
Chapter 7

CONDITIONAL
EXPECTATION AND
MARTINGALES

7.1 Conditional Expectation.

Throughout this section we will assume that random variables X are defined on
a probability space (Ω,F , P ) and have finite second moments so E(X2) <∞.
This allows us to define conditional expectation through approximating one
random variable by another, measurable with respect to a courser (or less in-
formative) sigma-algebra. We begin with the coursest sigma algebra of all, the
trivial one {Ω,ϕ}, with respect to which only constants are measurable.
What constant is the best fit to a random variable in the sense of smallest

mean squared error? In other words, what is the value of c solving

min
c
E[(X − c)2]?

Expanding,
E[(X − c)2] = var(X) + (EX − c)2

and so the minimum is achieved when we choose c = EX.
A constant is, of course, a random variable but a very basic one, measurable

with respect to the trivial sigma-field {Ω,ϕ}. Now suppose that we wished to
approximate the value of a random variable X, not with a constant, but with
another random variable Z, measurable with respect to some other sigma field
G ⊂ σ(X). How course or fine the sigma algebra G is depends on how much
information we have pertinent to the approximation of X. How good is our
approximation will be measured using the mean squared error

E[(X − Z)2]
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and we wish to minimize this over all possible G−random variables Z. The
minimizing value of Z is the conditional expected value of X.

Theorem 115 (conditional expectation as a projection) Let G ⊂ F be sigma-
algebras and X a random variable on (Ω,F , P ). Assume E(X2) < ∞. Then
there exists an almost surely unique G-measurable Y such that

E[(X − Y )2] = infZE(X − Z)2 (7.1)

where the infimum is over all G-measurable random variables.

Definition 116 We denote the minimizing Y by E(X|G).

The next result assures us that the conditional expectation is unique, al-
most surely. In other words two random variables Y which solve the above
minimization problem differ on a set of probability zero.

Theorem 117 For two such minimizing Y1, Y2 , i.e. random variables Y
which satisfy (7.1), we have P [Y1 = Y2] = 1. This implies that conditional
expectation is almost surely unique.

Proof. Suppose both Y1 and Y2 are G-measurable and both minimize E[(X−
Y )2]. Then for any A ∈ G it follows from property (d) below thatZ

A

Y1dP =

Z
A

Y2dP

or Z
A

(Y1 − Y2)dP = 0.

Choose A = [Y1 − Y2 ≥ 0] and note thatZ
(Y1 − Y2)IAdP = 0

and the integrand (Y1−Y2)IA is non-negative together imply that (Y1−Y2)IA =
0 almost surely. Similarly on the set A = [Y1 − Y2 < 0] we can show that
(Y1 − Y2)IA = 0 almost surely. It follows that Y1 = Y2 almost surely.

Example 118 Suppose G = {ϕ,Ω}. What is E(X|G)?

The only random variables which are measurable with respect to the trivial
sigma-field are constants. So this leads to the same minimization discussed
above, mincE[(X−c)2] = minc{var(X)+(EX−c)2} which results in c = E(X).

Example 119 Suppose G = {ϕ, A,Ac,ω} for some event A. What is E(X|G)?
Consider the special case: X = IB .
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In this case suppose the random variable Z takes the value a on A and b on
the set Ac. Then

E[(X − Z)2] = E[(X − a)2IA] +E[(X − b)2IAc ]
= E(X2IA)− 2aE(XIA) + a2P (A)
+E(X2IAc)− 2bE(XIAc) + b2P (Ac).

Minimizing this with respect to both a and b results in

a = E(XIA)/P (A)

b = E(XIAc)/P (A
c).

These values a and b are usually referred to in elementary probability as E(X|A)
and E(X|Ac) respectively. Thus, the conditional expectated value can be
written

E(X|G)(ω) =
½
E(X|A) if ω ∈ A
E(X|Ac) if ω ∈ Ac

As a special case consider X to be an indicator random variable X = IB . Then
we usually denote E(IB |G) by P (B|G) and

P (B|G)(ω) =
½
P (B|A) if ω ∈ A
P (B|Ac) if ω ∈ Ac

Note: Expected value is a constant, but the conditional expected value
E(X|G) is a random variable measurable with respect to G. Its value on the
atoms of G is the average of the random variable X over these atoms.

Example 120 Suppose G is generated by a finite partition {A1, A2, ..., An} of
the probability space Ω.. What is E(X|G)?

In this case, any G-measurable random variable is constant on the sets in
the partition Aj , j = 1, 2, ..., n and an argument similar to the one above shows
that the conditional expectation is the simple random variable:

E(X|G)(ω) =
nX
i=1

ciIAi(ω)

where ci = E(X|Ai) =
E(XIAi)

P (Ai)

Example 121 Consider the probability space Ω = (0, 1] together with P =
Lebesgue measure and the Borel Sigma Algebra. Suppose the function X(ω)
is Borel measurable. Assume that G is generated by the intervals ( j−1n ,

j
n ] for

j = 1, 2, ...., n. What is E(X|G)?

In this case

E(X|G)(ω) = n
Z j/n

(j−1)/n
X(s)ds when ω ∈ (j − 1

n
,
j

n
]

= average of X values over the relevant interval.
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7.1.1 Properties of Conditional Expectation.

(a) If a random variable X is G-measurable, E(X|G) = X.

(b) If a random variable X independent of a sigma-algebra G, then E(X|G) =
E(X).

(c) For any square integrable G-measurable Z, E(ZX) = E[ZE(X|G)].

(d) (special case of (c)):
R
A
XdP =

R
A
E(X|G]dP for all A ∈ G.

(e) E(X) = E[E(X|G)].

(f) If a G-measurable random variable Z satisfies E[(X − Z)Y ] = 0 for all
other G-measurable random variables Y , then Z = E(X|G).

(g) If Y1, Y2 are distinct G−measurable random variables both minimizing
E(X − Y )2, then P (Y1 = Y2) = 1.

(h) Additive E(X + Y |G) = E(X|G) +E(Y |G).
Linearity E(cX + d|G) = cE(X|G) + d.

(i) If Z is G−measurable, E(ZX|G) = ZE(X|G) a.s.

(j) If H ⊂ G are sigma-algebras, E[E(X|G)|H] = E(X|H).

(k) If X ≤ Y , E(X|G) ≤ E(Y |G) a.s.

(l) Conditional Lebesgue Dominated Convergence. If Xn → X in probability
and |Xn| ≤ Y for some integrable random variable Y , then E(Xn|G)→
E(X|G) in probability.
Notes. In general, we define E(X|Z) = E(X|σ(Z)) and conditional
variance var(X|G) = E{(X − E(X|G))2|G}. For results connected with
property (l) above providing conditions under which the conditional ex-
pectations converge, see Convergence in distribution of conditional expec-
tations, (1994) E.M. Goggin, Ann. Prob 22, 2. 1097-1114.

Proof. (Proof of the above properties)
(a) Notice that for any random variable Z that is G-measurable, E(X −Z)2 ≥
E(X −X)2 = 0 and so the minimizing Z is X ( by definition this is E(X|G)).
(b) Consider a random variable Y measurable with respect G and therefore
independent of X. Then

E(X − Y )2 = E[(X −EX +EX − Y )2]
= E[(X −EX)2] + 2E[(X −EX)(EX − Y )] +E[(EX − Y )2]
= E[(X −EX)2] +E[(EX − Y )2] by independence
≥ E[(X −EX)2].
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It follows that E(X − Y )2 is minimized when we choose Y = EX and so
E(X|G) = E(X).
(c) for any G−measurable square integrable random variable Z, we may define
a quadratic function of λ by

g(λ) = E[(X −E(X|G)− λZ)2]

By the definition of E(X|G), this function is minimized over all real values of
λ at the point λ = 0 and therefore g0(0) = 0. Setting its derivative g0(0) = 0
results in the equation

E(Z(X −E(X|G))) = 0

or E(ZX) = E[ZE(X|G)].
(d) If in (c) we put Z = IA where A ∈ G, we obtain

R
A
XdP =

R
A
E(X|G]dP.

(e) Again this is a special case of property (c) corresponding to Z = 1.
(f) Suppose a G-measurable random variable Z satisfies E[(X − Z)Y ] = 0
for all other G-measurable random variables Y . Consider in particular Y =
E(X|G)− Z and define

g(λ) = E[(X − Z − λY )2]

= E((X − Z)2 − 2λE[(X − Z)Y ] + λ2E(Y 2)

= E(X − Z)2 + λ2E(Y 2)

≥ E(X − Z)2 = g(0).

In particular g(1) = E[(X − E(X|G))2] ≥ g(0) = E(X − Z)2 and by Theorem
117, Z = E(X|G) almost surely.
(g) This is just deja vu (Theorem 117) all over again.
(h) Consider, for an arbitrary G−measurable random variable Z,

E[Z(X + Y −E(X|G)−E(Y |G))] = E[Z(X −E(X|G))] +E[Z(Y −E(Y |G))]
= 0 by property (c).

It therefore follows from property (f) that E(X + Y |G) = E(X|G) + E(Y |G).
By a similar argument we may prove E(cX + d|G) = cE(X|G) + d.
(i) This is Problem 2.
(j) This is Problem 4 (sometimes called the tower property of conditional ex-
pectation: If H ⊂ G are sigma-algebras, E[E(X|G)|H] = E(X|H)).
(k) We need to show that if X ≤ Y , E(X|G) ≤ E(Y |G) a.s.
(l) Conditional Lebesgue Dominated Convergence. If Xn → X in probability.
and |Xn| ≤ Y for some integrable random variable Y , then it is easy to show
that E|Xn −X|→ 0. Therefore

E|E(Xn|G)−E(X|G)| = E|E(Xn −X|G)|
≤ E{E(|Xn −X||G)}
≤ E|Xn −X|→ 0
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implying that E(Xn|G)→ E(X|G) in probability.
Notes. In general, we define E(X|Z) = E(X|σ(Z)) and conditional
variance var(X|G) = E{(X − E(X|G))2|G}. For results connected
with property (l) above providing conditions under which the conditional
expectations converge, see Convergence in distribution of conditional ex-
pectations, (1994) E.M. Goggin, Ann. Prob 22, 2. 1097-1114.

7.2 Conditional Expectation for integrable ran-
dom variables.

We have defined conditional expectation as a projection only for random vari-
ables with finite variance. It is fairly easy to extend this definition to random
variables X on a probability space (Ω,F , P ) for which E(|X|) <∞. We wish
to define E(X|G) where the sigma algebra G ⊂ F . First, for non-negative in-
tegrable X choose simple random variables Xn ↑ X. Since simple random
variables have only finitely many values, they have finite variance, and we can
use the definition above for their conditional expectation. Then E(Xn|G) ↑ and
so it converges. Define E(X|G) to be the limit. In general, for random variables
taking positive and negative values, we define E(X|G) = E(X+|G)−E(X−|G).
There are a number of details that need to be ironed out. First we need to
show that this new definition is consistent with the old one when the random
variable happens to be square integrable. We can also show that the proper-
ties (a)-(i) above all hold under this new definition of conditional expectation.
We close with the more common definition of conditional expectation found in
most probability and measure theory texts, essentially property (d) above. It
is, of course, equivalent to the definition as a projection in section 7.1 and the
definition above as a limit of the conditional expectation of simple functions.

Theorem 122 Consider a random variable X defined on a probability space
(Ω,F , P ) for which E(|X|) <∞. Suppose the sigma algebra G ⊂ F . Then there
is a unique (almost surely P ) G−measurable random variable Z satisfyingZ

A

XdP =

Z
A

ZdP for all A ∈ G

Any such Z we call the conditional expectation and denote by E(X|G).

7.3 Martingales in Discrete Time
In this section all random variables are defined on the same probability space
(Ω,F , P ). Partial information about these random variables may be obtained
from the observations so far, and in general, the “history” of a process up
to time t is expressed through a sigma-algebra Ht ⊂ F . We are interested
in stochastic processes or sequences of random variables called martingales,
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intuitively, the total fortune of an individual participating in a “fair game”.
In order for the game to be “fair”, the expected value of your future fortune
given the history of the process up to and including the present should be
equal to your present wealth. In a sense you are neither tending to increase or
decrease your wealth over time- any fluctuations are purely random. Suppose
your fortune at time s is denoted Xs . The values of the process of interest
and any other related processes up to time s generate a sigma-algebra Hs. Then
the assertion that the game is fair implies that the expected value of our future
fortune given this history of the process up to the present is exactly our present
wealth E(Xt|Hs) = Xs for t > s. Suppose T is some set indexing “time” for a
martingale. Normally T is either an interval on the real line or the non-negative
integers.

Definition 123 {(Xt,Ht); t ∈ T } is a martingale if

(a) Ht is increasing (in t) family of sigma-algebras

(b) Each Xt is Ht− measurable and E|Xt| <∞.

(c) For each s < t, s, t ∈ T , we have E(Xt|Hs) = Xs a.s.

Example 124 Suppose Zt are independent random variables with expectation
0. Define Ht = σ(Z1, Z2, . . . Zt) and St =

Pt
i=1 Zi . Then {(St,Ht),with

t = 1, 2, ....} is a martingale. Suppose that E(Z2t ) = σ2 < ∞. Then {(S2t −
tσ2,Ht), t = 1, 2, ...} is a martingale.

Example 125 Suppose Zt are independent random variables with Zt ≥ 0.
Define Ht = σ(Z1, Z2, . . . Zt) and Mt =

Qt
i=1 Zi. Suppose that E(Z

λ
i ) =

φ(λ) <∞. Then

{( M
λ
t

φt(λ)
,Ht), t = 1, 2, ...}

is a martingale.

This is an example of a parametric family of martingales indexed by λ ob-
tained by multiplying independent random variables.

Example 126 Let X be any integrable random variable, and Ht an increasing
family of sigma-algebras. Put Xt = E(X|Ht). Then (Xt,Ht) is a martingale.

Definition 127 Let {(Mn,Hn);n = 1, 2, ...} be a martingale and An be a se-
quence of random variables measurable with respect to Hn−1. Then the sequence
An is called non-anticipating. (an alternate term is predictable)

In gambling, we must determine our stakes and our strategy on the n0th
play of a game based on the information available to use at time n− 1. Simi-
larly, in investment, we must determine the weights on various components in
our portfolio at the end of day (or hour or minute) n − 1 before the random
marketplace determines our profit or loss for that period of time. In this sense
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gambling and investment strategies must be determined by non-anticipating se-
quences of random variables (although both gamblers and investors often dream
otherwise).

Definition 128 (Martingale Transform). Let {{(Mt,Ht), t = 0, 1, 2, ...} be a
martingale and let An be a bounded non-anticipating sequence with respect to
Hn. Then the sequence

M̃t = A1(M1 −M0) + ...+At(Mt −Mt−1) (7.2)

is called a Martingle transform of Mt.

The martingale transform is sometimes denoted A ◦M.

Theorem 129 {(M̃t,Ht), t = 1, 2, ...} is a martingale.

Proof.

E[fMj − fMj−1|Hj−1] = E[Aj(Mj −Mj−1|Hj−1]
= AjE[(Mj −Mj−1|Hj−1] since Aj is Hj−1 measurable
= 0 a.s.

Therefore
E[fMj |Hj−1] = fMj−1 a.s.

Consider a random variable τ that determines when we stop betting or in-
vesting. Its value can depend arbitrarily on the outcomes in the past, as long as
the decision to stop at time τ = n depends only on the results at time n, n− 1,
...etc. Such a random variable is called an optional stopping time.

Definition 130 A random variable τ taking values in {0, 1, 2, ...} ∪ {∞} is a
(optional) stopping time for a martingale (Xt,Ht) if for each n , [τ ≤ n] ∈
Hn .

If we stop a martingle at some random stopping time, the result continues
to be a martingale as the following theorem shows.

Theorem 131 Suppose that {(Mt,Ht), t = 1, 2, ...} is a martingale and τ is
an optional stopping time. Define Yn =Mn∧τ =Mmin(n,τ). Then {(Yn,Hn), n =
1, 2, ..} is a martingale.

Proof. Notice that

Mn∧τ =M0 +
nX
j=1

(Mj −Mj−1)I(τ ≥ j).

Letting Aj = I(τ ≥ j) this is a bounded Hj−1−measurable sequence and
therefore

Pn
j=1(Mj −Mj−1)I(τ ≥ j) is a martingale transform. By Theorem

129 it is a martingale.
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Example 132 (Ruin probabilities). Consider a random walk Sn =
Pn

i=1Xi
where the random variables Xi are independent identically distributed with P (Xi =
1) = p, P (Xi = −1) = q, P (Xi = 0) = 1 − p − q for 0 < p + q ≤ 1, p 6= q.
Then Mn = (q/p)

Sn is a martingale. Suppose that A < S0 < B and define
the optional stopping time τ as the first time Sn hits either of two barriers at
A or B. If p 6= 1

2 then since by the Law of large numbers we have

Sn
n
→ p− q a.s.

this guarantees that one of the two boundaries is eventually hit with probability
1. Then Mn∧τ is a martingale. Since E(Mτ ) = limn→∞E(Mn∧τ ) = (q/p)S0
by dominated covergence, we have

(q/p)ApA + (q/p)
BpB = (q/p)

S0 (7.3)

where pA and pB = 1− pA are the probabilities of hitting absorbing barriers at
A or B respectively. Solving, it follows that

((q/p)A − (q/p)B)pA = (q/p)S0 − (q/p)B (7.4)

or that

pA =
(q/p)S0 − (q/p)B
(q/p)A − (q/p)B . (7.5)

In the case p = q, a similar argument (or alternatively taking limits as p→ 1
2)

provides

pA =
B − S0
B −A . (7.6)

Definition 133 For an optional stopping time τ define

Hτ = {A ∈ H;A ∩ [τ ≤ n] ∈ Hn, for all n}. (7.7)

Theorem 134 Hτ is a sigma-algebra.

Proof. Clearly since the empty set ϕ ∈ Hn for all n, so is ϕ∩ [τ ≤ n] and
so ϕ ∈ Hτ . We also need to show that if A ∈ Hτ then so is the complement
Ac. Notice that for each n,

[τ ≤ n] ∩ {A ∩ [τ ≤ n]}c

= [τ ≤ n] ∩ {Ac ∪ [τ > n]}
= Ac ∩ [τ ≤ n]

and since each of the sets [τ ≤ n] and A ∩ [τ ≤ n] are Hn−measurable, so
must be the set Ac∩ [τ ≤ n]. Since this holds for all n it follows that whenever
A ∈ Hτ then so Ac. Finally, consider a sequence of sets Am ∈ Hτ for all
m = 1, 2, .... We need to show that the countable union ∪∞m=1Am ∈ Hτ . But

{∪∞m=1Am} ∩ [τ ≤ n] = ∪∞m=1{Am ∩ [τ ≤ n]}
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and by assumption the sets {Am ∩ [τ ≤ n]} ∈ Hn for each n. Therefore

∪∞m=1{Am ∩ [τ ≤ n]} ∈ Hn

and since this holds for all n, ∪∞m=1Am ∈ Hτ .

Definition 135 {(Xt,Ht); t ∈ T} is a submartingale if

(a) Ht is increasing (in t) family of sigma-algebras.

(b) Each Xt is Ht measurable and E|Xt| <∞.

(c) For each s < t,, E(Xt|Hs) ≥ Xs a.s.

Note that every martingale is a submartingale. There is a version of
Jensen’s inequality for conditional expectation as well as the one proved before
for ordinary expected value.

Theorem 136 (Jensen’s Inequality-conditional version) Let φ be a convex
function. Then for any random variable X and sigma-field H,

φ(E(X|H)) ≤ E(φ(X)|H). (7.8)

Proof. Consider the set L of linear function L(x) = a+ bx that lie entirely
below the graph of the function φ(x). It is easy to see that for a convex function

φ(x) = sup{L(x);L ∈ L}.

For any such line, since φ(x) ≥ L(x),

E(φ(X)|H) ≥ E(L(X)|H) = L(E(X)|H)).

If we take the supremum over all L ∈ L , we obtain

E(φ(X)|H) ≥ φ(E(X)|H)).

Example 137 Let X be any random variable and H be a sigma-field. Then
for 1 ≤ p ≤ k <∞

{E(|X|p|H)}1/p ≤ {E(|X|k|H)}1/k. (7.9)

In the special case that H is the trivial sigma-field, this is the inequality

||X||p ≤ ||X||k where ||X||p = (E|X|p)1/p. (7.10)

Proof. Consider the function φ(x) = |x|k/p. This function is convex pro-
vided that k ≥ p and by the conditional form of Jensen’s inequality,

E(|X|k|H) = E(φ(|X|p)|H) ≥ φ(E(|X|p|H)) = |E(|X|p|H)|k/p a.s.
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Example 138 (Constructing Submartingales). Let Sn be a martingale with
respect to Hn. Then (|Sn|p,Hn) is a submartingale for any p ≥ 1 provided
that E|Sn|p <∞.

Proof. Since the function φ(x) = |x|p is convex for p ≥ 1, it follows from
the conditional form of Jensen’s inequality that

E(|Sn+1|p|Hn) = E(φ(Sn+1)|Hn) ≥ φ(E(Sn+1|Hn)) = φ(Sn) = |Sn|p a.s.

Theorem 139 Let Xn be a submartingale and suppose φ is a convex nonde-
creasing function with Eφ(Xn) <∞. Then φ(Xn) is a submartingale.

Proof. Since the function φ(x) is convex ,

E(φ(Sn+1)|Hn) ≥ φ(E(Sn+1|Hn)) ≥ φ(Sn) a.s.

since E(Sn+1|Hn) ≥ Sn a.s. and the function φ is non-decreasing.

Corollary 140 Let (Xn,Hn) be a submartingale. Then ((Xn − a)+,Hn) is a
submartingale.

Proof. The function φx) = (x− a)+ is convex and non-decreasing.

Theorem 141 (Doob’s Maximal Inequality) Suppose (Mn,Hn) is a non-
negative submartingale. Then for λ > 0 and p ≥ 1,

P ( sup
0≤m≤n

Mm ≥ λ) ≤ λ−pE(Mp
n)

Proof. We prove this in the case p = 1. The general case we leave as a
problem. Define a stopping time

τ = min{m;Mm ≥ λ}

and on the set that it never occurs that Mm ≥ λ we can define τ = ∞. Then
τ ≤ n if and only if the maximum has reached the value λ by time n or

P [ sup
0≤m≤n

Mm ≥ λ] = P [τ ≤ n].

Now on the set [τ ≤ n], the maximum Mτ ≥ λ so

λI(τ ≤ n) ≤MτI(τ ≤ n) =
nX
i=1

MiI(τ = i). (7.11)

By the submartingale property, for any i ≤ n and A ∈ Hi,

E(MiIA) ≤ E(MnIA).
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Therefore, taking expectations on both sides of (7.11), and noting that for all
i ≤ n,

E(MiI(τ = i)) ≤ E(MnI(τ = i))

we obtain
λP (τ ≤ n) ≤ E(MnI(τ ≤ n)) ≤ E(Mn).

Theorem 142 (Doob’s Lp Inequality) Suppose (Mn,Hn) is a non-negative
submartingale and put M∗n = sup0≤m≤nMm. Then for p > 1, and all n

||M∗n||p ≤
p

p− 1 ||Mn||p

One of the main theoretical properties of martingales is that they converge
under fairly general conditions. Conditions are clearly necessary. For example
consider a simple random walk Sn =

Pn
i=1 Zi where Ziare independent identi-

cally distributed with P (Zi = 1) = P (Zi = −1) = 1
2 . Starting with an arbitrary

value of S0, say S0 = 0 this is a martingale, but as n→∞ it does not converge
almost surely or in probability.
On the other hand, consider a Markov chain with the property that

P (Xn+1 = j|Xn = i) =
1

2i+ 1
for j = 0, 1, ..., 2i.

Notice that this is a martingale and beginning with a positive value, say X0 =
10, it is a non-negative martingale. Does it converge almost surely? If so
the only possible limit is X = 0 because the nature of the process is such
that P [|Xn+1 − Xn| ≥ 1|Xn = i] ≥ 2

3 unless i = 0. The fact that it does
converge a.s. is a consequence of the martingale convergence theorem. Does it
converge in L1 i.e. in the sense that E[|Xn − X|] → 0 as n → ∞? If so,
then clearly E(Xn) → E(X) = 0 and this contradicts the martingale property
of the sequence which implies E(Xn) = E(X0) = 10. This is an example of a
martingale that converges almost surely but not in L1.

Lemma 143 If (Xt,Ht), t = 1, 2, ..., n is a (sub)martingale and if α,β are
optional stopping times with values in {1, 2, ..., n} such that α ≤ β then

E(Xβ |Hα) ≥ Xα

with equality if Xt is a martingale.

Proof. It is sufficient to show thatZ
A

(Xβ −Xα)dP ≥ 0

for all A ∈ Hα. Note that if we define Zi = Xi−Xi−1 to be the submartingale
differences, the submartingale condition implies

E(Zj |Hi) ≥ 0 a.s. whenever i < j.
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Therefore for each j = 1, 2, ...n and A ∈ Hα,Z
A∩[α=j]

(Xβ −Xα)dP =

Z
A∩[α=j]

nX
i=1

ZiI(α < i ≤ β)dP

=

Z
A∩[α=j]

nX
i=j+1

ZiI(α < i ≤ β)dP

=

Z
A∩[α=j]

nX
i=j+1

E(Zi|Hi−1)I(α < i)I(i ≤ β)dP

≥ 0 a.s.

since I(α < i) , I(i ≤ β) and A ∩ [α = j] are all measurable with respect to
Hi−1 and E(Zi|Hi−1) ≥ 0 a.s. If we add over all j = 1, 2, ..., n we obtain the
desired result.
The following inequality is needed to prove a version of the submartingale

convergence theorem.

Theorem 144 (Doob’s upcrossing inequality) Let Mn be a submartingale and
for a < b , define Nn(a, b) to be the number of complete upcrossings of the
interval (a, b) in the sequence Mj , j = 0, 1, 2, ..., n. This is the largest k such
that there are integers i1 < j1 < i2 < j2... < jk ≤ n for which

Mil ≤ a and Mjl ≥ b for all l = 1, ..., k.

Then
(b− a)ENn(a, b) ≤ E{(Mn − a)+ − (M0 − a)+}

Proof. By Corollary 140, we may replace Mn by Xn =(Mn − a)+ and
this is still a submartingale. Then we wish to count the number of upcrossings
of the interval [0, b0] where b0 = b− a. Define stopping times for this process by
α0 = 0,

α1 = min{j; 0 ≤ j ≤ n,Xj = 0}
α2 = min{j;α1 ≤ j ≤ n,Xj ≥ b0}
...

α2k−1 = min{j;α2k−2 ≤ j ≤ n,Xj = 0}
α2k = min{j;α2k−1 ≤ j ≤ n,Xj ≥ b0}.

In any case, if αk is undefined because we do not again cross the given boundary,
we define αk = n. Now each of these random variables is an optional stopping
time. If there is an upcrossing between Xαj and Xαj+1 (where j is odd) then
the distance travelled

Xαj+1 −Xαj ≥ b0.
If Xαj is well-defined (i.e. it is equal to 0) and there is no further upcrossing,
then Xαj+1 = Xn and

Xαj+1 −Xαj = Xn − 0 ≥ 0.
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Similarly if j is even, since by Lemma 143, (Xαj ,Hαj ) is a submartingale,

E(Xαj+1 −Xαj ) ≥ 0.

Adding over all values of j, and using the fact that α0 = 0 and αn = n,

E
nX
j=0

(Xαj+1 −Xαj ) ≥ b0ENn(a, b)

E(Xn −X0) ≥ b0ENn(a, b).

In terms of the original submartingale, this gives

(b− a)ENn(a, b) ≤ E(Mn − a)+ −E(M0 − a)+.

Doob’s martingale convergence theorem that follows is one of of the nicest
results in probability and one of the reasons why martingales are so frequently
used in finance, econometrics, clinical trials and lifetesting.

Theorem 145 (Sub)martingale Convergence Theorem. Let (Mn,Hn); n =
1, 2, . . . be a submartingale such that supn→∞EM+

n < ∞. Then there is
an integrable random variable M such that Mn →M a.s.

Proof. The proof is an application of the upcrossing inequality. Consider
any interval a < b with rational endpoints. By the upcrossing inequality,

E(Na(a, b)) ≤
1

b− aE(Mn − a)+ ≤
1

b− a [|a|+E(M
+
n )]. (7.12)

Let N(a, b) be the total number of times that the martingale completes an up-
crossing of the interval [a, b] over the infinite time interval [1,∞) and note
that Nn(a, b) ↑ N(a, b) as n → ∞. Therefore by monotone convergence
E(Na(a, b))→ EN(a, b) and by (7.12)

E(N(a, b)) ≤ 1

b− a lim sup[a+E(M
+
n )] <∞.

This imples
P [N(a, b) <∞] = 1.

Therefore,
P (lim infMn ≤ a < b ≤ lim supMn) = 0

for every rational a < b and this implies that Mn converges almost surely to
a (possibly infinite) random variable. Call this limit M.We need to show that
this random variable is almost surely finite. Because E(Mn) is non-decreasing,

E(M+
n )−E(M−n ) ≥ E(M0)
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and so
E(M−n ) ≤ E(M+

n )−E(M0).

But by Fatou’s lemma

E(M+) = E(lim infM+
n ) ≤ lim inf EM+

n <∞

Therefore E(M−) <∞ , and soM is integrable and consequently finite almost
surely.

Theorem 146 (Lp martingale Convergence Theorem) Let (Mn,Hn); n = 1, 2, . . .
be a martingale such that supn→∞E|Mn|p <∞, p > 1. Then there is a random
variable M such that Mn →M a.s. and in Lp.

Example 147 (The Galton-Watson branching process). Consider a population
of Zn individuals in generation n each of which produces a random number
ξ of offspring in the next generation so that the distribution of Zn+1 is
that of ξ1 + .... + ξZn for independent identically distributed ξ. This process
Zn, n = 1, 2, ... is called the Galton-Watson process. Let E(ξ) = µ. Assume we
start with a single individual in the population Z0 = 1 (otherwise if there are j
individuals in the population to start then the population at time n is the sum
of j independent terms, the offspring of each). Then

• The sequence Zn/µn is a martingale.

• If µ < 1, Zn → 0 and Zn = 0 for all sufficiently large n.

• If µ = 1 and P (ξ 6= 1) > 0, then Zn = 0 for all sufficiently large n.

• If µ > 1, then P (Zn = 0 for some n) = ρ where ρ is the unique value
< 1 satisfying E(ρξ) = ρ.

Definition 148 {(Xt,Ht); t ∈ T} is a supermartingale if

(a) Ht is increasing (in t) family of sigma-algebras.

(b) Each Xt is Ht measurable and E|Xt| <∞.

(c) For each s < t, s, t ∈ T , E(Xt|Hs) ≤ Xs a.s.

Theorem 149 Suppose An ≥ 0 is a predictable (non-anticipating) bounded se-
quence and Xn is a supermartingale. Then the supermartingale transform A◦X
is a supermartingale.

Theorem 150 Let (Mn,Hn); n = 1, 2, . . . be a supermartingale such that
Mn ≥ 0. Then there is a random variable M such that Mn → M a.s. with
E(M) ≤ E(M0).
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Example 151 Let Sn be a simple symmetric random walk with S0 = 1 and
define the optional stopping time N = inf{n;Sn = 0}. Then

Xn = Sn∧N

is a non-negative (super)martingale and therefore Xn → almost surely. The
limit must be 0 since otherwise, |Xn+1 − Xn| = 1 and so convergence is
impossible. However, in this case, E(Xn) = 1 whereas E(X) = 0 so the
convergence is not in L1.

Definition 152 {(Xt,Ht); t ∈ T} is a reverse martingale if

(a) Ht is decreasing (in t) family of sigma-algebras.

(b) Each Xt is Ht− measurable and E|Xt| <∞.

(c) For each s < t, E(Xs|Ht) = Xt a.s.

Example 153 Let X be any integrable random variable, Ht be any decreasing
family of sigma-algebras. Put Xt = E(X|Ht) . Then (Xt,Ht) is a reverse
martingale.

Theorem 154 (Reverse martingale convergence Theorem). If (Xn,Hn); n =
1, 2, . . . is a reverse martingale,

Xn → E(X1| ∩∞n=1 Hn) a.s. (7.13)

Example 155 (The Strong Law of Large Numbers) Let Yi be independent iden-
tically distributed, Hn = σ(Ȳn, Yn+1, Yn+2, ...) , where Ȳn = 1

n

Pn
i=1 Yi. Then

Hn is a decreasing family of sigma fields and Ȳn = E(Y1|Hn) is a reverse
martingale. It follows from the reverse martingale convergence theorem that
Ȳn → Y where Y is a random variable measurable with respect to ∩∞n=1Hn.
But ∩∞n=1Hn is in the tail sigma-field and so by the Hewitt-Savage 0-1 Law,
Y is a constant almost surely and Y = E(Yi).

Example 156 (Hewitt-Savage 0-1 Law) Suppose Yi are independent identically
distributed and A is an event in the tail sigma-field. Then P (A) = 0 or
P (A) = 1.

7.4 Uniform Integrability

Definition 157 A set of random variables {Xi, i = 1, 2, ....} is uniformly inte-
grable if

sup
i
E(|Xi|I(|Xi| > c)→ 0 as c→∞
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7.4.1 Some Properties of uniform integrability:

1. Any finite set of integrable random variables is uniformly integrable.

2. Any infinite sequence of random variables which converges in L1 is uni-
formly integrable.

3. Conversely if a sequence of random variables converges almost surely and
is uniformly integrable, then it also converges in L1.

4. If X is integrable on a probability space (Ω,H) and Ht any family of
sub-sigma fields, then {E(X|Ht)} is uniformly integrable.

5. If {Xn, n = 1, 2, ...}is uniformly integrable, then supnE(Xn) <∞.

Theorem 158 Suppose a sequence of random variables satisfies Xn → X in
probability. Then the following are all equivalent:

1. {Xn, n = 1, 2, ...} is uniformly integrable

2. Xn → X in L1.

3. E(|Xn|)→ E(|X|)

Theorem 159 Suppose Xn is a submartingale. Then the following are all
equivalent:

1. {Xn, n = 1, 2, ...} is uniformly integrable

2. Xn → X almost surely and in L1.

3. Xn → X in L1.

Theorem 160 Suppose Xn is a martingale. Then the following are all equiva-
lent:

1. {Xn, n = 1, 2, ...} is uniformly integrable

2. Xn → X almost surely and in L1.

3. Xn → X in L1.

4. There exists some integrable X such that Xn = E(X|Hn) a.s.
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7.5 Martingales and Finance
Let S(t) denote the price of a security at the beginning of period t = 0, 1, 2, ...T .
We assume that the security pays no dividends. Define the (cumulative) returns
process associated with this security by RS where

∆RS(t) = RS(t)−RS(t− 1) =
∆S(t)

S(t− 1) =
S(t)− S(t− 1)

S(t− 1) , RS(0) = 0.

Then 100∆RS(t)% is the percentage return in an investment in the stock in the
t− 10st period. The returns process is a more natural characterisation of stock
prices than the original stock price process since it is invariant under artificial
scale changes such as stock splits etc. Note that we can write the stock price in
terms of the returns process;

S(t) = S(0)
tY
i=1

(1 +∆RS(i)).

Now consider another security, a riskless discount bond which pays no coupons.
Assume that the price of this bond at time t is B(t), B(0) = 1 and RB(t)
is the return process associated with this bond. Then ∆RB(t) = r(t) is the
interest rate paid over the t− 1’st period. It is usual that the interest paid over
the t−1st period should be declared in advance, i.e. at time t−1 so that if S(t)
is adapted to a filtration Ft, then r(t) is predictable , i.e. is Ft−1−measurable.
The discounted stock price process is the process given by

S∗(t) = S(t)/B(t).

Consider a trading strategy of the form (β(t),α(t)) representing the total
number of shares of bonds and stocks respectively held at the beginning of the
period (t − 1, t). Since our investment strategy must be determined by using
only the present and the past values of this and related processes, both β(t) and
α(t) are predictable processes. Then the value of our investment at time t− 1
is Vt−1 = β(t)B(t−1)+α(t)S(t−1) and at the end of this period, this changes
to β(t)B(t)+α(t)S(t) with the difference β(t)∆B(t)+α(t)∆S(t) representing
the gain over this period. An investment strategy is self-financing if the value
after rebalancing the portfolio is the value before- i.e. if all investments are
paid for by the above gains. In other words if Vt = β(t)B(t) + α(t)S(t) for
all t. An arbitrage opportunity is a trading strategy that makes money with no
initial investment; i.e. one such that V0 = 0, Vt ≥ 0 for all t = 1, . . . T and
E(VT ) > 0. The basic theorem of no-arbitrage pricing is the following:

7.5.1 Theorem

There are no arbitrage opportunities in the above economy if and only if there
is a measure Q equivalent to the underlying measure P i.e. P << Q and
Q << P such that under Q the discounted process is a martingale; i.e.
EQ(S

∗(t)|Ft−1] = S∗(t− 1) a.s. for all t ≤ T .
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Proof; See Pliska (3.19)) page 94.
Note: The measure Q is called the equivalent martingale measure and is used

to price derivative securities. For any attainable contingent claim X; (a for any
random variable X which can be written as a linear function of the avail-
able investments), the arbitrage-free price at time t is given by the conditional
expected value under Q of the discounted return X given Ft.

7.6 Problems
1. Let (Ω,F , P ) be the unit interval with the Borel sigma-algebra and
Lebesgue measure defined thereon. Define Fn to be the sigma field
generated by the intervals ( j−12n ,

j
2n ] , j = 1, 2, . . . 2n. Let X be a

bounded continuous function on the unit interval.

(a) Find E(X|Fn).
(b) Show Fn ⊂ Fn+1 for all n .

(c) Verify that E(X|Fn) converges pointwise and identify the limit.
(d) Verify directly that E{E(X|Fn)} = E(X).
(e) What could you conclude if X had countably many points of discon-

tinuity?

2. Prove property (i), that if Z is G−measurable, E(ZX|G) = ZE(X|G)
a.s.

3. Suppose that X is integrable so that E(|X|) <∞. Prove for constants c, d
that E(cX+d|G) = cE(X|G)+d (First give the proof in case E(X2) <∞).

4. Prove property (j): if H ⊂ G are sigma-algebras, E[E(X|G)|H] =
E(X|H). Does the same hold if G ⊂ H?

5. Prove: if X ≤ Y , then E(X|G) ≤ E(Y |G) a.s.

6. Prove: var(X) = E{var(X|G)}+ var{E(X|G)}.

7. Prove that if X and Y are simple random variables, X =
P
ciIAi and

Y =
P
j djIBj then

E(X|Y )(ω) =
X
j

X
i

ciP (Ai|Bj)IBj (ω).

8. Suppose X is a normal(0, 1) variate and Y = XI(X ≤ c). Find E(X|Y ).

9. Suppose X and Y are independent exponentially distributed random
variables each with mean 1. Let I be the indicator random variable
I = I(X > Y ). Find the conditional expectations

(a) E(X|I)
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(b) E(X + Y |I)

10. Suppose X is a random variable having the Poisson(λ) distribution and
define the indicator random variable I = I(X is even). Find E(X|I).

11. Consider the pair of random variables (Xn, Yn) where Xn = X, and Yn =
(1/n)X for all n = 1, 2, . . .. Show that (Xn, Yn) converges almost surely
to some (X,Y ) but it is NOT true in general that E(Xn|Yn) → E(X|Y )
almost surely or that E(Xn|Yn)→ E(X|Y ) weakly.

12. Suppose Yi are independent identically distributed. Define Fn = σ(Y(1), ..., Y(n), Yn+1, Yn+2, ...),
where (Y(1), ..., Y(n)) denote the order statistics. Show Fn is a decreasing
family of sigma fields, find s2n = E(

1
2(Y1−Y2)2|Fn) and show it is a reverse

martingale. Conclude a limit theorem.

13. Let X be an arbitrary absolutely continuous random variable with prob-
ability density function f(x). Let α(s) = f(s)/P [X ≥ s] denote the
hazard function. Show

Xt = I(X ≥ t)−
Z min(X,t)

−∞
α(s)ds

is a martingale with respect to a suitable family of sigma-algebras.

14. Suppose (Xt,Ft) is a martingale and a random variable Y is independent
of every Ft . Show that we continue to have a martingale when Ft is
replace by σ(Y,Ft).

15. Suppose τ is an optional stopping time taking values in a interval {1, 2, ..., n}.
Suppose {(Xt,Ft); t = 1, 2, ..., n} is a martingale. Prove E(Xτ ) = E(X1).

16. Prove the general case of Doob’s maximal inequality, that for p > 1,λ > 0
and a non-negative submartingale Mn,

P ( sup
0≤m≤n

Mm ≥ λ) ≤ λ−pE(Mp
n)

17. Consider a stock price process S(t) and a riskless bond price process
B(t) and their associated returns process ∆RS(t) and ∆RB(t) = r(t).
Assume that the stock price takes the form of a binomial tree; S(t) =
S(t − 1)[d + (u − d)Xt] where Xt are independent Bernoulli random
variables adapted to some filtration Ft and where d < 1 < 1+r(t) < u for
all t. We assume that under the true probability measure P , P (Xt = 0)
and P (Xt = 1) are positive for all t.

Determine a measure Q such that the discounted process S∗(t) = S(t)
B(t) is

a martingale under the new measure Q and such that Q is equivalent to
P i.e. P << Q and Q << P . Is this measure unique? What if we were
to replace the stock price process by one which had three branches at each
step, i.e. it either stayed the same, increased by a factor u or decreased
by factor d at each step (a trinomial tree)?
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18. Prove that if, under a measure Q, the expected return from a stock is the
risk-free interest rate; i.e. if

EQ[∆RS(t)|Ft−1] = r(t) a.s.

then the discounted price process S∗(t) is a martingale under Q.

19. Prove that for an optional stoping time τ, σ(τ) ⊂ Hτ .

20. Let X1,X2, ... be a sequence of independent random variables all with the
same expected value µ. Suppose τ is an optional stopping time with
respect to the filtration Ht = σ(X1,X2, ...,Xt), t = 1, 2, ... and assume
that

E(
τX
i=1

|Xi|) <∞.

Prove that

E(
τX
i=1

Xi) = µE(τ).

21. Find an example of a martingale Xt, t = 1, 2, .... and an optional stopping
time τ such that

P [τ <∞] = 1

but Xτ is not integrable.

22. Let Xn be a submartingale and let a be a real number. Define Yn =
max(Xn, a). Prove that Yn is a submartingale. Repeat when Yn = g(Xn)
where g is any convex function.

23. Let Xn be a simple symmetric random walk (i.e. it jumps up or down by
one unit with probability 1/2 independently at each time step. Define

τ = min{n ≥ 5;Xn+1 = Xn + 1}.

(a) Is τ a stopping time? What about ρ = τ − 1?
(b) Compute E(Xτ ). Is E(Xτ ) = E(X1)?

24. Let Xn be a stochastic process such that

E(Xn+1|X0, ...,Xn) = Xn +m

for some constant m.

(a) Find a martingale Yn of the form Yn = Xn + cn.

(b) Let τ be any stopping time with finite expected value. Compute
E(Xτ ) in terms of E(τ).
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25. Consider two independent random variables Y and X on the probability
space (Ω,F , P ) and a sigma-algebra G ⊂ F . Prove or provide a counter-
example to the statement that this implies E(X|G ) is independent of
E(Y |G ).

26. Consider a sequence of random variablesX1,X2, .... such that (X1,X2, ..,Xn)
is absolutely continuous and has joint probabiity density function pn(x1, ..., xn).
Suppose qn(x1, ..., xn) is another sequence of joint probability density func-
tions and define

Yn =
qn(X1, ...,Xn)

pn(X1, ...,Xn)

if the denominator is > 0 and otherwise Yn = 0. Show that Yn is a
supermartingale that converges almost surely.


