,Wt) is a martingale
and if we deÞne a stopping time as

τ = inf{t;Wt = A or Wt = −B},
then Cov(τ,Wτ ) =

1
3AB(A−B).

Example 214 Consider

f(t, x) = eαx−α
2t/2.

Then Mt = f(t,Wt) is a martingale.

Theorem 215 (Ruin probabilities: Brownian motion with drift)Let X0 = 0
and

dXt = µdt+ σdWt.

DeÞne

τ = inf{t;Xt = A or Xt = −B}.
Then

P (Xτ = A) =
exp(−2µB/σ2)− 1

exp(−2µ(A+B)/σ2)− 1
This can be compared with the corresponding formula for the hitting prob-

abilities for a biased random walk obtained earlier

pA =
(q/p)B − 1
(q/p)A+B − 1 , q = 1− p

and these return exactly the same value if we use parameters satisfying q/p =
e−2µ/σ

2

whereas if we choose a more natural choice of parameters for the Brow-
nian motion approximating the random walk determined by the mean and
variance per unit time µ = 2p− 1,σ2 = 1− (2p− 1)2 then the hitting probabil-
ities are extremely close provided that µ/σ2 is small.

Theorem 216 If X0 = 0 and we deÞne M = max0<t<∞Xt where

dXt = µdt+ σdWt

then M =∞ with probability 1 if µ ≥ 0 and otherwise M has an exponential
distribution with mean σ2/(−2µ).
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DeÞnition 217 Suppose Xt is deÞned by X0 and the stochastic differential
equation

dXt = a(ω, t)dt+ b(ω, t)dWt.

By
R t
0 f(ω, s)dXs we mean the integralZ t

0

f(ω, s)a(ω, s)ds+

Z t

0

f(ω, s)b(ω, s)dWs

provided that these integrals are well deÞned.

Theorem 218 (Ito�s formula the third). SupposeXt satisÞes dXt = a(ω, t)dt+
b(ω, t)dWt. Then for any function f such that f1 and f22 are continuous,

df(t,Xt) = f1(t,Xt)dt+ f2(t,Xt)dXt +
1

2
f22(t,Xt)dXt · dXt

= (a(ω, t)f2(t,Xt) + f1(t,Xt) +
1

2
f22(t,Xt)b

2(ω, t))dt+ f2(t,Xt)b(ω, t)dWt

Summary 219 (Rules of box Algebra)

dt · dt = 0
dt · dWt = 0

dWt · dWt = dt

Example 220 (Geometric Brownian Motion) Suppose Xt satisÞes

dXt = aXtdt+ σXtdWt

Then Yt=ln(Xt) is a Brownian motion with drift

dYt = (a− σ
2

2
)dt+ σdWt.

Example 221 (Ito�s formula for geometric Brownian motion). Suppose Xt is
a geometric Brownian motion satisfying

dXt = aXtdt+ σXtdWt.

Then for a function f(t, x) with one continuous derivative with respect to t and
two with respect to x, and Yt = f(t,Xt),

dYt = {f1(t,Xt) + 1
2
f22(t,Xt)σ

2X2
t }dt+ f2(t,Xt)dXt.

DeÞnition 222 A standard process Xt is one satisfying X0 = x0 and

dXt = a(ω, t)dt+ b(ω, t)dWt

where
R T
0
| a(ω, t)|dt <∞ and

R T
0
| b(ω, t)|2dt <∞ with probability one.
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Theorem 223 (Ito�s formula: standard processes) If Xt is a standard process
and f(t, x) has one continuous derivative with respect to t and two with respect
to x,

df(t,Xt) = f1(t,Xt)dt+ f2(t,Xt)dXt +
1

2
f22(t,Xt)dXt · dXt

= (a(ω, t)f2(t,Xt) + f1(t,Xt) +
1

2
f22(t,Xt)b

2(ω, t))dt+ f2(t,Xt)b(ω, t)dWt

Theorem 224 (Ito�s formula for two processes) If

dXt = a(ω, t)dt+ b(ω, t)dWt

dYt = α(ω, t)dt+ β(ω, t)dWt

then

df(Xt, Yt) = f1(Xt, Yt)dXt + f2(Xt, Yt)dYt +

1

2
f11(Xt, Yt)dXt · dXt + 1

2
f22(Xt, Yt)dYt · dYt

+ f12(Xt, Yt)dXt · dYt
= f1(Xt, Yt)dXt + f2(Xt, Yt)dYt

+
1

2
f11(Xt, Yt)b

2dt+
1

2
f22(Xt, Yt)β

2dt

+ f12(Xt, Yt)bβdt

Theorem 225 (the product rule) If

dXt = a(ω, t)dt+ b(ω, t)dWt

dYy = α(ω, t)dt+ β(ω, t)dWt

then

d(XtYt) = YtdXt +XtdYt + bβdt

This product rule reduces to the usual with either of β or b is identically 0.
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Chapter 9

Review Problems.

1. Suppose that a measurable function f(x) satisÞes α ≤ f(x) ≤ β for
constants α,β. Show that

αµ(A) ≤
Z
A

f(x)dµ ≤ βµ(A)

for any measurable set A and measure µ.

2. Give an example of a sequence of simple functions Yn(ω) which are
increasing to the function X(ω) = ω deÞned on Ω = [0, 1] so thatZ

Ω

X(ω)dλ = limn→∞
Z
Ω

Yn(ω)dλ.

3. Suppose f is integrable with respect to Lebesgue measure on the real
line. Show that

limn→∞
Z
[n,∞)

f(x)dλ = 0

4. Consider a sequence of events An and deÞne the random variable Yn =
IAn . When is pYn = 1? When is it 0? Apply Fatou�s lemma and the
monotone convergence theorem to the sequence of random variables Yn
and determine what they imply for the sequence of events An.

5. DeÞne a random variable as follows; Suppose Z has a standard normal
distribution and X has a discrete uniform distribution on the set of points
{0, 1, 2, 3}. What is the cumulative distribution function of the random
variable min(Z,X) ? Is this random variable discrete, continuous, or of
some other type?

6. Prove that for any non-negative random variable X with cumulative
distribution function F (x), if X has Þnite variance, then

lim supx →∞x2(1− F (x)) <∞.

111
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(Hint: Compare x2P [X > x] with E(X2).)

7. Suppose X ∼ bin(n, p). Find
nX
j=1

P [X ≥ j].

8. If F (x) is the standard normal cumulative distribution function, show
that xk(1− F (x))→ 0 as x→∞ for any k <∞.

9. If X and Y are independent random variables, show that the charac-
teristic function of X + Y equals the product of the two characteristic
functions.

10. If X and Y are dependent random variables with joint cumulative
distribution function F (x, y), show that for any a < b ,

F (b, b)− F (a, b)− F (b, a) + F (a, a) ≥ 0.

11. Suppose X has a normal distribution with expected value 0 and vari-
ance 1. Then show, using a theorem allowing interchange of limits and
expectation, that

limN→∞
NX
j=0

E(Xj)tj

j!
=mX(t)

12. Show that if |X|p, p ≥ 1 is integrable, then

|E(X)|p ≤ E[|X|p]

(a) Prove the weak law of large numbers in the following form:

If Xn are independent random variables with common mean E(Xn) = µ,
and common variance

var(Xn) = σ2 <∞,
prove 1

n

Pn
i=1Xi → µ in probability.

(b) DeÞne Z2n =
Pn
i=1Xi−

P2n
i=n+1Xi . Assume the Xi are identically

distributed, show that Z2n is asymptotically normally distributed.

(a) Prove that any characteristic function is non-negative deÞnite:

nX
i=1

nX
j=1

ϕ(ti − tj)ziz̄j ≥ 0

for all real t1, ...tn and complex z1, ..., zn.



113

(b) Prove that the characteristic function of any probability distribution
is continuous at t = 0 .

(a) Prove that if Xn converges with probability 1 to a random variable
X then Xn converges weakly to X .

(b) Prove that if Xn converges weakly to the constant c then it converges
in probability.

13. An urn has r0 red balls and b0 black ones. On the n0th draw, a ball is
drawn at random and then replaced with 2 balls of the same colour. Let
rn and bn be the number of red and black balls after the n0th draw.

(a) Prove that bn
rn+bn

converges almost surely as n→∞ .

(b) Let the limiting random variable be Y . What is E(Y )?

14. Prove or provide counterexamples:

(a) For independent random variables: σ(X,Y ) = σ(X) ∪ σ(Y ) .
(b) For any random variables X, Y,Z , E{E(X|Y )|Z} = E{E(X|Z)|Y }
almost surely.

(c) For X, Y independent, E(X|Y ) = E(X) almost surely.

(d) Whenever a sequence of cumulative distribution functions Fn satisfy
Fn(x) → F (x) for all x , F is a cumulative distribution function of a
random variable.

15. Prove the following assertions concerning conditional expectation for square
integrable random variables:

(a) If X is G-measurable, E(X|G) = X .

(b) If X independent of G , E(X|G) = E(X) .

(c) For any square integrable G-measurable Z, E(ZX) = E[ZE(X|G)].
16. Prove that a characteristic function has the following four properties:

(a) ϕ exists for any X .

(b) ϕ(0) = 1 .

(c) |ϕ(t)| ≤ 1 for all t .

(d) ϕ is uniformly continuous.

17. Prove the following assertions:

(a) convergence almost sure implies convergence in probability

(b) convergence in probability implies weak convergence.

(c) Weak convergence to a constant r.v. implies convergence in probability


