
Chapter 6

Characteristic Functions
and the Central Limit
Theorem

6.1 Characteristic Functions

6.1.1 Transforms and Characteristic Functions.

There are several transforms or generating functions used in mathematics, prob-
ability and statistics. In general, they are all integrals of an exponential function,
which has the advantage that it converts sums to products. They are all func-
tions defined on t ∈ <. In this section we use the notation i =

√−1. For
example;

1. (Probability) Generating function. g(s) = E(sX).

2. Moment Generating Function. m(t) = E[etX ] =
R
etxdF

3. Laplace Transform. L(t) = E[e−tX ] = R e−txdF
4. Fourier Transform. E[e−itX ] =

R
e−itxdF

5. Characteristic function. ϕX(t) = E[eitX ] =
R
eitxdF

Definition 106 (Characteristic Function) Define the characteristic function of
a random variable X or or its cumulative distribution function FX to be the
complex-valued function on t ∈ <

ϕX(t) = E[eitX ] =

Z
eitxdF = E(cos(tX)) + iE(sin(tX))
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The main advantage of the characteristic function over transforms such as the
Laplace transform, probability generating function or the moment generating
function is property (a) below. Because we are integrating a bounded function;
|eitx| = 1 for all x, t ∈ <, the integral exists for any probability distribution.

6.1.2 Properties of Characteristic Function.

(a) ϕ exists for any distribution for X.

(b) ϕ(0) = 1 .

(c) |ϕ(t)| ≤ 1 for all t .

(d) ϕ is uniformly continuous . That is for all ² > 0 , there exists δ > 0
such that |ϕ(t)− ϕ(s)| ≤ ² whenever |t− s| ≤ δ.

(e) The characteristic function of a+ bX is eiatϕ(bt).

(f) The characteristic function of −X is the complex conjugate ϕ̄(t).

(g) A characteristic function ϕ is real valued if and only if the distribution of
the corresponding random variable X has a distribution that is symmetric
about zero, that is if and only if P [X > z] = P [X < −z] for all z ≥ 0.

(h) The characteristic function of a convolution F ∗G is ϕF (t)ϕG(t).

Proofs.

(a) Note that for each x and t, |eitx|2 = sin2(tx) + cos2(tx) = 1 and the
constant 1 is integrable. Therefore

E|eitX |2 = 1.

It follows that
E|eitX | ≤

q
E|eitX |2 = 1

and so the function eitx is integrable.

(b) eitX = 1 when t = 0 . Therefore ϕ(0) = Ee0 = 1.

(c) This is included in the proof (a).

(d) Let h = s− t. Assume without loss of generality that s > t. Then

|ϕ(t)− ϕ(s)| = |EeitX(eihX − 1) |
≤ E[|eitX(eihX − 1)|]
≤ E[|eitX ||eihX − 1|]
≤ E[|eihX − 1|].
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But as h→ 0 the function eihX − 1 converges to 0 for each ω ∈ Ω and
it is dominated by the constant 2. Therefore, by the Lebesgue Dominated
Convergence theorem, E[|eihX−1|]→ 0 as h→ 0. So for a given ² > 0,
we chan choose h sufficiently small, for example h = |s − t| ≤ δ such
that |ϕ(t)− ϕ(s)| ≤ ².

(e) By definition, Eeit(a+bX) = eitaE[eitbX ] = eiatϕ(bt).

(f) Recall that the complex conjugate of a+ bi is a− bi and of eiz is e−iz

when a, b, and z are real numbers. Then

E[eit(−X)] = E[e−itX ] = E[cos(tX) + isin(−tX)]
= E[cos(tX)− isin(tX)] = ϕ̄(t).

(g) The distribution of the corresponding random variable X is symmetric if
and only if X has the same distribution as does −X. This is true if and
only if they have the same characteristic function. By properties (f) and
the corollary below, this is true if and only if ϕ(t) = ϕ̄(t) which holds if
and only if the function ϕ(t) takes on only real values.

(h) PutH = F ∗G. When there is a possible ambiguity about the variable over
which we are integrating, we occasionally use the notation

R
h(x)F (dx−

y) to indicate the integral
R
h(x)dK(x) where K(x) is the cumulative

distribution function given by K(x) = F (x− y). ThenZ
eitxH(dx) =

Z
eitx

Z
F (dx− y)G(dy)

=

Z Z
eit(z+y)F (dz)G(dy),with z = x− y,

and this is ϕF (t)ϕG(t).

The major reason for our interest in characteristic functions is that they
uniquely describe the distribution. Probabilities of intervals can be recovered
from the characteristic function using the following inversion theorem.

Theorem 107 ( Inversion Formula). If X has characteristic function ϕX(t),
then for any interval (a, b),

P [a < X < b] +
P [X = a] + P [X = b]

2
= lim
T→∞

1

2π

Z T

−T

e−ita − e−itb
it

ϕX(t)dt

Proof. Consider the integral

1

2π

Z T

−T

e−ita − e−itb
it

ϕ(t)dt =
1

2π

Z T

−T

e−ita − e−itb
it

Z
<
eitxF (dx)dt
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=

Z T

−T

Z
<

eit(x−a) − eit(x−b)
2πit

F (dx)dt =

Z
<

Z T

−T

eit(x−a) − eit(x−b)
2πit

dtF (dx).

Note that for real c we haveZ T

−T

eitc

2it
dt =

Z T

0

sin(tc)

t
dt

and so we obtain from above

1

2π

Z T

−T

e−ita − e−itb
it

ϕ(t)dt =

Z
<

1

π
{
Z T

0

sin(t(x− a))
t

dt−
Z T

0

sin(t(x− b))
t

dt}F (dx).

But as T →∞, it is possible to show that the integral (this is known as the sine
integral function)

1

π

Z T

0

sin(t(x− a))
t

dt→
⎧⎨⎩ −

1
2 , x < a

1
2 , x > a
0, x = a

Substituting this above and taking limits through the integral using the Lebesgue
Dominated Convergence Theorem, the limit is the integral with respect to F (dx)
of the function

g(x) =

⎧⎪⎪⎨⎪⎪⎩
1
2 , x = a
1
2 , x = b
1, a < x < b
0, elswhere

and this integral equals

P [a < X < b] +
P [X = a] + P [X = b]

2
.

Corollary 108 If the characteristic function of two random variables X and
Y agree, then X and Y have the same distribution.

Proof. This follows immediately from the inversion formula above.
We have seen that if a sequence of cumulative distribution functions Fn(x)

converges pointwise to a limit, the limiting function F (x) is not necessarily
a cumulative distribution function. To ensure that it is, we require that the
distributions are “tight”. Similarly if a sequence of characteristic functions
converge for each t, the limit is not necessarily the characteristic function of
a probability distribution. However, in this case the tightness of the sequence
translates to a very simple condition on the limiting characteristic function.

Theorem 109 (Continuity Theorem) If Xn has characteristic function ϕn(t),
then Xn converges weakly if and only if there exists a function ϕ(t) which is
continuous at 0 such that ϕn(t) → ϕ(t) for each t. (Note: In this case ϕ is
the characteristic function of the limiting random variable X.)
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Proof. Suppose Xn ⇒ X. Then since the function eitx is a continuous
bounded function of x, then

E(eitXn)→ E(eitX).

Conversely, suppose that ϕn(t) → ϕ(t) for each t and ϕ is a continuous
function at t = 0. First prove that for all ² > 0 there exists a c < ∞ such
that P [|Xn| > c] ≤ ² for all n. This is Problem 14 below. This shows that the
sequence of random variables Xn is “tight” in the sense that any subsequence
of it contains a further subsequence which converges in distribution to a proper
cumulative distribution function. By the first half of the proof, ϕ(t) is the
characteristic function of the limit. Thus, since every subsequence has the same
limit, Xn ⇒ X.

Example 110 (Problem 18) Suppose Xn ∼ U [−n, n] . Then the characteristic
function of Xn is ϕn(t) = (sin tn)/tn. Does this converge as n → ∞? Is the
limit continuous at 0?

Example 111 (Problem 19) Suppose X1, ...Xn . . . are independent Cauchy
distributed random variables with probability density function

f(x) =
1

π(1 + x2)
, x ∈ <.

Then the sample mean X̄ has the same distribution as X1.

Note: We may use the integral formulaZ ∞
0

cos(tx)

b2 + x2
dx =

π

2b
e−tb, t ≥ 0

to obtain the characteristic function of the above Cauchy distribution

ϕ(t) = e−|t|.

6.1.3 Characteristic function of N(µ,σ2) .

The characteristic function of a random variable with the distribution N(µ,σ2)
is

ϕ(t) = exp{iµt− σ2t2

2
}.

(Note: Recall that for any real constant c,Z ∞
−∞

e−(x−c)
2/2dx =

√
2π.

Use the fact that this remains true even if c = it).
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6.2 The Central Limit Theorem
Our objective is to show that the sum of independent random variables, when
standardized, converges in distribution to the standard normal distribution. The
proof usually used in undergraduate statistics requires the moment generating
function. However, the moment generating function exists only if moments of
all orders exist, and so a more general result, requiring only that the random
variables have finite mean and variance, needs to use characteristic functions.
Two preliminary lemmas are used in the proof.

Lemma 112 For real x ,

eix − (1 + ix− x
2

2
) = r(x)

where |r(x)| ≤ min[x2, |x|36 ]. Consequently,

ϕ(t) = 1 + itE(X)− t
2

2
E(X2) + o(t2)

where o(t2)
t2 → 0 as t→ 0.

Proof. By expanding eix in a Taylor series with remainder we obtain

eix − 1
i

= x+ i
x2

2
+ i2

b2
2

where bn(x) =
R x
0
(x − s)neisds, and a crude approximation provides |b2| ≤R x

0
s2ds = x3/3. Integration by parts shows that b2 = 2b1−x2

i and substituting
this provides the remaining bound on the error term.

Lemma 113 For any complex numbers wi, zi, if |zi| ≤ 1, |wi| ≤ 1 , then
|Qi zi −

Q
iwi| ≤

P
i |zi − wi|.

Proof. This is proved by induction using the fact that

nY
i=1

zi−
nY
i=1

wi = (zn−wn)(
n−1Y
i=1

zi)+wn(
n−1Y
i=1

zi−
n−1Y
i=1

wi) ≤ |zn−wn|+|(
n−1Y
i=1

zi−
n−1Y
i=1

wi)|.

This shows the often used result that

(1− c

n
+ o(

1

n
))n − (1− c

n
)n → 0

and hence that
(1− c

n
+ o(

1

n
))n → e−c as n→∞.
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Theorem 114 (Central Limit Theorem) If Xi are independent identically
distributed random variables with E(Xi) = µ, var(Xi) = σ2 , then

S∗n =
1

σ
√
n

nX
i=1

(Xi − µ)

converges weakly to N(0, 1).

Proof. Suppose we denote the characteristic function of Xi−µ
σ by ϕ(t) .

By Lemma 46, ϕ(t) = 1 − t2

2 + r(t) where
r(t)
t2 → 0 as t → 0. Then the

characteristic function of S∗n is

ϕn(t/
√
n) = {1− t2

2n
+ o(t2/n)}n.

Note that by Lemma 47,

|{1− t2

2n
+ o(t2/n)}n − (1− t2

2n
)n| ≤ n o(t2/n)→ 0

and the second term (1− t2

2n)
n → e−t

2/2. Since this is the characteristic function
of the standard normal distribution, it follows that S∗n converges weakly to the
standard normal distribution.

6.3 Problems

1. Find the characteristic function of the normal(0,1) distribution. Prove
using characteristic functions that if F is the N(µ,σ2) c.d.f. then G(x) =
F (µ+ σx) is the N(0, 1) c.d.f.

2. Let F be a distribution function and define

G(x) = 1− F (−x−)

where x− denotes the limit from the left. Prove that F ∗G is symmetric.
3. Prove that F ∗G = G ∗ F.
4. Prove using characteristic functions that if Fn ⇒ F and Gn ⇒ G, then
Fn ∗Gn ⇒ F ∗G.

5. Prove that convolution is associative. That

(F ∗G) ∗H = F ∗ (G ∗H).

6. Prove that if ϕ is a characteristic function, so is |ϕ(t)|2.
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7. Prove that any characteristic function is non-negative definite:

nX
i=1

nX
j=1

ϕ(ti − tj)ziz̄j ≥ 0

for all real t1, ...tn and complex z1, ..., zn.

8. Find the characteristic function of the Laplace distribution with density
on <

f(x) =
1

2
e−|x|. (6.1)

What is the characteristic function of X1 +X2 where Xi are independent
with the probability density function (6.1)?

9. (Stable Laws) A family of distributions of importance in financial mod-
elling is the symmetric stable family. These are unimodal densities, sym-
metric about their mode, and roughly similar in shape to the normal or
Cauchy distribution (both special cases α = 2 or 1 respectively). They
are most easily described by their characteristic function, which, upon
setting location equal to 0 and scale equal to 1 is

EeiXt = e−|t|
α

.

The parameter 0 < α ≤ 2 indicates what moments exist, for except in
the special case α = 2 (the normal distribution), moments of order less
than α exists while moments of order α or more do not. Of course, for the
normal distribution, moments of all orders exist. The probability density
function does not have a simple closed form except in the case α = 1 (the
Cauchy distribution) and α = 2 (the Normal distribution) but can, at least
theoretically, be determined from the series expansion of the probability
density valid in case 1 < α < 2 (the cases, other than the normal and
Cauchy of most interest in applications)

fc(x) =
∞X
k=0

(−1)kΓ((k + 1)/α)
πcαk!

cos(
kπ

c
)(
x

c
)k

=
∞X
n=0

(−1)nΓ((2n+ 1)/α)
πcα(2n)!

(
x

c
)2n

(a) Let X1, ...,Xn be independent random variables all with a symmet-
ric stable (α) distribution. Show that n−1/α

Pn
i=1Xi has the same

Stable distribution.

(b) Verify that the Characteristic function of the probability density
function

f1(x) =
∞X
n=0

(−1)nΓ((2n+ 1)/α)
πα(2n)!

x2n
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is given by e−|t|
α

.(Hint: the series expansion of cos(x) is

cos(x) =
∞X
n=0

(−1)n x
2n

(2n)!
).

10. Let Ω be the unit interval and P the uniform distribution and suppose we
express each ω ∈ [0, 1] in the binary expansion which does not terminate
with finitely many terms. If ω = .ω1ω2...., define Rn(ω) = 1 if ωn = 1 and
otherwise Rn(ω) = −1. These are called the Rademacher functions. Prove
that they are independent random variables with the same distribution.

11. For the Rademacher functions Rn defined on the unit interval, Borel sets
and Lebesgue measure, let

Y1 = R1/2 +R3/2
2 +R6/2

3....

Y2 = R2/2 +R4/2
2 +R7/2

3 + ....

Y3 = R5/2 +R8/2
2 +R12/2

3 + ....

Note that each Ri appears only in the definition of one Yj . Prove that the
Yi are independent identically distributed and find their distribution.

12. Find the characteristic function of:

(a) The Binomial distribution

(b) The Poisson distribution

(c) The geometric distribution

Prove that suitably standardized, both the binomial distribution and the
Poisson distribution approaches the standard normal distribution as one
of the parameters →∞.

13. (Families Closed under convolution.) Show that each of the following
families of distributions are closed under convolution. That is suppose
X1, X2 are independent and have a distribution in the given family.
Then show that the distribution of X = X1 +X2 is also in the family
and identify the parameters.

(a) Bin(n, p), with p fixed.

(b) Poisson (λ ).

(c) Normal (µ,σ2).

(d) Gamma (α,β), with β fixed.

(e) Chi-squared.

(f) Negative Binomial, with p fixed.

14. Suppose that a sequence of random variables Xn has characteristic func-
tions ϕn(t) → ϕ(t) for each t and ϕ is a continuous function at t = 0.
Prove that the distribution of Xn is tight, i.e. for all ² > 0 there exists a
c <∞ such that P [|Xn| > c] ≤ ² for all n.
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15. Prove, using the central limit theorem, that

nX
i=0

nie−n

i!
→ 1

2
, as n→∞.

16. (Negative binomial) Suppose we decide in advance that we wish a fixed
number ( k ) of successes in a sequence of Bernoulli trials, and sample
repeatedly until we obtain exactly this number. Then the number of trials
X is random and has probability function

f(x) =

µ
x− 1
k − 1

¶
pk(1− p)x−k, x = k, k + 1, . . . .

Use the central limit theorem to show that this distribution can be approx-
imated by a normal distribution when k is large. Verify the central limit
theorem by showing that the characteristic function of the standardized
Negative binomial approaches that of the Normal.

17. Consider a random walk built from independent Bernoulli random vari-
ables Xi = 1 with probability p = µ/

√
n and otherwise Xi = 0. Define

the process

Bn(t) =
1√
n

[nt]X
i=1

Xi

for all 0 ≤ t ≤ 1. Find the limiting distribution of B(t) and the limiting
joint distribution of B(s), B(t)−B(s) for 0 < s < t < 1.

18. Suppose Xn ∼ U [−n, n]. Show that the characteristic function of Xn is
ϕn(t) = (sin tn)/tn. Does this converge as n→∞? Is the limit continuous
at 0?

19. Suppose X1, . Xn are independent Cauchy distributed random variables
with probability density function

f(x) =
1

π(1 + x2)
, x ∈ <.

Show that the characteristic function of the Cauchy distribution is

ϕ(t) = e−|t|.

and verify that the sample mean X̄ has the same distribution as does X1.
Note: We may use the integral formulaZ ∞

0

cos(tx)

b2 + x2
dx =

π

2b
e−tb, t ≥ 0.

20. What distribution corresponds to the following characteristic functions?
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(a)
ϕ(t) = exp{ita− b|t|}.

(b)

ϕ(t) =
sin t

t
.

(c)
2− 2 cos t

t2

21. LetX be a discrete random variable which takes only integer values. Show
that ϕ(t) is a periodic function with period 2π.

22. Let X be a random variable and a 6= 1. Show that the following conditions
are equivalent:

(a)
ϕX(a) = 1

(b) ϕX is periodic with period |a|.
(c)

P [X ∈ {2πj
a
, j = ...,−2,−1, 0, 1, 2, ...}] = 1

23. Let X be a random variable which is bounded by a finite constant. Prove
that

E(Xn) =
1

in
dn

dtn
ϕX(0)

24. What distribution corresponds to the following characteristic functions?

(a)

ϕX(t) =
1

2
e−it +

1

3
+
1

6
e2it.

(b)

ϕX(t) = cos(
t

2
)

(c)

ϕX(t) =
2

3eit − 1
25. Show that if X correponds to an absolutely continuous distribution with

probability density function f(x), then

f(x) =
1

2π

Z ∞
−∞

e−itxϕX(t)dt

26. What distribution corresponds to the following characteristic functions?
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(a)

ϕX(t) =
1

1 + t2

(b)

ϕX(t) =
1

3
eit
√
2 +

2

3
eit
√
3

(c)

ϕX(t) =
1

2
e−t

2/2 +
1

2
eit


